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1 Introduction

The papers [8, 9, 10, 13, 20] present a study of orbit equivalence for certain
minimal dynamical systems on a Cantor set; i.e. a compact, totally discon-
nected, metrizable space with no isolated points. This is a parallel program
to that initiated by H. Dye in ergodic theory (for example, see [2]) and also
that in Borel equivalence relations (for example, see [16]).

The main objects of interest actions are of countable groups on the Can-
tor set. In fact, all of groups will be abelian, only because of the limitations
of the results to this point. We also mostly restrict our attention to free
actions (as we describe in the next section). To a group action, we associate
an equivalence relation, called the orbit relation: two points are equivalent
if there is an element of the group whose associated homeomorphism car-
ries one to the other. An orbit equivalence between two such systems is a
homeomorphism between the underlying spaces which carries the equivalence
classes of one system to those of the other.

In fact, it turns out to be useful to generalize the notion of group action.
In section 3, we give a definition of a local action. To such an object, we
can also associate an analogue of the orbit relation. The key point is that
this relation is naturally equipped with a topology, and we refer to such
an equivalence relation as étale. We shall see that free actions of groups
are examples. On the other hand, we will also see there is another class
called the AF-equivalence relations which are at once highly complex, yet
quite tractible. Here, ‘AF’ stands for ‘approximately finite’. Much of our
attention will be devoted to these, at least at first. However, we will see
ultimately that they are actually quite close to group actions and this will
allow us to extend results from the AF-case to group actions, which are our
main interest.

We end this section with a few preliminary notions. First, by a Cantor
set, we mean a compact, totally disconnected metric space with no isomlated
points. Any two such spaces are homeomorphic. Subsets of such a space
which are both open and closed will be referred to as clopen. If E is such
a set, χE denotes its characteristic function, which is, of course, continuous.
By a partition of a Cantor set, we mean a finite collection of clopen sets
which are pairwise disjoint and cover the space.

For a Cantor set X, we will frequently consider C(X,Z), which is the set
of continuous integer-valued functions on X. Given such a function f , it is
easy to see that the sets Fn = f−1{n}, n ∈ f(X), form a partition of X and

3



f =
∑

n∈f(X) nχFn .
We will also discuss measures on the Cantor set. All of our measures

will be probability measures; i.e. they are finite, positive and normalized
so the measure of the space is one. For readers with a good background in
measure theory, there is nothing very sophisticated. The reader with little
or no background in measure theory may take as the definition of a measure
on a Cantor set X: a function µ defined on the clopen subsets of X such
that µ(X) = 1 and µ(U ∪ V ) = µ(U) + µ(V ), whenever U, V are clopen and
disjoint. We also note that, at least for a function f in C(X,Z), we define∫

fdµ =
∑

n∈f(X)

nµ(f−1{n}).

2 Group actions

In this section, we describe the basic objects of interest: actions of countable
abelian groups by homeomorphisms on Cantor sets. In fact, most of this
chapter applies equally well to non-abelian groups and some of it to more
general spaces. The reason we restrict our attention to abelian groups is first,
that we have almost nothing to say about the non-abelian case, and secondly,
it is convenient to use the additive notation. Many of the later sections will
deal with the case that the group is the group of integers, Z. We review
several basic notions: free actions, minimal actions and invariant measures.

Definition 2.1. Let X be a topological space and G be an abelian group. We
say that ϕ is an action of G on X if, for every a in G, we have ϕa : X → X,
which is a homeomorphism. Moreover, we have

ϕ0(x) = x, for all x ∈ X, and

ϕa ◦ ϕb = ϕa+b, for all a, b ∈ G.

We denote such an object by (X,G, ϕ).

If ϕ is a single homeomorphism of X, we can form an action of the integers
by setting ϕn to be the nth iterate of ϕ, for n > 0 and ϕn to be the −nth
iterate of ϕ−1 for n < 0 and ϕ0 to be the identity map of X.

Most of our interest will be in group actions which are free in the following
sense.

4



Definition 2.2. Let ϕ be an action of the abelian group G on the topological
space X. We say that ϕ is free if, whenever x in X and a in G satisfy
ϕa(x) = x, then a = 0.

Remark 2.3. Let ϕ be a free action of the abelian group G on the topological
space X. Whenever x in X and a,b in G such that ϕa(x) = ϕb(x) then a = b.

One of our main interests in group actions is the associated orbit relation.

Definition 2.4. Let ϕ be an action of the abelian group G on the topological
space X. The orbit relation, Rϕ, is defined to be

Rϕ == {(x, ϕa(x)) | x ∈ X, a ∈ G}.

It is an easy matter to see that Rϕ is an equivalence relation on X. The
equivalence class of a point x in X is called its orbit and we write it as Oϕ(x);
that is,

Oϕ(x) = {ϕa(x) | a ∈ G}.

With this definition complete, we can define the important notion of a
minimal action.

Definition 2.5. An action ϕ of an abelian group G on a space X is minimal
if, for every x in X, Oϕ(x) is dense in X.

