C*-algebras for hyperbolic dynamical systems, COSy & Barcelona worshop

Ian F. Putnam, University of Victoria

June 5 & 14, 2007

Outline:

I. Smale spaces

II. C^* -algebras from Smale spaces

III. Homology for Smale spaces

Part I: Smale spaces (D. Ruelle)

(X,d) compact metric space,

 $\varphi : X \to X$ homeomorphism with <u>canonical</u> <u>coordinates</u>: there is a constant $0 < \lambda < 1$, and for x in X and $\epsilon > 0$ and small, there are sets $X^{s}(x, \epsilon)$ and $X^{u}(x, \epsilon)$:

1. $X^{s}(x,\epsilon) \times X^{u}(x,\epsilon)$ is homeomorphic to a neighbourhood of x,

2.

 $d(\varphi(y),\varphi(z)) \leq \lambda d(y,z), \quad y,z \in X^{s}(x,\epsilon),$ $d(\varphi^{-1}(y),\varphi^{-1}(z)) \leq \lambda d(y,z), \quad y,z \in X^{u}(x,\epsilon),$

3. φ -invariance

The definition is aimed at giving a purely topological axiomatization of the dynamics of the basic sets of Smale's Axiom A systems.

If X, φ is a Smale space, we define stable and unstable equivalence relations:

$$E^{s} = \{(x,y) \mid \lim_{n \to +\infty} d(\varphi^{n}(x),\varphi^{n}(y)) = 0\}$$

$$E^{u} = \{(x,y) \mid \lim_{n \to +\infty} d(\varphi^{-n}(x),\varphi^{-n}(y)) = 0\}.$$

Note that

$$X^{s}(x,\epsilon) \subset E^{s}(x),$$

 $X^{u}(x,\epsilon) \subset E^{u}(x),$

but their global structure is much more complicated.

Example: Hyperbolic toral automorphisms

Let

$$A = \left(\begin{array}{rrr} 1 & 1 \\ 1 & 0 \end{array}\right)$$

Notice that det A = -1. Moreover its eigenvalues are $\gamma > 1$ and $-\gamma^{-1}$.

$$X = \mathbb{R}^2 / \mathbb{Z}^2$$
$$\varphi(x + \mathbb{Z}^2) = Ax + \mathbb{Z}^2$$

The local coordinates of contracting and expanding directions are given by the eigenspaces for eigenvalues $|-\gamma^{-1}| < 1$ and $\gamma > 1$.

 E^s, E^u are Kronecker foliations.

Example: Solenoids

Let

$$X = \{(z_n)_{n=0}^{\infty} \mid z_n \in \mathbb{T}, \\ z_{n+1}^2 = z_n, n \ge 0\}$$
$$\varphi(z_0, z_1, \ldots) = (z_0^2, z_1^2, \ldots)$$

Let $\pi:X\to \mathbb{T}$ be

$$\pi((z_n)_{n=0}^\infty) = z_0$$

Then, for a small open set $U \subset \mathbb{T}$,

$$\pi^{-1}(U) \cong U \times C,$$

where C is totally disconnected. This is the local product structure:

$$X^{s}(z,\epsilon) = C, \quad X^{u}(z,\epsilon) = U.$$

Example: Substitution tilings

Example: Basic sets for an Axiom A system

Example: Shifts of finite type

Let $G = (G^0, G^1, i, t)$ be a finite directed graph. Then

$$\Sigma_G = \{ (e_n)_{n=-\infty}^{\infty} | e_n \in G^1, \\ i(e_{n+1}) = t(e_n), \text{ for all } n \}$$

$$\sigma(e)_n = e_{n+1}, \text{ "left shift"}$$

The local product structure is given by

$$\Sigma^{s}(e,1) = \{(\dots,*,*,*,e_{0},e_{1},e_{2},\dots)\}$$

$$\Sigma^{u}(e,1) = \{(\dots,e_{-2},e_{-1},e_{0},*,*,*,\dots)\}$$

Theorem 1. Shifts of finite type are precisely the zero-dimensional Smale spaces.

Theorem 2 (Bowen). Every irreducible Smale space is the image of an irreducible shift of finite type under a finite-to-one factor map.

C^* -algebras from Smale spaces

Let P denote a set of periodic points of (X, φ) , $\varphi(P) = P$. For each p in P, look at $E^u(p)$.

The sets $X^u(x, \epsilon)$ provide a nbhd base for a new (better) topology. This space is then transverse to to stable equivalence.

