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Smale spaces: hyperbolic topological sys-

tems

1. basic sets for Axiom A systems
2. hyperbolic toral automorphisms
3. solenoids (R. Williams)
4. shifts of finite type (SFT’s)

Shifts of finite type

1. zero-dimensional Smale spaces
2. universal property (Bowen’s Theorem)
3. Krieger’s dimension group invariant

Goal: Extend Krieger’s invariant to Smale

spaces
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Smale spaces (D. Ruelle)

(X, d) compact metric space,

ϕ : X → X homeomorphism with canonical

coordinates: there is a constant 0 < λ < 1,

and for x in X and ε > 0 and small, there are

sets Xs(x, ε) and Xu(x, ε):

1. Xs(x, ε) × Xu(x, ε) is homeomorphic to a

neighbourhood of x,

2. ϕ-invariance,

3.

d(ϕ(y), ϕ(z)) ≤ λd(y, z), y, z ∈ Xs(x, ε),

d(ϕ−1(y), ϕ−1(z)) ≤ λd(y, z), y, z ∈ Xu(x, ε),
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That is, we have a local picture:
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Actual definition: existence of [, ] satisfying
some axioms. [x, y] is the intersection of Xs(x, ε)
and Xu(y, ε).

Stable and unstable equivalence:

Rs = {(x, y) | lim
n→+∞

d(ϕn(x), ϕn(y)) = 0}

Ru = {(x, y) | lim
n→+∞

d(ϕ−n(x), ϕ−n(y)) = 0}

Rs(x), Ru(x) denote equivalence classes.
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Factor maps

Let π : (Y, ψ) → (X,ϕ) be a factor map be-
tween Smale spaces. For every y in Y , π :
Rs(y) → Rs(π(y)).

• π is s-resolving if π : Rs(y) → Rs(π(y)) is
injective, for all y.

• π is s-bijective if π : Rs(y) → Rs(π(y)) is
bijective, for all y.

We remark:

• Y irreducible, s-resolving ⇒ s-bijective

• s-resolving ⇒ finite-to-one

• s-bijective ⇒ π : Y s(y, ε) → Xs(π(y), ε′) is a
local homeomorphism
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Shifts of finite type

Let G = (G0, G1, i, t) be a finite directed graph.

Then

ΣG = {(ek)∞k=−∞ | ek ∈ G1,

i(ek+1) = t(ek), for all n}
σ(e)k = ek+1, ”left shift”

The local product structure is given by

Σs(e,1) = {(. . . , ∗, ∗, ∗, ∗, e1, e2, . . .)}
Σu(e,1) = {(. . . , e−2, e−1, e0, ∗, ∗, ∗, . . .)}

A shift of finite type is any system conjugate

to (ΣG, σ), for some G.
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Dimension groups

Motivation: For dim(X) = 0, the Cech coho-
mology of X is C(X,Z). Or, the free abelian
group on the collection of clopen sets with re-
lation

E ∪ F = E + F, if E ∩ F = ∅.

Let (Σ, σ) be a shift of finite type. Ds(Σ, σ)
denotes the set of all E ⊂ Σs(e, ε) which are
compact and open.

Equivalence relation ∼:

[E,F ] = F, [F,E] = E ⇒ E ∼ F

E ∼ F ⇔ σ(E) ∼ σ(F )

Ds(Σ, σ) is the free abelian group generated
by equivalence classes of Ds(Σ, σ) modulo the
relation:

[E ∪ F ] = [E] + [F ], if E ∩ F = ∅.
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G a finite directed graph.

ZG0 = free abelian group on G0

or ZN , N = #G0.

Define γs : ZG0 → ZG0, by

γs(v) =
∑

t(e)=v

i(e).

and A is the adjacency matrix of G,

A : ZN → ZN

Then

Ds(ΣG, σ)
∼= lim ZG0 γs−→ ZG0 γs−→ · · ·
∼= lim ZN A−→ ZN A−→ · · ·
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Ds as a functor

Let π : (Σ, σ) → (Σ′, σ) be a factor map. If π

is s-bijective, then there is a map

πs : Ds(Σ, σ) → Ds(Σ′, σ).

