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Smale spaces: hyperbolic topological sys-
tems

basic sets for Axiom A systems
hyperbolic toral automorphisms
solenoids (R. Williams)

shifts of finite type (SFT's)
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Shifts of finite type

1. zero-dimensional Smale spaces
2. universal property (Bowen's Theorem)
3. Krieger's dimension group invariant

Goal: Extend Krieger’s invariant to Smale
spaces



Smale spaces (D. Ruelle)
(X,d) compact metric space,

¢ : X — X homeomorphism with canonical
coordinates: there is a constant 0 < \ < 1,
and for x in X and € > 0 and small, there are
sets X%(x,e) and XY(x,e¢):

1. X%(z,e) x X% (x,e) is homeomorphic to a
neighbourhood of z,

2. -invariance,

3.

d(e(y),e(z)) < Xd(y,z), y,z€ X°(x,¢),
de (), o 1 (2)) < Ad(y,2), y,2z€ X%x,e),



That is, we have a local picture:

Actual definition: existence of [,] satisfying
some axioms. [z,y] is the intersection of X*(xz, ¢)
and X%(y,e¢).

Stable and unstable equivalence:

R® = {(z,y)| lim d(¢"(z),»"(y)) = 0}

n——+oo

RY = {(z,y)| lim d(p "(z),¢ "(y)) =0}

n——+oo

R%(x), R%(x) denote equivalence classes.



Factor maps

Let 7 : (Y,v) — (X,¢) be a factor map be-
tween Smale spaces. For every y in'Y, m :

R (y) — R*(7(y)).

e 7 is s-resolving if m : R°(y) — R%(w(y)) is
injective, for all y.

e w is s-bijective if m . R5(y) — R%(w(y)) is
bijective, for all y.

We remark:
e Y irreducible, s-resolving = s-bijective
e s-resolving = finite-to-one

e s-bijective = 7w :Y3(y,e) — X3(nw(y),€) is a
local homeomorphism



Shifts of finite type

Let G = (G9, GL,i,t) be a finite directed graph.
Then
Yo = {()2_|e"eah
i(eP T = t(e¥), for all n}
o(e)f = eFtL ieft shift”
The local product structure is given by
3%(e, 1) = {(..., %, %, %, %, el, 62, )}
(e, 1) ={(...,e 2, e 1, eV %, %, %, ...)}

A shift of finite type is any system conjugate
to (Xg,0), for some G.



Dimension groups

Motivation: For dim(X) = 0, the Cech coho-
mology of X is C(X,Z). Or, the free abelian
group on the collection of clopen sets with re-
lation

EUF=E+4+F if ENF =

Let (X,0) be a shift of finite type. D5(X,0)
denotes the set of all E C X%(e,e¢) which are
compact and open.

Equivalence relation ~:

D*%(3X,0) is the free abelian group generated
by equivalence classes of D%(3,0) modulo the
relation:

[EUF] = [E]+[F], if ENF = 0.



G a finite directed graph.

7G9 = free abelian group on GO

or ZN. N = #G0O.

Define ~% : ZG° — ZGP, by

Py = Y i),

t(e)=v
and A is the adjacency matrix of G,

AN L gN
T hen
D3(Zq,0) £ limzG° 1 zG0 L ...

im7ZN 4, 7N A,
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D?® as a functor
Let 7 : (X,0) — (X/,0) be a factor map. If «
IS s-bijective, then there is a map
7% D%(X,0) — D%(X/, o).
(The idea is that #n°[F] = [#(F)].)

If = is u-bijective, then there is a map
7% D3(X/,0) — D%(X, 0)
(The idea is that #5*[E'] = [#~1(EN].)

(Kitchens, Boyle, Marcus, Trow)



Homology: First attempt
(X,¢) a Smale space. What is H5(X, p)7?

Bowen: For (X, ) irreducible, there exists

(X, 0) — (X, p),

continuous, surjective and finite-to-one.

For N > 0, define

ZN(W> — {(607617“'76]\7) I
m(en) = m(en),
0<n< N}

Forall N > 0, (X n(7),o0) is also a shift of finite
type.

Idea: Compute homology of (X, ) from that
of (Zn(w),0), N > 0.
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For 0 <n <N, let 6, : Zn(7r) — Zn_1(7) be
the map which deletes entry n.

Lemma 1. If = is s or u-bjjective, then so is
On.

Definition 2. If 7 is s-bijective, define 03;(r) :
D3(Xn) — D¥(Xn_1) by

N
B3y (m) = 3 (~1)"(5n)".

n=0
If ™ is u-bijective, define 03/(w) : D3(Xy) —
D*(XN41) by

N+1

R =3 (~1)"(5n)*
n=0

If = is s-bijective, we get a chain complex; wu-
bijective, we get a cochain complex.