Let E_P^s denote the equivalence relation E^s restricted to the set $\cup_{p \in P} E^u(p)$. We define E_P^u analogously. These groupoids are étale and we define

$$S(X,\varphi,P) = C^*(E_P^s)$$
$$U(X,\varphi,P) = C^*(E_P^u).$$

The maps $\varphi \times \varphi$ and $\varphi^{-1} \times \varphi^{-1}$ define automorphisms of E_P^s and E_P^u and hence of $S(X, \varphi, P)$, $U(X, \varphi, P)$, respectively.

The Ruelle algebras are defined as

$$R^{s} = S(X, \varphi, P) \times_{\alpha^{s}} \mathbb{Z},$$

$$R^{u} = U(X, \varphi, P) \times_{\alpha^{u}} \mathbb{Z},$$

Define a countable set:

$$H(P) = \cup_{p,q \in P} E^{s}(p) \cap E^{u}(q).$$

Hilbert space $l^{2}(H(P))$, basis $\delta_{x}, x \in H(P)$.
Define u in $\mathcal{B}(l^{2}(H(P)))$
 $u\delta_{x} = \delta_{\varphi(x)}, x \in H(P).$
 x, y in $E^{u}(p)$,
 y in $X^{s}(x, \epsilon)$,
 $a_{0} \in C_{c}(X^{u}(x, \epsilon))$
 $z \in X^{u}(x, \epsilon) \rightarrow \tau(z) \in X^{u}(y, \epsilon)$ defined by
 $\tau(z) \in X^{s}(z, \epsilon) \cap X^{u}(y, \epsilon).$

Define a in $\mathcal{B}(l^2(H(P)))$ $a\delta_x = a_0(x)\delta_{\tau(x)}, x \in H(P).$

$$S(X,\varphi,P) = span\{u^{-n}au^n \mid n \in \mathbb{Z}, a\}^-$$

$$R_s = C^* \{ au^n \mid n \in \mathbb{Z}, a \}$$

Example: Shifts of finite type(W. Krieger)

Let G be a graph and (Σ_G, σ) be the associated shift of finite type. We can take advantage of two nice facts:

- the topologies of $\Sigma_G, E^u(p), E_P^s$ are generated by compact open sets,
- E^s = right tail equivalence is the union of E_N^s = equality to the right of N.

We can construct a sequence of finite dimensional C^* -subalgebras

$$S_1 \subset S_2 \subset \cdots \subset S(\Sigma_G, \sigma, P),$$

whose union is dense in $S(\Sigma_G, \sigma, P)$. So $S(\Sigma_G, \sigma, P)$ is an AF-algebra.

The result for $U(\Sigma_G, \sigma, P)$ is analogous.

Let $N = \#G^0$, A be the (N by N) adjacency matrix for G.

$$D(G) = \lim \mathbb{Z}^N \xrightarrow{A} \mathbb{Z}^N \xrightarrow{A} \cdots$$

 $D^*(G)$ is obtained by replacing A by A^T . **Theorem 3.**

$$K_0(S(\Sigma_G, \sigma, P)) \cong D^*(G),$$

$$K_0(U(\Sigma_G, \sigma, P)) \cong D(G)$$

Theorem 4.

$$\begin{array}{rcl} R_s &\cong & O_{A^T} \otimes \mathcal{K}, \\ R_u &\cong & O_A \otimes \mathcal{K}, \end{array}$$

where O_A is the Cuntz-Krieger algebra associated with the matrix A.

Theorem 5 (P.-Spielberg). For a general irreducible Smale space (X, φ) , we have

- $S(X, \varphi, P)$ is amenable,
- $S(X, \varphi, P)$ has a densely defined faithful trace, which is scaled by the automorphism α^s ,
- $S(X, \varphi, P)$ is simple if and only if (X, φ) is mixing.

We also have

- R_s is amenable
- R_s is purely infinite and simple.

Functoriality.

A factor map

$$\pi: (Y,\psi) \to (X,\varphi)$$

is strongly u-resolving if, for every y in Y,

$$\pi: E^u(y) \to E^u(\pi(y))$$

is bijective. It implies π is a local homeomorphism from $Y^u(y,\epsilon)$ to $X^u(\pi(y),\epsilon)$.