Exercise 2.6. Prove that the action ϕ is minimal if and only if the only
closed sets Z ⊂ X such that ϕa(Z) = Z, for every a in G, are ∅ and X.

Our main interest in group actions will be in determining when two are
orbit equivalent in the following sense.

Definition 2.7. Two free actions (X1, G1, ϕ1) and (X2, G2, ϕ2) are orbit
equivalent if there exists homeomorphism h : X1 → X2 such that

h(Oϕ1(x)) = Oϕ2(h(x)),

for each x in X or, equivalently,

h× h(Rϕ1) = Rϕ2 .

In this case, we write (X1, G1, ϕ1) ∼ (X2, G2, ϕ2).
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Here is a very simple result, but it will be useful to have it stated this
way later.

Proposition 2.8. Let ϕ be an action of the abelian group G on the topological
space X. The map from X × G to X × X which sends (x, a) to (x, ϕa(x))
has range Rϕ and is injective if and only if ϕ is free.

One immediate application is that it allows us to put a topology on Rϕ,
in the case of a free action. We put the usual topology on X, the discrete
topology on G, the product topology on X ×G and then transfer this to Rϕ

by the bijection above. When necessary, we denote this topology by Tϕ.
We make a short digression to discuss notation. Suppose X is a set and

f : X → X is a function. Recall that the precise definition of a function is a
set of ordered pairs, in this case, in X×X, satisfying certain properties. That
is, we have f ⊂ X ×X and we would write (x, y) ∈ f instead of f(x) = y.
Usually, this is a formal definition and not how we think about functions.
But it turns out here to be rather useful to use this notation. If fact, we
invite the reader to check that

Rϕ = ∪a∈G ϕa

We will let d, r the two canonical projection maps from X ×X to X; that is
d(x, y) = x and r(x, y) = y.

The final notion of this section is that of an invariant measure for a group
action on the Cantor set.

Definition 2.9. Let µ be a measure on the Cantor set X and let ϕ be an
action of the abelian group G on X. We say that µ is ϕ-invariant if, for
every clopen set E ⊂ X and every a in G, we have

µ(ϕa(E)) = µ(E).

We let M(X,ϕ) denote the set of all ϕ-invariant measures on X.

We conclude this section with a couple of simple examples; both are
actions of the group Z.

1. Odometers

We consider

X = Π∞n=1{0, 1} = {(x1, x2, . . .) | xn = 0, 1}
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It is a compact, totally disconnected space with the metric

d(x, y) = inf{2−N | N ≥ 0, xn = yn, 1 ≤ n ≤ N}.

We define a map ϕ on X as adding (1, 0, 0, . . .). Of course, the addition
is done modulo 2, but also with carry over to the right. That is, we
have

ϕ(0, 0, 0, 1, 1, . . .) = (1, 0, 0, 1, 1, . . .),

ϕ(1, 1, 1, 0, 0, 0, 1, . . .) = (0, 0, 0, 1, 0, 0, 1, 1, . . .)

ϕ(1, 1, 1, . . .) = (0, 0, 0, . . .)

In fact, the set X is a compact ring (called the 2-adic integers) and the
map ϕ is simply addition by the unit 1.

We define an action of the group Z as described earlier. We leave it
as an exercise for the reader to verify that this action is minimal. As
a hint, check that, for any N ≥ 1 and x in X, the first N entries of
x, ϕ(x), . . . ϕ2N−1(x) comprise all possible sequences of 0, 1 of length N .

In fact, the number 2 is not particularly important in this example.
We may start with any sequence a1, a2, . . . of integers, all at least 2 and
form

X = Πn{0, 1, 2, . . . , an − 1},

and carry out the same construction. We refer to these examples as
odometers. They are similar to the odometer in a car in the special
case an = 10, for all n, except that the carry-over goes right instead of
left and there may be an infinite number of non-zero entries appearing
in a sequence.

2. Denjoy examples

One of the most basic examples of a dynamical system is a rotation of
the circle. We let S1 denote the circle, which is R/Z. That is, points
are the circle are denoted by real numbers, modulo integers. For any
real number α, we define Rα(x) = x + α, which is rotation by angle
2πα in the conventional view of the circle.

It is routine to check that if α = p/q is rational, then Rq
α(x) = x, for

every x in S1. That is, every point is periodic of period q. On the other
hand, if α is irrational, then Rα is minimal [1]. Of course, the circle
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is not totally disconnected, but we may create a totally disconnected
version of this map as follows.

Let Cut be any countable Rα-invariant subset of S1 and let ˜Cut be the
corresponding set of real numbers. For a start it is probably easiest to
begin with Cut = {Rn

α(0) | n ∈ Z} and so ˜Cut = Z + αZ. Now let
R̃ = R\ ˜Cut∪{x+, x− | x ∈ ˜Cut}. That is, each point of ˜Cut is removed
and replaced by a pair of points. We define a linear order relation on
R̃ as follows. For any x and y distinct, we set x+, x− < y+, y− if
x < y. Finally, we set x− < x+. It is easy to see that intervals of the
form [x+, y−] = (x−, y+) are clopen and form a neighbourhood base for
the order topology. We observe that the natural translation of Z on R
extends to R̃ and we let X denote the quotient space R̃/Z. The action ϕ
of Z is defined by ϕn(x) = x+nα for x /∈ Cut and ϕn(x+) = (x+nα)+,
ϕn(x−) = (x+ nα)−, for x in Cut.

