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Part I: Smale spaces (D. Ruelle)
(X,d) compact metric space,

0 : X — X homeomorphism with canonical
coordinates: there is a constant 0 < A < 1,
and for x in X and € > 0 and small, there are
sets X%(x,e) and X%(x,¢):

1. X%(x,e) x X% (x,e) is homeomorphic to a
neighbourhood of z,

d(e(y),e(z)) < Xd(y,z), y,z€ X°(x,¢),
A 1Y), » 1(2)) < Ad(y,2), y,z € X% x,e),

3. p-invariance



That is, we have a local picture:




T he definition is aimed at giving a purely topo-
logical axiomatization of the dynamics of the
basic sets of Smale’'s Axiom A systems.

If X,p is a Smale space, we define stable and
unstable equivalence relations:

E® = {(z,y) | ngrpoo d(p"(z),¢"(y)) = 0}
EY = {(z,y) | ngljpoo d(p™ " (x), ¢ "(y)) = 0}.

Note that
X%(x,e) C E°(x),
X%(x,e) C E"(x),

but their global structure is much more com-
plicated.



Example: Hyperbolic toral automorphisms

(1

Notice that detA = —1. Moreover its eigen-

values are v > 1 and —~ 1.

Let

X R2 /72
plz+12%) = Az+17°
The local coordinates of contracting and ex-

panding directions are given by the eigenspaces
for eigenvalues | — v~ 1| < 1 and v > 1.

E*°, EY are Kronecker foliations.



Example: Solenoids

Let
X = {(Zn)%o:o | zn € T,
Z"%-I-l = zp,n > 0}
90(207 21y - - ) — (287 Z%a .. )

Let #: X — T be

7((2n)n=0) = 20
Then, for a small open set U C T,
N (U) =2 U x C,

where C is totally disconnected. This is the
local product structure:

X%(z,e) =C, X"(z,¢) ="U.



Example: Substitution tilings

Example: Basic sets for an Axiom A system




Example: Shifts of finite type

Let G = (G9,G1,i,t) be a finite directed graph.
Then

{(en)>_.. | en € Gl

i(ep4-1) = t(en), for all n}
o(e)n = epiq, "left shift”

2 a

The local product structure is given by

>%(e, 1) = {(...,*,*,%,¢e9,e1,€2,...)}
>%e, 1) ={(...,e_n,e_1,€e0,*, %, %,...)}

Theorem 1. Shifts of finite type are precisely
the zero-dimensional Smale spaces.

Theorem 2 (Bowen). Every irreducible Smale
space is the image of an irreducible shift of
finite type under a finite-to-one factor map.



C*-algebras from Smale spaces

Let P denote a set of periodic points of (X, ¢),
o(P) = P. For each p in P, look at E%(p).

The sets X¥(x, €) provide a nbhd base for a new
(better) topology. This space is then trans-
verse to to stable equivalence.

Let E}’; denote the equivalence relation E? re-
stricted to the set U,cpE“(p). We define EY
analogously. These groupoids are étale and we
define

S(X,p, P)
U(X, e, P)

C*(E})
C*(EB).



The maps px ¢ and ¢~ x¢~1 define automor-

phisms of E3 and E% and hence of S(X, ¢, P),
U(X,p, P), respectively.

The Ruelle algebras are defined as

RS
R’LL

S(X7907P) X a8 Za
U(X7907P) X qu 2,
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Define a countable set:

H(P) — Up,qEPES(p) M Eu(Q)
Hilbert space I?(H(P)), basis 6z, x € H(P).

Define u in B(I2(H(P)))

z,y in E¥(p),

y in X%(x,¢€),

ag € Ce(X"(x,€))

z € X% (x,e) > 7(z) € X% (y,e) defined by

7(2) € X°(2,e) N X"(y, €).

Define a in B(I2(H(P)))
adz = ag(x)d,(y), € H(P).
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S(X,p, P) = span{u™ "au" | n € Z,a}™

Rs = C*{au" | n € Z,a}
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Example: Shifts of finite type(W. Krieger)

Let G be a graph and (X, o) be the associated
shift of finite type. We can take advantage of
two nice facts:

e the topologies of X, E“(p), E3 are gener-
ated by compact open sets,

e F° = right tail equivalence is the union of
E3; = equality to the right of V.