Such a map induces *-homomorphisms

$$\pi_*: S(Y, \psi, P) \to S(X, \varphi, \pi(P))$$
$$\pi^*: U(X, \varphi, \pi(P)) \to U(Y, \psi, P)$$

A strongly s-resolving map π induces

$$\pi_*: U(Y, \psi, P) \to U(X, \varphi, \pi(P))$$
$$\pi^*: S(X, \varphi, \pi(P)) \to S(Y, \psi, P)$$

Recall $S(X, \varphi, P), U(X, \varphi, P), R_s, R_u$ are all represented on $l^2(H(P))$. Their relative positions are rather special:

Lemma 6. For any a in $S(X, \varphi, P)$, b in $U(X, \varphi, P)$, we have

- *ab* is compact,
- $\parallel (u^n a u^{-n})b b(u^n a u^{-n}) \parallel \rightarrow 0 \text{ as } n \rightarrow +\infty.$

The facts above can be used to define E-theory classes (i.e. asymptotic morphisms). These in turn provide a type of duality.

Theorem 7 (Kaminker-P.). Let (X, φ) be an irreducible Smale space. The C^* -algebras R_s and R_u are K-theoretically dual. In particular, there are natural isomorphisms

$$K_i(R_s) \cong K^{i+1}(R_u), i = 0, 1$$

 $K_i(R_u) \cong K^{i+1}(R_s), i = 0, 1$

Example:

$$K_0(O_A) \cong \mathbb{Z}^N / (I - A^T) \mathbb{Z}^N \cong K^1(O_{A^T}).$$

Homology for Smale spaces

For a Smale space (X, φ) we define two homology theories, $H^s_*(X, \varphi)$, $H^u_*(X, \varphi)$.

Theorem 8. There exists a spectral sequence with E^2 term $H^s_*(X, \varphi)$ converging to $K_*(S(X, \varphi, P))$.

Proof in progress.

G a graph

 $\mathbb{Z}G^0$ - free abelian group on G^0 (or \mathbb{Z}^N)

 $\gamma(v) = \sum_{i(e)=v} t(e) \text{ (or } n \to nA)$

$$D(G) = \lim \mathbb{Z}G^0 \xrightarrow{\gamma} \mathbb{Z}G^0 \xrightarrow{\gamma} \cdots$$

Theorem 9 (Bowen). Let (X, φ) be an irreducible Smale space. Then there exists an irreducible shift of finite type, (Σ_G, σ) , and a map

$$\pi: (\Sigma_G, \sigma) \to (X, \varphi),$$

which is continuous, surjective and finite-toone.

For $N \ge 0$,

$$\Sigma_N = \{(e_0, e_1, \dots, e_N) \mid \pi(e_n) = \pi(e_0), \\ 0 \le n \le N\}.$$

 (Σ_N, σ) is also a shift of finite type. Moreover, $\Sigma_N = \Sigma_{G_N}, G_N \subset \prod_0^N G$. It also has an action of S_{N+1} .

$$\mathbb{Z}(G_N^0, S_{N+1})$$
:

Generators $v = (v_0, \ldots, v_N) \in G_N^0$,

Relations $\langle v \rangle = 0$, if $v_i = v_j$, some $i \neq j$,

$$\langle v_{\alpha(0)}, \ldots, v_{\alpha(N)} \rangle = sgn(\alpha) \langle v_0, \ldots, v_N \rangle$$

$$D_N(G_N) = \lim \mathbb{Z}(G_N^0, S_{N+1}) \xrightarrow{\gamma_N} \mathbb{Z}(G_N^0, S_{N+1}) \xrightarrow{\gamma_N} \cdot$$

 $D_N^*(G_N)$ is obtained replacing G_N by G_N^{op} .

We want a boundary map:

$$\partial_N^s : D_N(G_N) \to D_{N-1}(G_{N-1})$$

and there is an obvious choice from using:

$$\partial_N : \mathbb{Z}(G_N, S_{N+1}) \to \mathbb{Z}(G_{N-1}, S_N)$$

given by

$$\partial_N(\langle v_0, v_1, \dots, v_N \rangle) =$$

$$\sum_{n=0}^N (-1)^n \langle \Delta_n(v_0, v_1, \dots, v_N) \rangle,$$

where $\Delta_n =$ delete entry n.

This does **not** commute with the inductive limits. Instead, for $K \geq 0$, define

$$\partial_N^K(\langle v \rangle) = \sum_{n=0}^N \sum_p (-1)^n \langle t(p) \rangle,$$

where the sum is taken over paths of length K:

$$p \in \Delta_n(G_N^K \cap i^{-1}\{v\}).$$

Lemma 10. If π is strongly *u*-resolving, then for *K* sufficiently large,

$$\partial_N^K \circ \gamma_N = \gamma_{N-1} \circ \partial_N^K = \partial_N^{K+1}.$$

Define, for K large, [a,k] in $D_N(G_N)$:

$$\partial_N^s[a,k] = [\partial_N^K(a), k+K].$$

Lemma 11. For K sufficiently large,

$$\partial_N^K \circ \partial_{N+1}^K = 0.$$

The hypothesis is rather strong: it requires $dim(X^u(x,e)) = 0$. We will try to ammend this in a moment, but first note the other case:

If π is *s*-resolving: define ∂_N^{*K} by interchanging *i* and *t*.