3 Étale equivalence relations

Let us quickly review where we stand after the last section. We have intro-
duced the notion of a group action and some properties such as freeness and
minimality. For a group action (X,G, ϕ), we introduced the orbit relation
Rϕ and, providing the action is free, a topology, Tϕ, on Rϕ. This equivalence
relation, either with or without its topology, will be our main item of interest.

This chapter is aimed at generalizing the notions of the (free) action of
a group and the associated equivalence relation. These will be called a local
action and an étale equivalence relation, respectively.

By a local homeomorphism of a topological space X, we mean a pair of
open subsets, U and V , of X and a homeomorphism γ : U → V .

Recall our comments from the last section on functions. Here, the func-
tion γ as above is actually defined as a subset of U × V ⊂ X × X. Also
recalling the two coordinate maps, d, r, from X×X to X, we have U = d(γ)
and V = r(γ). This means that the set γ ⊂ X × X actually contains the
data of its domain, d(γ), and range, r(γ).

Notice that (in this notation), the inverse of the local homeomorphism γ
is

γ−1 = {(x, y) | (y, x) ∈ γ}

which is also a local homeomorphism.
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There is some notational trouble when composing functions. (This trou-
ble originates with the fact that we write f(x) instead of (x)f , but it is
probably too late to change that now.) We define the composition of two
local homeomorphisms γ1 and γ2 as

γ1 ◦ γ2 = {(x, z) | there exists y, (x, y) ∈ γ1, (y, z) ∈ γ2}

which is also a local homeomorphism. Note that with the more usual no-
tation, we have γ1 ◦ γ2(x) = γ2(γ1(x)). Notice that we do not require that
r(γ1) = d(γ2).

This is a good point to observe the empty set is a local homeomorphism
as is the identity function on any open set, U , which we denote by idU . We
also observe that if γ is a local homeomorphism and W is an open subset of
d(γ), then idW ◦ γ is simply the restriction of γ to W . Also note that

γ ◦ γ−1 = idd(γ), γ
−1 ◦ γ = idr(γ).

With these notions in place, it is fairly easy to extend the notion of
a group action: we want a collection of local homeomorphisms of a space
which is closed under composition and inverses. It turns out to be useful
to require a local version of the identity map and one other somewhat more
subtle condition.

Definition 3.1. Let X be a topological space. A local action on X is a
collection, Γ, of local homeomorphisms of X satisfying:

1. if γ is in Γ, then so is γ−1,

2. if γ1 and γ2 are in Γ, then so is γ1 ◦ γ2,

3. the set
{U | idU ∈ Γ}

forms a neighbourhood base for the topology on X.

4. if γ1 and γ2 are in Γ, then so is γ1 ∩ γ2.

We also say that the pair (X,Γ) is a local action.

Some remarks are in order regarding the last condition. As a function in
the usual sense, the domain of γ1 ∩ γ2 is the set of points x where both γ1

and γ2 are defined and have equal value. The value of γ1∩γ2 on such an x is
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this common value. If one considers two continuous functions defined on the
same space (to simplify things), the set of points where they agree is easily
seen to be closed. As we are requiring γ1 ∩ γ2 to be a local homeomorphism,
the domain must be open. This is quite a strong condition which, in some
sense, is an analogue of freeness for group actions.

We remark that this definition shares some features with the notion of a
pseudogroup.

Suppose that (X,G, ϕ) is a free action. We would first like to see that
this provides an example of a local action. After all, each ϕa, a ∈ G, is a
homeomorphism of X and hence a local homeomorphism as well. However,
this must be done carefully; the collection {ϕa | a ∈ G} satisfies the first and
second conditions of our definition above. There is some difficulty with the
fourth since ϕa ∩ ϕb is empty when a 6= b. But the more serious problem is
with the third condition. However, it is easily verified that

Γϕ = {ϕa |U | U ⊂ X open , a ∈ G}

is a local action on X.
Notice that, if X is totally disconnected, then instead of restriction to

open sets, we could also restrict to clopen sets or compact, open sets.
We can now define the orbit relation of a local action, in much the same

way we did for group actions.

Definition 3.2. Let X be a topological space and let Γ be a local action on
X. We define the orbit relation of Γ as

RΓ = ∪γ∈Γγ

It is an easy matter to check that RΓ is an equivalence relation and that,
if the local action arises from a free action as described above, then the this
definition agrees with the one given earlier.

In fact, one may notice that the fourth condition in the definition is
not needed for either of these statements. It is the main ingredient in the
following.

Proposition 3.3. Let X be a topological space and Γ be a local action on X.
Then Γ is a neighbourhood base for a topology on RΓ, which is denoted TΓ.