(The idea is that πs[E] = [π(E)].)

If π is u-bijective, then there is a map

πs∗ : Ds(Σ′, σ) → Ds(Σ, σ)

(The idea is that πs∗[E′] = [π−1(E′)].)

(Kitchens, Boyle, Marcus, Trow)
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Homology: First attempt

(X,ϕ) a Smale space. What is Hs(X,ϕ)?

Bowen: For (X,ϕ) irreducible, there exists

π : (Σ, σ) → (X,ϕ),

continuous, surjective and finite-to-one.

For N ≥ 0, define

ΣN(π) = {(e0, e1, . . . , eN) |
π(en) = π(e0),

0 ≤ n ≤ N}.

For all N ≥ 0, (ΣN(π), σ) is also a shift of finite

type.

Idea: Compute homology of (X,ϕ) from that

of (ΣN(π), σ), N ≥ 0.
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For 0 ≤ n ≤ N , let δn : ΣN(π) → ΣN−1(π) be
the map which deletes entry n.

Lemma 1. If π is s or u-bijective, then so is
δn.

Definition 2. If π is s-bijective, define ∂sN(π) :
Ds(ΣN) → Ds(ΣN−1) by

∂sN(π) =
N∑
n=0

(−1)n(δn)
s.

If π is u-bijective, define ∂s∗N (π) : Ds(ΣN) →
Ds(ΣN+1) by

∂s∗N (π) =
N+1∑
n=0

(−1)n(δn)
s∗.

If π is s-bijective, we get a chain complex; u-
bijective, we get a cochain complex.

But to get either, we would need Xs(x, ε) or
Xu(x, ε) totally disconnected.
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Homology: Second attempt

(X,ϕ) a Smale space, what is Hs(X,ϕ)?

Let (X,ϕ) be a Smale space. We look for a

Smale space (Y, ψ) and a factor map

πs : (Y, ψ) → (X,ϕ) satisfying:

1. dim(Y u(y, ε)) = 0,

2. πs is s-bijective.

That is, Y u(y, ε) is totally disconnected, while

Y s(y, ε) is homeomorphic to Xs(πs(y), ε).

This is a “one-coordinate” version of Bowen’s

Theorem.
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Similarly, we look for a Smale space (Z, ζ) and

a factor map πu satisfying:

1. dim(Zs(z, ε)) = 0,

2. πu is u-bijective.

We call π = (Y, ψ, πs, Z, ζ, πu) a resolving pair

for (X,ϕ).

Theorem 3. For (X,ϕ) irreducible, resolving

pairs exist.
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Consider the fibred product:

Σ = {(y, z) ∈ Y × Z | πs(y) = πu(z)}

with

Σ
ρu
~~||

||
||

|| ρs
  B

BB
BB

BB
B

Y

πs   B
BB

BB
BB

B Z

πu~~||
||

||
||

X

ρs(y, z) = z is s-bijective, ρu(y, z) = y is u-

bijective. Hence, Σ is a SFT, Σ = ΣG, for

some graph G.

For L,M ≥ 0,

ΣL,M(π) = {(y0, . . . , yL, z0, . . . , zM) |
yl ∈ Y, zm ∈ Z,
πs(yl) = πu(zm)}.

Moreover, the maps

δl, : ΣL,M → ΣL−1,M , δ,m : ΣL,M → ΣL,M−1

are s-bijective and u-bijective, respectively.
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We get a double complex:

Ds(Σ0,2)

OO

Ds(Σ1,2)oo

OO

Ds(Σ2,2)oo

OO

oo

Ds(Σ0,1)

OO

Ds(Σ1,1)oo

OO

Ds(Σ2,1)oo

OO

oo

Ds(Σ0,0)

OO

Ds(Σ1,0)oo

OO

Ds(Σ2,0)oo

OO

oo

∂sN : ⊕L−M=ND
s(ΣL,M)

→ ⊕L−M=N−1D
s(ΣL,M)

∂sN =
∑L
l=0(−1)lδsl, +

∑M+1
m=0 (−1)m+Mδ∗s,m

Hs
N(π) = ker(∂sN)/Im(∂sN+1).
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Five basic theorems

Recall: beginning with (X,ϕ), we select a re-

solving pair π = (Y, πs, Z, πu) and compute Hs
N(π).

