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Part I: Smale spaces (D. Ruelle)

(X, d) compact metric space,

ϕ : X → X homeomorphism with canonical

coordinates: there is a constant 0 < λ < 1,

and for x in X and ε > 0 and small, there are

sets Xs(x, ε) and Xu(x, ε):

1. Xs(x, ε) × Xu(x, ε) is homeomorphic to a

neighbourhood of x,

2.

d(ϕ(y), ϕ(z)) ≤ λd(y, z), y, z ∈ Xs(x, ε),

d(ϕ−1(y), ϕ−1(z)) ≤ λd(y, z), y, z ∈ Xu(x, ε),

3. ϕ-invariance
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That is, we have a local picture:
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The definition is aimed at giving a purely topo-

logical axiomatization of the dynamics of the

basic sets of Smale’s Axiom A systems.

If X,ϕ is a Smale space, we define stable and

unstable equivalence relations:

Es = {(x, y) | lim
n→+∞

d(ϕn(x), ϕn(y)) = 0}

Eu = {(x, y) | lim
n→+∞

d(ϕ−n(x), ϕ−n(y)) = 0}.

Note that

Xs(x, ε) ⊂ Es(x),

Xu(x, ε) ⊂ Eu(x),

but their global structure is much more com-

plicated.
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Example: Hyperbolic toral automorphisms

Let

A =

(
1 1
1 0

)
Notice that detA = −1. Moreover its eigen-

values are γ > 1 and −γ−1.

X = R2/Z2

ϕ(x+ Z2) = Ax+ Z2

The local coordinates of contracting and ex-

panding directions are given by the eigenspaces

for eigenvalues | − γ−1| < 1 and γ > 1.

Es, Eu are Kronecker foliations.
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Example: Solenoids

Let

X = {(zn)∞n=0 | zn ∈ T,
z2
n+1 = zn, n ≥ 0}

ϕ(z0, z1, . . .) = (z2
0, z

2
1, . . .)

Let π : X → T be

π((zn)∞n=0) = z0

Then, for a small open set U ⊂ T,

π−1(U) ∼= U × C,

where C is totally disconnected. This is the

local product structure:

Xs(z, ε) = C, Xu(z, ε) = U.
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Example: Substitution tilings

Example: Basic sets for an Axiom A system
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Example: Shifts of finite type

Let G = (G0, G1, i, t) be a finite directed graph.

Then

ΣG = {(en)∞n=−∞ | en ∈ G1,

i(en+1) = t(en), for all n}
σ(e)n = en+1, ”left shift”

The local product structure is given by

Σs(e,1) = {(. . . , ∗, ∗, ∗, e0, e1, e2, . . .)}
Σu(e,1) = {(. . . , e−2, e−1, e0, ∗, ∗, ∗, . . .)}

Theorem 1. Shifts of finite type are precisely

the zero-dimensional Smale spaces.

Theorem 2 (Bowen). Every irreducible Smale

space is the image of an irreducible shift of

finite type under a finite-to-one factor map.
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C∗-algebras from Smale spaces

Let P denote a set of periodic points of (X,ϕ),

ϕ(P ) = P . For each p in P , look at Eu(p).

The sets Xu(x, ε) provide a nbhd base for a new

(better) topology. This space is then trans-

verse to to stable equivalence.

Let EsP denote the equivalence relation Es re-

stricted to the set ∪p∈PEu(p). We define EuP
analogously. These groupoids are étale and we

define

S(X,ϕ, P ) = C∗(EsP )

U(X,ϕ, P ) = C∗(EuP ).
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The maps ϕ×ϕ and ϕ−1×ϕ−1 define automor-

phisms of EsP and EuP and hence of S(X,ϕ, P ),

U(X,ϕ, P ), respectively.

The Ruelle algebras are defined as

Rs = S(X,ϕ, P )×αs Z,
Ru = U(X,ϕ, P )×αu Z,
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Define a countable set:

H(P ) = ∪p,q∈PEs(p) ∩ Eu(q).

Hilbert space l2(H(P )), basis δx, x ∈ H(P ).

Define u in B(l2(H(P )))

uδx = δϕ(x), x ∈ H(P ).

x, y in Eu(p),

y in Xs(x, ε),

a0 ∈ Cc(Xu(x, ε))

z ∈ Xu(x, ε)→ τ(z) ∈ Xu(y, ε) defined by

τ(z) ∈ Xs(z, ε) ∩Xu(y, ε).

Define a in B(l2(H(P )))

aδx = a0(x)δτ(x), x ∈ H(P ).
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wx

Xu(x, ε) Xu(y, ε)

Xs(x, ε)

yw

zw τ(z)w-

τ

aδz = a0(z)δτ(z), z ∈ H(P ).