We suggest that the reader verify that, in the case of a local action arising
from a free action, this topology agrees with the one from the last section.
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This brings us to our definition of an étale equivalence relation: it is one
which arises from a local action. It will be useful for us to add an extra
hypothesis that it is second countable, as a topological space.

Definition 3.4. Let R be an equivalence relation on a topological space X.
We say a topology T on R is an étale topology for R if it is second count-
able and there is a a neighbourhood base, Γ, for T which is a local action.
Equivalently, we say that (R, T ) or (X,R, T ) is an étale equivalence relation.

We will now present some elementary examples of local actions and étale
equivalence relations, as well as some non-examples. The first is a little
trivial, but worth mentioning.

Example 3.5. Let X = {1, 2, . . . , N}, for some positive integer N . Let Γ
consist of the empty set and all subsets of X × X having a single element.
It is easy to see that this is a local action, that R = X × X and that R is
endowed with the discrete topology.

It is probably worth presenting a simple example of an equivalence rela-
tion on a topological space having no étale topology.

Example 3.6. Let X = [0, 1] ⊂ R and let R = ∆X ∪{(0, 1), (1, 0)}. We will
show that R admits no étale topology. Suppose the contrary: that we may find
a local action Γ which gives rise to R. Then there is a local homeomorphism,
γ ∈ Γ, containing (0, 1). Also, we may find 0 ∈ U ⊂ [0, 1/2) and 1 ∈ V ⊂
(1/2, 1] such that idU and idV are in Γ. It follows that idV ◦ γ ◦ idU is in N .
On the other hand, idV ◦ γ ◦ idU = {(0, 1)} by construction. But this is not
a local homeomorphism since its domain and range are not open sets.

The next example is also rather simple, but, in contrast to the last ex-
ample, it shows how étale equivalence relations have a kind of “openness”.

Example 3.7. Let X = [0, 1] ∪ [2, 3] ⊂ R. Define R to be the equivalence
relation whose classes are {x, 2 + x}, for all 0 < x ≤ 1, {0} and {2}. A
local action can be given by all functions of the form γ = {(x, x) | x ∈ U},
where U is open, γ = {(x, x + 2) | x ∈ U}, where U ⊂ (0, 1] is open, and
γ = {(x, x−2) | x ∈ U}, where U ⊂ (2, 3] is open. The topology arising from
this local action is just the relative topology from X ×X.

The final example shows that some trickery can be used when forming
the local action.
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Example 3.8. Let X = [0, 1] ⊂ R and let R denote the equivalence relation
whose classes are of the form {x, 1−x}. It is tempting to form a local action
from local homeomorphisms γ = {(x, x) | x ∈ U} and γ′ = {(x, 1 − x) | x ∈
V }, x ∈ [0, 1], where U, V ⊂ [0, 1] are open. Unfortunately, this fails as the
intersection of such a γ and γ′ is {(1

2
, 1

2
)}, if 1

2
is in U ∩ V . In this case,

there is a little trick: only consider γ′ for 1
2
/∈ V ⊂ [0, 1] open. This is indeed

a local action. The topology does not agree with the relative topology from
X × X as the sequence ( n

2n+1
, n+1

2n+1
) is convergent in the latter, but not the

former

Let us make a few remarks which we will not prove. First, in an étale
equivalence relation, the equivalence classes are always countable. Secondly,
although our space X is assumed to be compact, an étale equivalence relation
R almost never is. Indeed, it R is compact, then there is a constant M such
that every equivalence class has at most M elements. Finally, it is clear that
as a subset of X ×X, an equivalence relation R obtains a relative topology.
If it is étale in this topology, then once again, there is a uniform finite upper
bounded on the size of the equivalence classes. Or to put it another way, if
R ⊂ X ×X is an equivalence relation with infinite equivalence classes, then
we cannot use the relative topology from X ×X if we want to find an étale
topology.

We now extend of our definition of minimality to equivalence relations.
Notice this does not require any topology on the equivalence relation itself.

Definition 3.9. Let R be an equivalence relation on the topological space X.
We say that R or (X,R) is minimal if every R-equivalence class is dense in
X.

Exercise 3.10. We say that a set Y ⊂ X is R-invariant if, for every y in
Y , the R-equivalence class of y is also contained in Y . First show that for
group actions, this definitions agrees with our earlier one. Then show that
R is minimal if and only if the only closed R-invariants sets are X and the
empty set.

We also extend our definition of invariant measures to étale equivalence
relations.

Definition 3.11. Let R be an étale equivalence relation on a Cantor set X.
A measure µ on X is R-invariant if and only if

µ(d(γ)) = µ(r(γ)),
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for every compact, open local homeomorphism γ ⊂ R. We let M(X,R)
denote the set of all R-invariant probability measures on X.

Recall that in the last section, we introduced the notions of orbit equiva-
lence for group actions. We will generalize this now to equivalence relations,
but in fact, we have two properties: orbit equivalence and isomorphism. The
former requires no topology, the latter is only for étale equivalence relations.

Definition 3.12. Let X1 and X2 be topological spaces and let R1 and R2

be equivalence relations defined on X1 and X2, respectively. We say that
(X1, R1) and (X2, R2) are orbit equivalent if there is a homeomorphism
h : X1 → X2 such that

h× h(R1) = R2.