Lemma 12. If π is strongly *s*-resolving, then for *K* sufficiently large

$$\partial_N^{*K} \circ \gamma_N^* = \gamma_{N-1}^* \circ \partial_N^{*K} = \partial_N^{*K+1}.$$

Then define

$$\partial_N^s[a,k] = [Hom(\partial_{N+1}^{*K})(a), k+K].$$

which maps

$$D_N(G_N) \to D_{N+1}(G_{N+1}).$$

Let (X, φ) be a Smale space. We look for a Smale space (Y, ψ) and a factor map π^u : $(Y, \psi) \to (X, \varphi)$ satisfying:

1. $dim(Y^s(y,\epsilon)) = 0$,

2. π^u is strongly *u*-resolving.

That is, $Y^{s}(y, \epsilon)$ is totally disconnected, $Y^{u}(y, \epsilon) \sim X^{u}(\pi^{u}(y), \epsilon)$.

Similarly, we look for a Smale space (Z, η) and a factor map π^s satisfying:

1. $dim(Z^{u}(z, \epsilon)) = 0$,

2. π^s is strongly *s*-resolving.

We call $\pi = (\pi^u, \pi^s)$ a resolving pair for (X, φ) .

Theorem 13. For (X, φ) irreducible, resolving pairs exist.

Let (Σ, σ) be the fibred product:

Then Σ is a SFT. $\Sigma = \Sigma_G$, for some graph G.

For $L, M \geq 0$,

$$\Sigma_{L,M} = \{(y_0, \dots, y_L, z_0, \dots, z_M) \mid \\ y_l \in Y, z_m \in Z, \\ \pi^u(y_l) = \pi^s(z_m)\}.$$

For each $L, M \ge 0$, $\Sigma_{L,M}$ is a shift of finite type. The graph $G_{L,M}$ presenting $\Sigma_{L,M}$ can be viewed as L + 1 by M + 1 arrays over G.

Incorporating $S_{L+1} \times S_{M+1}$ actions, we get inductive limit groups $D_{L,M}(G_{L,M})$ and a double complex:

$$D_{0,2}(G_{0,2}) \leftarrow D_{1,2}(G_{1,2}) \leftarrow D_{2,2}(G_{2,2}) \leftarrow D_{0,1}(G_{0,1}) \leftarrow D_{1,1}(G_{1,1}) \leftarrow D_{2,1}(G_{2,1}) \leftarrow D_{0,0}(G_{0,0}) \leftarrow D_{1,0}(G_{1,0}) \leftarrow D_{2,0}(G_{2,0}) \leftarrow D_{0,0}(G_{2,0}) \leftarrow D_{0,0}(G_{$$

$$\partial_N^s : \oplus_{L-M=N} D_{L,M}(G_{L,M}) \\ \to \oplus_{L-M=N-1} D_{L,M}(G_{L,M})$$

$$H_N^s(\pi) = \ker(\partial_N^s) / Im(\partial_{N+1}^s).$$

Properties

Theorem 14. The groups $H_N^s(\pi)$ do not depend on the choice of resolving pair $\pi = (\pi^u, \pi^s)$.

From now on, we write $H_N^s(X,\varphi)$.

Theorem 15. The functor $H^s_*(X, \varphi)$ is covariant for strongly *u*-resolving maps, contravariant for strongly *s*-resolving maps. We can regard $\varphi : (X, \varphi) \to (X, \varphi)$, which is both s and u-resolving and so induces an automorphism of the invariants.

Theorem 16. (Lefschetz Formula) Let (X, φ) be any Smale space having a resolving pair and let $p \ge 1$.

 $\sum_{N \in \mathbb{Z}} (-1)^N \quad Tr[\varphi^p_* : \quad H^s_N(X, \varphi) \otimes \mathbb{Q} \\ \rightarrow \qquad H^s_N(X, \varphi) \otimes \mathbb{Q}]$

 $= \#\{x \in X \mid \varphi^p(x) = x\}$

Question: Relation between $H^s_*(X, \varphi)$ and $\check{H}^*(BR^s)$?

Question: Axiomatic definition of $H^s(X, \varphi)$?

Dimension axiom becomes the dimension group axiom:

For a shift of finite type,

$$H_N^s(\Sigma_G, \sigma) = \begin{cases} D(G) & N = 0\\ 0 & N \neq 0 \end{cases}$$