S(X,ϕ, P ) = span{u−naun | n ∈ Z, a}−

Rs = C∗{aun | n ∈ Z, a}
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Example: Shifts of finite type(W. Krieger)

Let G be a graph and (ΣG, σ) be the associated

shift of finite type. We can take advantage of

two nice facts:

• the topologies of ΣG, E
u(p), EsP are gener-

ated by compact open sets,

• Es = right tail equivalence is the union of

EsN = equality to the right of N .

We can construct a sequence of finite dimen-

sional C∗-subalgebras

S1 ⊂ S2 ⊂ · · · ⊂ S(ΣG, σ, P ),

whose union is dense in S(ΣG, σ, P ). So S(ΣG, σ, P )

is an AF-algebra.

The result for U(ΣG, σ, P ) is analogous.
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Let N = #G0, A be the (N by N) adjacency

matrix for G.

D(G) = lim ZN A−→ ZN A−→ · · ·

D∗(G) is obtained by replacing A by AT .

Theorem 3.

K0(S(ΣG, σ, P )) ∼= D∗(G),

K0(U(ΣG, σ, P )) ∼= D(G)

Theorem 4.

Rs
∼= OAT ⊗K,

Ru
∼= OA ⊗K,

where OA is the Cuntz-Krieger algebra associ-

ated with the matrix A.
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Theorem 5 (P.-Spielberg). For a general irre-

ducible Smale space (X,ϕ), we have

• S(X,ϕ, P ) is amenable,

• S(X,ϕ, P ) has a densely defined faithful trace,

which is scaled by the automorphism αs,

• S(X,ϕ, P ) is simple if and only if (X,ϕ) is

mixing.

We also have

• Rs is amenable

• Rs is purely infinite and simple.

15



Functoriality.

A factor map

π : (Y, ψ)→ (X,ϕ)

is strongly u-resolving if, for every y in Y ,

π : Eu(y)→ Eu(π(y))

is bijective. It implies π is a local homeomor-

phism from Y u(y, ε) to Xu(π(y), ε).

Such a map induces ∗-homomorphisms

π∗ : S(Y, ψ, P ) → S(X,ϕ, π(P ))

π∗ : U(X,ϕ, π(P )) → U(Y, ψ, P )

A strongly s-resolving map π induces

π∗ : U(Y, ψ, P ) → U(X,ϕ, π(P ))

π∗ : S(X,ϕ, π(P )) → S(Y, ψ, P )
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Recall S(X,ϕ, P ), U(X,ϕ, P ), Rs, Ru are all rep-

resented on l2(H(P )). Their relative positions

are rather special:

Lemma 6. For any a in S(X,ϕ, P ), b in U(X,ϕ, P ),

we have

• ab is compact,

• ‖ (unau−n)b− b(unau−n) ‖→ 0 as n→ +∞.
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The facts above can be used to define E-theory

classes (i.e. asymptotic morphisms). These in

turn provide a type of duality.

Theorem 7 (Kaminker-P.). Let (X,ϕ) be an

irreducible Smale space. The C∗-algebras Rs

and Ru are K-theoretically dual. In particular,

there are natural isomorphisms

Ki(Rs)
∼= Ki+1(Ru), i = 0,1

Ki(Ru) ∼= Ki+1(Rs), i = 0,1

Example:

K0(OA) ∼= ZN/(I −AT )ZN ∼= K1(OAT ).
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Homology for Smale spaces

For a Smale space (X,ϕ) we define two ho-

mology theories, Hs
∗(X,ϕ), Hu

∗ (X,ϕ).

Theorem 8. There exists a spectral sequence

with E2 term Hs
∗(X,ϕ) converging to K∗(S(X,ϕ, P )).

Proof in progress.

G a graph

ZG0 - free abelian group on G0 (or ZN)

γ(v) =
∑
i(e)=v t(e) (or n→ nA)

D(G) = limZG0 γ−→ ZG0 γ−→ · · ·
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Theorem 9 (Bowen). Let (X,ϕ) be an irre-

ducible Smale space. Then there exists an ir-

reducible shift of finite type, (ΣG, σ), and a

map

π : (ΣG, σ)→ (X,ϕ),

which is continuous, surjective and finite-to-

one.

For N ≥ 0,

ΣN = {(e0, e1, . . . , eN) |
π(en) = π(e0),

0 ≤ n ≤ N}.

(ΣN , σ) is also a shift of finite type. Moreover,

ΣN = ΣGN , GN ⊂
∏N

0 G. It also has an action

of SN+1.
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Z(G0
N , SN+1):

Generators v = (v0, . . . , vN) ∈ G0
N ,

Relations < v >= 0, if vi = vj, some i 6= j,

< vα(0), . . . , vα(N) >= sgn(α) < v0, . . . , vN >

DN(GN) = limZ(G0
N , SN+1)

γN−→ Z(G0
N , SN+1)

γN−→ · · ·

D∗N(GN) is obtained replacing GN by G
op
N .
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We want a boundary map:

∂sN : DN(GN)→ DN−1(GN−1)

and there is an obvious choice from using:

∂N : Z(GN , SN+1)→ Z(GN−1, SN)

given by

∂N(< v0, v1, . . . , vN >) =∑N
n=0(−1)n < ∆n(v0, v1, . . . , vN) >,

where ∆n = delete entry n.