We refer to the map h as an orbit equivalence and we write

(X1, R1) ∼ (X2, R2)

or
R1 ∼ R2.

It is trivial to see that orbit equivalence is an equivalence relation, but it
is worth noting that it is a slightly unfortunate fact that it is an equivalence
relation on equivalence relations. It is also easily seen that this extends our
earlier definition of orbit equivalence for group actions 2.7.

Finally, we consider the notion of isomorphism of étale equivalence rela-
tions.

Definition 3.13. Let (R1, T1) and (R2, T2) étale equivalence relations on the
spaces X1 and X2, respectively. We say that they are isomorphic if there is
a homeomorphism h : X1 → X2 such that

h× h(R1) = R2

and so that
h× h : R1 → R2

is a homeomorphism. We refer to the map h as an isomorphism and we write

(X1, R1, T1) ∼= (X2, R2, T2),

or
R1
∼= R2.
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It is clear that isomorphism implies orbit equivalence. The converse turns
out to be false, but it is a very deep matter to produce a counter-example.
Let us also mention another way of considering this last definition. We need
to consider equivalence relations on the Cantor set and endow them with
an étale topology. We have seen already that this is not always possible
(Example 3.6). If it is, one might equally well ask the question of whether
or not the topology is unique. To ask if there exist there exist two distinct
topologies on R is really the same as to ask whether there are two étale
equivalence relations which are orbit equivalent but not isomorphic.

4 AF-equivalence relations

In the last section, we introduced the notions of local action and étale equiv-
alence relations. We showed that free actions of countable abelian groups
gave rise to natural examples. However, we only gave a few other very sim-
ple examples. We are going to correct that omission now by discussing AF
or approximately finite equivalence relations. Much more than just exam-
ples, we will see in subsequent sections that our theory of orbit equivalence
is built around AF-equivalence relations. What emerges is that they are rich
enough to contain many really deep examples, but at the same time, they
have enough structure to be quite tractable. Finally, they are sufficiently
close to group actions to be a useful tool in their study.

We begin with the introduction of Bratteli diagrams, a combinatorial
object from which we can explicitly construct examples of local actions and
étale equivalence relations.

Definition 4.1. A Bratteli diagram, consists of a sequence of finite, pairwise
disjoint, non-empty sets, {Vn}∞n=0, called the vertices, a sequence of finite
non-empty sets {En}∞n=1 called the edges and maps i : En → Vn−1 and t :
En → Vn called the initial and terminal maps. We let V and E denote the
union of these sets and denote the diagram by (V,E). We will assume that
V0 has exactly one element, denoted v0, that i−1{v} is non-empty for every
v in V , and that t−1{v} is non-empty for every v 6= v0 in V .

Considered as a directed graph, a Bratteli diagram is a sequence of tiers of
vertices with any multitude of edges to the consecutive tier only. We assume
there is a unique source, denoted v0 and no sinks. We may draw the diagram
as in Figure 1.
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V E1E0V 3E

t(e)

i(e)

e

2V1 2

Figure 1: A Bratteli diagram.

Definition 4.2. Let (V,E) be a Bratteli diagram. An infinite path in the
diagram is a sequence of edges (e1, e2, . . .) such that em is in Em and t(em) =
i(em+1) for m ≥ 1.

For M < N , a finite path p = (eM+1, eM+2, . . . , eN) is a truncation of an
infinite path, for which we define i(p) = i(eM+1) ∈ VM and t(p) = t(eN) ∈ VN

We define EN
M to be the set of paths in the diagram from VM to VN ; that

is, we write

EN
M = {(eM+1, eM+2, . . . , eN) | em ∈ Em,M < m ≤ N,

t(em) = i(em+1),M < m < N}.

Note that EM
M−1 is just EM , for M ≥ 1.

Finally, for v in VM and w in VN we define EN
M(v, w) to be the set of
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paths from v to w. Explicitly, we write

EN
M(v, w) = {p ∈ EN

M | i(p) = v and t(p) = w}

We remark that paths can be concatenated. If p is in EM
L and q is in

EN
M , then pq denotes the path in EN

L obtained by concatenation. (This even
makes sense for N =∞.)

We are now ready to take the first step toward a local action: introducing
a metric space, called the path space, associated to a Bratteli diagram. The
fundamental ideas will be fairly familiar to any reader with a background in
symbolic dynamics.

Definition 4.3. Let (V,E) be a Bratteli diagram. We define a space XE, to
be the collection of infinite paths in the diagram. Explicitly, we write

XE = {e = (e1, e2, e3, . . .) | en ∈ En, t(en) = i(en+1), for all n ≥ 1}.

This set is endowed with the metric

d(e, f) = inf{2−N | N ≥ 0, en = fn for 1 ≤ n ≤ N}.

We leave it as an exercise to check that d is indeed a metric. The following
is actually its most useful characterization.

Exercise 4.4. For e and f in XE and N ≥ 1, d(e, f) < 21−N if and only if
(e1, e2, . . . , eN) = (f1, f2, . . . , fN).