But to get either, we would need X°(x,e) or
X%(x,e) totally disconnected.
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Homology: Second attempt
(X, ) a Smale space, what is H5(X,p)7?

Let (X,p) be a Smale space. We look for a
Smale space (Y,v¥) and a factor map
s . (Y, 1) — (X, ) satisfying:

1. dim(Y%(y,e)) = 0,

2. mws IS s-bijective.

That is, Y4%(y,¢) is totally disconnected, while
YS(y,e) is homeomorphic to X%(mws(y),e€).

This is a “one-coordinate” version of Bowen's
T heorem.
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Similarly, we look for a Smale space (Z,¢() and
a factor map m, satisfying:

1. dim(Z%(z,¢)) = 0O,

2. 1y 1S u-bijective.

We call m = (Y, ¢, 7, Z,(, ™) a resolving pair
for (X, p).

Theorem 3. For (X, ) irreducible, resolving
pairs exist.
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Consider the fibred product:

> ={(y,2) €Y x Z | ms(y) = mu(2)}
with

pyz\ps
Y A
W\S\« »/7Tu
X

ps(y,z) = z is s-bijective, py(y,z) = y is u-
bijective. Hence, > is a SFT, 2~ = >4, for
some graph .

For L, M > 0,

Srm(m) = {(yo,---,Yr,20,---»20M) |
Yi S Y,Zm S Za

WS(yl) — Wu(zm)}-
Moreover, the maps

oL, "2 M — ZL-1,M>0m XL M — 2L M-1
are s-bijective and wu-bijective, respectively.
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We get a double complex:

D3(Xp2)~—D*(X12)~D*(Z02)~—

D3(Xp,1)-D*(X11)-D*(Zo1)

D3(Xp0)-D*(X10)~D*(Z20)

Iy Sr—m=nD*(Zr nm)
— Or—m=n-1D°(Zp M)

O = Tlo(—1)6; + i t3(—1)m+Mars

HY () = ker(93)/Im (% 41).
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Five basic theorems

Recall: beginning with (X, ¢), we select a re-
solving pair m = (Y, s, Z, my) and compute H3, (7).

Theorem 4. The groups H;(m) do not depend
on the choice of resolving pair .

From now on, we write H3 (X, ¢).

Theorem 5. The functor H(X,p) is covari-
ant for s-bijective maps, contravariant for u-
bijective maps.

Theorem 6. For (X, ) irreducible, the group
H3(X, ) has a natural order structure.
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The invariant D%(X ) is computed as an in-
ductive limit

2GR — 2GSy — - -

and the generators of ZGY; are N + 1-tuples of
vertices from G.

Instead, define Z,GY, as the quotient by the
relations

(’UO,...,’UN) :O7
it Vg — Ujai #Ja
(UQ(O)a R 7Ua(N)) — sgn(a)(vg, SR 7UN>7
ac SN—I—l

with limit DS (X ). D3(3X ) # 0 for only finitely
many N.

Theorem 7. The homologies obtained from
D3(X ) and D;(Xp) are the same.

There is also a two-variable version.
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We can regard ¢ : (X,p) — (X,p), which is
both s and u-bijective and so induces an auto-
morphism of the invariants.

Theorem 8. (Lefschetz Formula) Let (X, p)

be any Smale space having a resolving pair and
let p > 1.

> (DN Tr(p)P: HY(X,9)2Q

NezZ
— HY (X, ) ® Q)

#{z e X [ p'(z) =z}
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Example 1: Shifts of finite type

If (X,9)=(xX,0), thenY =X = Z is a resolv-
ing pair.

The double complex Dy is:

O 0-—0

O 0-—0

D5(X)~—0-—0
and H§(Z,0) = D3(X) and H{(Z,0) = 0, N #
0.
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Example 2: dim(X®(x,¢)) =0 and (X, ) ir-
red.

We may find a SFT and s-bijective map

s (Z,0) — (X, p).

TheY =3%>,7Z = X is a resolving pair and the
double complex D; is:

Di(Xo)~—D;(X1)—Dg(X2)~—
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Example 3: (X, ) = m-solenoid (Bazett-
P.)

A resolving pair is Y = {0,1,...,m — 1}%4, the

full m-shift, Z = X and the double complex D;
IS

O O0-—0

O O0-—0

Z[1/m]~—7Z-—0

and we get H3(X,p) = Z[1/m], H{(X,¢) = Z,
H$(Zg,0) =0,N # 0, 1.

D. Pollock considering Williams-Yi 1-dimensional
solenoids.
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Example 4: A hyperbolic toral automor-
phism (Bazett-P.):

(3

1
0

) . R?/72 — R?/Z°?

The double complex D; looks like:

and

As an ordered group, H§(X,p) & Z—I—%Z.
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