This does not commute with the inductive lim-

its.
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Instead, for K ≥ 0, define

∂KN (< v >) =
N∑
n=0

∑
p

(−1)n < t(p) >,

where the sum is taken over paths of length

K:

p ∈∆n(GKN ∩ i
−1{v}).

Lemma 10. If π is strongly u-resolving, then

for K sufficiently large,

∂KN ◦ γN = γN−1 ◦ ∂KN = ∂K+1
N .

Define, for K large, [a, k] in DN(GN):

∂sN [a, k] = [∂KN (a), k +K].

Lemma 11. For K sufficiently large,

∂KN ◦ ∂
K
N+1 = 0.
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The hypothesis is rather strong: it requires

dim(Xu(x, e)) = 0. We will try to ammend this

in a moment, but first note the other case:

If π is s-resolving: define ∂∗KN by interchanging

i and t.

Lemma 12. If π is strongly s-resolving, then

for K sufficiently large

∂∗KN ◦ γ∗N = γ∗N−1 ◦ ∂
∗K
N = ∂∗K+1

N .

Then define

∂sN [a, k] = [Hom(∂∗KN+1)(a), k +K].

which maps

DN(GN)→ DN+1(GN+1).

24



Let (X,ϕ) be a Smale space. We look for
a Smale space (Y, ψ) and a factor map πu :
(Y, ψ)→ (X,ϕ) satisfying:

1. dim(Y s(y, ε)) = 0,

2. πu is strongly u-resolving.

That is, Y s(y, ε) is totally disconnected, Y u(y, ε) ∼
Xu(πu(y), ε).

Similarly, we look for a Smale space (Z, η) and
a factor map πs satisfying:

1. dim(Zu(z, ε)) = 0,

2. πs is strongly s-resolving.

We call π = (πu, πs) a resolving pair for (X,ϕ).
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Theorem 13. For (X,ϕ) irreducible, resolving

pairs exist.

Let (Σ, σ) be the fibred product:

Y
πu

  B
BB

BB
BB

B

Σ

ρs >>||||||||

ρu   B
BB

BB
BB

B X

Z
πs

>>||||||||

Then Σ is a SFT. Σ = ΣG, for some graph G.

For L,M ≥ 0,

ΣL,M = {(y0, . . . , yL, z0, . . . , zM) |
yl ∈ Y, zm ∈ Z,
πu(yl) = πs(zm)}.

For each L,M ≥ 0, ΣL,M is a shift of finite

type. The graph GL,M presenting ΣL,M can

be viewed as L+ 1 by M + 1 arrays over G.
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Incorporating SL+1×SM+1 actions, we get in-

ductive limit groups DL,M(GL,M) and a double

complex:

D0,2(G0,2)

OO

D1,2(G1,2)oo

OO

D2,2(G2,2)oo

OO

oo

D0,1(G0,1)

OO

D1,1(G1,1)oo

OO

D2,1(G2,1)oo

OO

oo

D0,0(G0,0)

OO

D1,0(G1,0)oo

OO

D2,0(G2,0)oo

OO

oo

∂sN : ⊕L−M=NDL,M(GL,M)

→ ⊕L−M=N−1DL,M(GL,M)

Hs
N(π) = ker(∂sN)/Im(∂sN+1).
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Properties

Theorem 14. The groups Hs
N(π) do not de-

pend on the choice of resolving pair π = (πu, πs).

From now on, we write Hs
N(X,ϕ).

Theorem 15. The functor Hs
∗(X,ϕ) is covari-

ant for strongly u-resolving maps, contravari-

ant for strongly s-resolving maps.
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We can regard ϕ : (X,ϕ) → (X,ϕ), which is

both s and u-resolving and so induces an au-

tomorphism of the invariants.

Theorem 16. (Lefschetz Formula) Let (X,ϕ)

be any Smale space having a resolving pair and

let p ≥ 1.∑
N∈Z

(−1)N Tr[ϕp∗ : Hs
N(X,ϕ)⊗ Q

→ Hs
N(X,ϕ)⊗ Q]

= #{x ∈ X | ϕp(x) = x}
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Question: Relation between Hs
∗(X,ϕ)

and Ȟ∗(BRs)?

Question: Axiomatic definition of Hs(X,ϕ)?

Dimension axiom becomes the dimension group

axiom:

For a shift of finite type,

Hs
N(ΣG, σ) =

{
D(G) N = 0

0 N 6= 0

30