From now on, it will be more convenient to denote elements of XE as
x = (x1, x2, x3, . . .) rather than e = (e1, e2, e3, . . .).

For M < N and any p in EN
M , we define

Up = {x ∈ XE | (xM+1, xM+2, . . . , xN) = p}.

We refer to such a set as a cylinder set. Most frequently, we will use M = 0.
We assemble some useful facts about these cylinder sets.

1. For each p in EN
M , Up is open.

2. For fixed N , the sets Up, p ∈ EN
0 form a (finite) partition on X: that

is, they are pairwise disjoint and cover X.

3. For each p in EN
M , Up is closed.
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4. For fixed N , the partition Up, p ∈ EN+1
0 is finer than Up, p ∈ EN

0 : that
is, each element of the former is contained in one of the latter.

5. The sets Up, p ∈ EN
0 , N ≥ 1, form a neighbourhood base for the topol-

ogy on X.

It is an immediate corollary of these facts that the space XE is compact
and totally disconnected.

Having defined our space XE, we are now ready to provide a local action
and, subsequently, an étale equivalence relation on it. The elements of the
local action are those maps which are “finite coordinate changes”. More
specifically, for each N ≥ 1 and pair p, q in EN

0 , we define

γp,q = {(x, y) | x ∈ Up, y ∈ Uq, xn = yn, n > N}.

Note that γp,q is non-empty if and only if t(p) = t(q). It is worth stating
that, as a local homeomorphism, γp,q : Up → Uq is defined by

γp,q(p1, . . . , pN , xN+1, xN+2, . . .) = (q1, . . . , qN , xN+1, xN+2, . . .).

Exercise 4.5. Let (V,E) be a Bratteli diagram. Prove that the collection of
sets

ΓE = {γp,q | p, q ∈ EN
0 , N ≥ 1}

is a local action.

To a Bratteli diagram, (V,E), we have now associated a path space XE

and a local action ΓE on XE. This means that we also have an associated
étale equivalence relation.

Definition 4.6. Let (V,E) be a Bratteli diagram. Its associated étale equiv-
alence relation is denoted (RE, TE). That is, we have

RE = ∪γp,q,

where the union is over all p, q in EN
0 with t(p) = t(q) and all N ≥ 1.

In fact, the N in the last definition has a rather subtle part to play. We
begin with the following rather easy and innocent looking observation. For
each N ≥ 1, define

RN
E = ∪p,q∈EN

0
γp,q.
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Then we have

RN
E = {(x, y) | x, y ∈ XE, xn = yn, n > N}

and is a subequivalence relation of RE. Moreover, we have

R1
E ⊂ R2

E ⊂ R3
E · · ·

and
∪NRN

E = RE.

Exercise 4.7. Prove that, for each N ≥ 1, RN
E is a compact, open subset of

RE.

For convenience, we also set R0
E = ∆XE

so that R0
E is just equality. A

pair (x, y) in RE are usually called ‘tail equivalent’ or ‘cofinal’.
We see in the last result that this equivalence relation RE has a natural

structure as an inductive limit. This brings us to our definition of an AF-
equivalence relation.

Definition 4.8. An étale equivalence relation (R, T ) on a compact space X
is called an AF-equivalence relation if X is totally disconnected and there is
a sequence

R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂ R,

such that

1. ∪NRN = R, and

2. for each N ≥ 0, RN is a compact, open subequivalence relation of R.

We have seen that an étale equivalence relation coming from a Bratteli
diagram is AF. In fact, the converse is also true. It is slightly messy to prove,
and we state it without proof.

Theorem 4.9. Let (X,R, T ) be an AF-equivalence relation. There exists a
Bratteli diagram (V,E) such that (X,R, T ) ∼= (XE, RE, TE).

While AF-relations are quite complex, their inductive limit structure al-
lows us to analyze them quite thoroughly. Of course, the essential tool in
this analysis is to represent the relation via a Bratteli diagram. Once this
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is done, much of the analysis reduces to combinatorial questions about the
diagrams.

We next give a simple combinatorial condition on a Bratteli diagram
which is necessary and sufficient for its associated AF-equivalence relation
to be minimal. We usually call such a diagram simple. Recall that an
equivalence relation is minimal if and only if every equivalence class is dense.
We leave the proof as an exercise.

Theorem 4.10. Let (V,E) be a Bratteli diagram. The AF-equivalence re-
lation (XE, RE) is minimal if and only if for every M ≥ 0, there exists an
N > M such that EN

M(v, w) is nonempty for every v in VM and every w in
VN .

In this section, we have introduced AF-equivalence relations and the sug-
gestion is that they are rather different from the étale equivalence relations
which arise from group actions. Let us support that suggestion with the
following fairly simple result.

Theorem 4.11. Let ϕ be a free action of the group Z on X. Then Rϕ is not
isomorphic to an AF-equivalence relation.