Theorem 4.The groups Hs
N(π) do not depend

on the choice of resolving pair π.

From now on, we write Hs
N(X,ϕ).

Theorem 5. The functor Hs
∗(X,ϕ) is covari-

ant for s-bijective maps, contravariant for u-

bijective maps.

Theorem 6. For (X,ϕ) irreducible, the group

Hs
0(X,ϕ) has a natural order structure.

16



The invariant Ds(ΣN) is computed as an in-

ductive limit

ZG0
N → ZG0

N → · · ·

and the generators of ZG0
N are N+1-tuples of

vertices from G.

Instead, define ZaG0
N as the quotient by the

relations

(v0, . . . , vN) = 0,
if vi = vj, i 6= j,

(vα(0), . . . , vα(N)) = sgn(α)(v0, . . . , vN),
α ∈ SN+1

with limit Ds
a(ΣN). Ds

a(ΣN) 6= 0 for only finitely

many N .

Theorem 7. The homologies obtained from

Ds(ΣN) and Ds
a(ΣN) are the same.

There is also a two-variable version.
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We can regard ϕ : (X,ϕ) → (X,ϕ), which is

both s and u-bijective and so induces an auto-

morphism of the invariants.

Theorem 8. (Lefschetz Formula) Let (X,ϕ)

be any Smale space having a resolving pair and

let p ≥ 1.∑
N∈Z

(−1)N Tr[(ϕs)p : Hs
N(X,ϕ)⊗Q

→ Hs
N(X,ϕ)⊗Q]

= #{x ∈ X | ϕp(x) = x}
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Example 1: Shifts of finite type

If (X,ϕ) = (Σ, σ), then Y = Σ = Z is a resolv-

ing pair.

The double complex Ds
a is:

0

OO

0oo

OO

0oo

OO

oo

0

OO

0oo

OO

0oo

OO

oo

Ds(Σ)

OO

0oo

OO

0oo

OO

oo

and Hs
0(Σ, σ) = Ds(Σ) and Hs

N(Σ, σ) = 0, N 6=
0.
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Example 2: dim(Xs(x, ε)) = 0 and (X,ϕ) ir-

red.

We may find a SFT and s-bijective map

πs : (Σ, σ) → (X,ϕ).

The Y = Σ, Z = X is a resolving pair and the

double complex Ds
a is:

0

OO

0oo

OO

0oo

OO

oo

0

OO

0oo

OO

0oo

OO

oo

Ds
a(Σ0)

OO

Ds
a(Σ1)oo

OO

Ds
a(Σ2)oo

OO

oo
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Example 3: (X, ϕ) = m∞-solenoid (Bazett-

P.)

A resolving pair is Y = {0,1, . . . ,m − 1}Z, the

full m-shift, Z = X and the double complex Ds
a

is

0

OO

0oo

OO

0oo

OO

oo

0

OO

0oo

OO

0oo

OO

oo

Z[1/m]

OO

Zoo

OO

0oo

OO

oo

and we get Hs
0(X,ϕ)

∼= Z[1/m], Hs
1(X,ϕ)

∼= Z,

Hs
N(ΣG, σ) = 0, N 6= 0,1.

D. Pollock considering Williams-Yi 1-dimensional

solenoids.
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Example 4: A hyperbolic toral automor-

phism (Bazett-P.):(
1 1
1 0

)
: R2/Z2 → R2/Z2

The double complex Ds
a looks like:

0

OO

0oo

OO

0oo

OO

oo

Z2

OO

Zoo

OO

0oo

OO

oo

Z3

OO

Z2oo

OO

0oo

OO

oo

and

N Hs
N(X,ϕ) ϕs

−1 Z 1

0 Z2

(
1 1
1 0

)
1 Z −1.

As an ordered group, Hs
0(X,ϕ)

∼= Z + 1+
√

5
2 Z.
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