We can construct a sequence of finite dimen-
sional C*-subalgebras

S CSyC---CS(Xq,0,P),

whose union is dense in S(Xg,0,P). So S(Xq, 0, P)
is an AF-algebra.

The result for U(X 4,0, P) is analogous.
13



Let N = #G°, A be the (N by N) adjacency
matrix for GG.

D(G) = lim zN Ay 7N 4, .

D*(G) is obtained by replacing A by A”.
Theorem 3.

112

KO(S(ZGvga P)) D*(G)7
Ko(U(Xxg,0,P)) = D(G)

T heorem 4.

112

Rs
Ry

OAT®IC,
OygQ K,

112

where O 4 is the Cuntz-Krieger algebra associ-
ated with the matrix A.
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Theorem 5 (P.-Spielberg). For a general irre-
ducible Smale space (X, ), we have

e S(X,p, P) is amenable,

e S(X,p, P) has a densely defined faithful trace,
which is scaled by the automorphism «o?,

o S(X,p, P) is simple if and only if (X,p) is
mixing.

We also have

e Rs iIs amenable

o Rs is purely infinite and simple.
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Functoriality.

A factor map

T (Y,9) = (X, ¢)

is strongly u-resolving if, for every y in Y,

m: E%(y) = E¥(7(y))

IS bijective. It implies 7 is a local homeomor-
phism from Y%(y,¢e) to X% (7 (y),¢€).
Such a map induces x-homomorphisms

Tk | S(Y,y, P) — S(X, o, m(P))
o UX,p,m(P)) — U, 1, P)

A strongly s-resolving map =« induces

. U, ¥, P) —UX,p,w(P))
7 S(X,p,m(P)) — S(Y,vy,P)
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Recall S(X, ¢, P),U(X, ¢, P), Rs, Ry are all rep-
resented on [2(H(P)). Their relative positions
are rather special:

Lemma 6. Foranyain S(X,p,P),binU(X, ¢, P),
we have

e ab is compact,

o || (umau=)b — b(umau ™) ||+ 0 as n — +oo.
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The facts above can be used to define E-theory
classes (i.e. asymptotic morphisms). These in
turn provide a type of duality.

Theorem 7 (Kaminker-P.). Let (X,p) be an
irreducible Smale space. The C*-algebras Rgs
and R, are K-theoretically dual. In particular,
there are natural isomorphisms

112

K'TI(R,,i=0,1
K'T(Ry),i=0,1

Kz’(Rs)
Kz(Ru)

112

Example:

Ko(04) 22V /(1 - ANZY 2 K1 (O 41).
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Homology for Smale spaces

For a Smale space (X,yp) we define two ho-
mology theories, H (X, ), HY (X, p).

Theorem 8. There exists a spectral sequence
with E2 term H3(X, ¢) converging to K+(S(X, ¢, P)).

Proof in progress.
G a graph

7.GO - free abelian group on GO (or ZM)

~v(v) = Zi(e):vt(e) (or n — nA)

D(G) = limzG° L zG0% L ...
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Theorem 9 (Bowen). Let (X,p) be an irre-
ducible Smale space. Then there exists an ir-
reducible shift of finite type, (Xq,0), and a
map

T (Xg,0) = (X, 9),

which is continuous, surjective and finite-to-
one.

For N >0,

ZN — {(607617"'7€N) |
m(en) = m(eo),
0<n< N}

(X n,0) is also a shift of finite type. Moreover,
SN =%¢, Gy CIIY G. It also has an action

of SN—|—1-
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Z(GR, Sn+1):
Generators v = (vg, ...,vy) € GY,,

Relations < v >= 0, if v; = vj, some ¢ # j,

< Va(0)r -+ 1 Va(N) >= sgn(a) < vg,..., N >

Dy (Gn) = ImZ(GY, Sy41) 5 Z(GY, Sy1) 25 -+

D%/ (Gy) is obtained replacing Gy by G¥.
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We want a boundary map:

oy : DN(Gn) = Dy_1(Gn—1)

and there is an obvious choice from using:
ON  Z(GN,SN+1) = Z(GN—-1,5N)
given by

8N(< vo,V1y.--3,UN >) —
quq,\]:()(_l)n < An(v07U17 R 7UN) >,

where A,, = delete entry n.