Suppose to the contrary that Rϕ is the union of an increasing sequence of
compact, open subequivalence relations Rn, n ≥ 1. Recall that the topology
from Rϕ comes from X × Z and so Rϕ is not compact. On the other hand,
ϕ1 ⊂ Rϕ is the image of X × {1} and so is compact. The sequence of Rn’s
form an open cover of ϕ1 and so one of them must contain it, say Rk. The
equivalence relation generated by ϕ1 is Rϕ. On the other hand, since Rk is
an equivalence relation and contains ϕ1, we have Rϕ ⊂ Rk. We conclude
that Rϕ = Rk which is a contradiction: the second is compact while the first
is not.

5 C∗-algebras

In this section, we present a short sketch of the construction of a C∗-algebra
from an étale equivalence relation.

Let (X,R) be an étale equivalence relation. (We suppress the topology in
our notation. This should cause no confusion, since it will be fixed.) First,
we let Cc(R) denote the continuous, complex-valued functions of compact
support on R. The first fundamental fact is the following.
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Lemma 5.1. For an étale equivalence relation (X,R), the linear space Cc(R)
is a ∗-algebra when given the product

f · g(x, y) =
∑

(x,z)∈R

f(x, z)g(z, y),

for f, g in Cc(R) and (x, y) in R, and involution

f ∗(x, y) = f(y, x),

for f in Cc(R) and (x, y) in R.

We leave the proof as an worthwhile exercise for the reader. But let us
carefully indicate what is needed. The first task is to see that the product
is well-defined. This requires several steps. First, for fixed f in Cc(R) and x
in X, the set {x} ×X ∩R is discrete (i.e. has no accumulation points in R.
This is a consequence of the étale condition. Thus the intersection of this set
with a compact set, in this case, the support of f , is finite. It then follows
that, for fixed f and g and (x, y), the sum involved in the product has only
finitely many non-zero terms. The next task is to prove that f · g is back in
Cc(R). This again needs the étale condition. Following all of this are more
standard problems, such as showing the product is associative and so on.

We also remark that this product is often denoted by f ∗ g, since it is
related to the convolution of functions, but this seems a little confusing for
a product in a ∗-algebra.

Thus, Cc(R) is a complex ∗-algebra.

Exercise 5.2. If X is finite and R = X×X (all with the discrete topology),
show that Cc(R) is isomorphic to a familiar ∗-algebra.

Exercise 5.3. Let (X,R) be an étale equivalence relation. Prove that the
map ∆ : C(X)→ Cc(R) defined by

∆(f)(x, y) =

{
f(x) x = y,

0 x 6= y

is well-defined, injective and a ∗-homomorphism. In the special case that
R = ∆X , conclude that Cc(R) ∼= C(X) (as ∗-algebras).
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We now need a norm in Cc(R). There are actually a couple choices and
the first is

‖ f ‖= sup{‖ π(f) ‖| π : Cc(R)→ B(H),

H a Hilbert space , π a *-homomorphism }

Of course, there is no reason at this point to see that such a finite supremum
exists, but it does. We will not prove this. By completing Cc(R) in this
norm, we obtain a C∗-algebra which we denote by C∗(X,R).

To describe the other natural norm, we need a specific class of representa-
tions of Cc(R) which are called the regular representations. For each x in X,
let us denote its R-equivalence class by [x]R. We consider the Hilbert space
of square-summable, complex-valued functions on [x]R, l2[x]R. We define

πx : Cc(R)→ B(H)

by setting

[πx(f)ξ] (y) =
∑
z∈[x]R

f(y, z)ξ(z),

for each f in Cc(R), ξ ∈ l2[x]R and y in [x]R.

Exercise 5.4. 1. Prove that πx(f) is a well-defined bounded operator on
l2[x]R.

2. Prove that πx is a ∗-homomorphism.

3. Suppose that γ ⊂ R is a local homeomorphism, f is a continuous func-
tion with support contained in γ. Let y be in [x]R and let δy be the
function which is 1 at y and zero elsewhere. Compute πx(f)δy.

4. Prove that if (x, y) is in R, then πx = πy.

Now we can define the reduced norm of Cc(R) by

‖ f ‖r= sup{‖ πx(f) ‖| x ∈ X},

for f in Cc(R). Of course, this norm is less than or equal to the earlier one.
Completing in this new norm also yields a C∗-algebra called the reduced C∗-
algebra, which we denote by C∗r (X,R). If the étale equivalence relation is
amenable, then these two norms are equal, and hence the two C∗-algebras
coincide. We will not define amenable, but most of our relations will have
this property. We refer the reader to [23] for more information.
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6 Invariants for étale equivalence relations

In this chapter, we introduce two invariants for étale equivalence relations.
Each of these is an ordered abelian group and we begin with a general dis-
cussion of this topic.

Definition 6.1. An ordered abelian group is a pair (G,G+), where G is an
abelian group and G+ ⊂ G satisfies:

1. G+ +G+ ⊂ G+

2. G+ −G+ = G

3. G+ ∩ (−G+) = {0}.

The set G+ ⊂ G is called the positive cone of G. The elements of G+ are
called positive while the non-zero elements of G+ are called strictly positive.