This does not commute with the inductive lim-
its.
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Instead, for K > 0, define

N
on(<v>)= Y S (-1)" < t(p) >,
n=0 P

where the sum is taken over paths of length
K:

p € An(GR Ni~H{w}).

Lemma 10. If 7 is strongly u-resolving, then
for K sufficiently large,

K K K+1
3N07N:’YN—108N:3N+ :

Define, for K large, [a,k] in Dn(Gy):

d%la, k] = [0 (a), k + K].

Lemma 11. For K sufficiently large,

8][\7{08%4_1:0
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The hypothesis is rather strong: it requires
dim(X%(xz,e)) = 0. We will try to ammend this
in @ moment, but first note the other case:

If 7w is s-resolving: define 8}‘\,1{ by interchanging
1 and t.

Lemma 12. If = is strongly s-resolving, then
for K sufficiently large

N ok = 100 = T

Then define

oxla, k] = [Hom(@N+1)(a),k + K].

which maps

Dn(GN) = Dy4+1(GN41)-
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Let (X,¢) be a Smale space. We look for
a Smale space (Y,+) and a factor map =% :
(Y,y) — (X, p) satisfying:

1. dim(Y*(y,e)) =0,

2. ¥ is strongly u-resolving.

Thatis, YS(y, ¢) is totally disconnected, Y4%(y,¢e) ~
XU(m"(y),€).

Similarly, we look for a Smale space (Z,n) and
a factor map =° satisfying:

1. dim(Z%(z,e)) = 0O,

2. w° is strongly s-resolving.

We call # = (7%, 7%) a resolving pair for (X, ¢).
25



Theorem 13. For (X, ) irreducible, resolving
pairs exist.

Let (X,0) be the fibred product:

o
> X
pA Z/7:S

Then > isa SFT. 2 =3, for some graph G.

For L, M > 0O,

ZL,]W — {(y07"'7yL7Z07"'7ZM)|
yZEY,ZmEZ,

T (y) = 7 (zm) }-

For each L,M > 0, > 5 is a shift of finite

type. The graph Gy, )y presenting 2 5; can

be viewed as L + 1 by M + 1 arrays over G.
26



Incorporating Sp41 X Spr41 actions, we get in-
ductive limit groups Dy, p;(Gp, pr) and a double
complex:

! ! |

Do 2(Go2)~—D12(G12)~—D22(G22)~—

Do 1(Go1)~—D1,1(G1,.1)~—D21(G21)~—

Do 0(Go,0) < D1,0(G1,0)<~— D20(G20)~—

oy @r—m=~nDrvm(Gr )
— @r-m=N-1DrMm(GL )

H: () = ker(93%)/Tm(8%41)-
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Properties

Theorem 14. The groups H3/(w) do not de-
pend on the choice of resolving pair m = (7%, 7%).

From now on, we write H3 (X, ¢).

Theorem 15. The functor H{ (X, p) is covari-
ant for strongly u-resolving maps, contravari-
ant for strongly s-resolving maps.
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We can regard ¢ : (X,p) — (X,p), which is
both s and wu-resolving and so induces an au-
tomorphism of the invariants.

Theorem 16. (Lefschetz Formula) Let (X, p)

be any Smale space having a resolving pair and
let p > 1.

S (1N Trleh: HY(X,9)®Q
NEZ

—  H{y(X,¢) ®Q]

=  #{zeX|P)=q)
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Question: Relation between HJ(X, )
and H*(BR?%)?

Question: Axiomatic definition of H(X, )7

Dimension axiom becomes the dimension group
axiom:

For a shift of finite type,

iz, = { PO V=0

30