If (G,G+) and (H,H+) are ordered abelian groups, then a group homo-
morphism α : G → H such that α(G+) is contained in H+ is known as a
positive group homomorphism.

The positive cone provides a natural partial order on G, where for any
a, b in G, a ≥ b if and only if a−b is in G+. Note that this order is translation
invariant in the sense that a ≥ b implies a+ c ≥ b+ c for any a, b, c in G.

An order unit for (G,G+) is an element u in G+ such that for every a
in G there exists an integer n ≥ 1 such that nu ≥ a. In order to identify
a particular order unit u in G, we sometimes write the ordered group as
(G,G+, u). Let (G,G+, u) and (H,H+, u′) be ordered groups with order
units. These groups are isomorphic if there exists a group isomorphism α
from G to H such that α(G+) = H+ and α(u) = u′.

By an order ideal in an ordered group (G,G+) we mean a subgroup H
which is generated by G+ ∩H ( so that H+ = G+ ∩H makes H itself into
an ordered group) and such that, if a is in H+ and b is in G+ with a ≥ b,
then b is also in H. We say that the ordered group is simple if and only if
the only the only order ideals are the two trivial subgroups 0 and G.

The simplest example is the group Z with positive cone Z+ = {0, 1, 2, . . .}.
This gives rise to the usual order on Z. Similar examples may be obtained
for the groups Q and R.

The group Zd with d ≥ 1 can actually be given a number of different
orders, but the most important is given by Zd+ = {(n1, . . . , nd) | nk ≥
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0 for each k} which we refer to as the standard or simplicial order. Here,
any element (n1, . . . , nd) where each nk is strictly positive is an order unit.

Now we want to see how to construct such objects from étale equivalence
relations. In this, we will implicitly assume X is a totally disconnected space.

Let C(X,Z) be the group of continuous functions from X to Z with the
operation of pointwise addition. Define C(X,Z)+ to those functions from
X to the non-negative integers. It is easy to show that together these form
an ordered group. As X is compact, the range of any f in C(X,Z) is finite
and the sets f−1{n}, n ∈ f(X), form a partition of X into clopen sets. The
constant function one is an order unit.

Definition 6.2. Let (X,R, T ) be an étale equivalence relation with X totally
disconnected. Define B(X,R) as the subgroup of C(X,Z) generated by all
functions of the form

χd(γ) − χr(γ)

where γ ⊂ R is a compact, open local homeomorphism. We define

Bm(X,R) =

{
f |
∫
fdµ = 0 for every µ ∈M(X,R)

}
.

which is clearly a subgroup of C(X,Z).

If µ is an R-invariant measure on X, then for every compact open local
homeomorphism γ ⊂ R we have that∫

χd(γ) − χr(γ)dµ = µ(d(γ))− µ(r(γ)) = 0

from which it follows that B(X,R) ⊂ Bm(X,R).

Definition 6.3. Let (X,R, T ) be an étale equivalence relation with X totally
disconnected. We define D(X,R) and Dm(X,R) to be the following groups:

D(X,R) = C(X,Z)/B(X,R)

and
Dm(X,R) = C(X,Z)/Bm(X,R)

The elements of these groups are equivalence classes, denoted [f ]B and [f ]Bm

respectively. We also define

D(X,R)+ = {[f ]B | f ∈ C(X,Z)+}.

Dm(X,R)+ is defined in a similar way.
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Provided that the relation R is minimal, D(X,R) and Dm(X,R) are
ordered abelian groups and the class of the constant function one is an order
unit.

The next result shows that D(X,R) and Dm(X,R) are invariant under
isomorphism and orbit equivalence of étale equivalence relations, respectively.

Theorem 6.4. 1. If the étale equivalence relations (X,R) and (X ′, R′)
are isomorphic, then (D(X,R), D(X,R)+, [1]B) and
(D(X ′, R′), D(X ′, R′)+, [1]B) are isomorphic as ordered abelian groups
with order unit.

2. If the étale equivalence relations (X,R) and (X ′, R′) are orbit
equivalent, then (Dm(X,R), Dm(X,R)+, [1]Bm) and
(Dm(X ′, R′), Dm(X ′, R′)+, [1]B′m) are isomorphic as ordered
abelian groups with order unit .

We will not give a proof. The first part is obvious. For the second, one
shows that an orbit equivalence actually induces a bijection between the sets
of invariant measures for the equivalence relations and the conclusion follows
easily from that.

For the remainder of this section, we will restrict our attention to AF-
equivalence relations and the computation of their invariants. If (X,R) is
tail equivalence on the Bratteli diagram (V,E), then the invariant D(X,R)
may be computed directly from the diagram as follows.

For any finite set A, we let ZA denote the free abelian group on A. That
is, a typical element is a formal integral combination of the elements of A. Of
course, it is isomorphic as a group to Zn, where n is the number of elements
of A, but our notation allows us to consider A as a subset of the group. We
denote by Z+A the sub-semigroup with identity generated by the elements of
A; that is, it consists of non-negative integral combinations of A. Identifying
ZA with Zn as we suggested earlier, this is just the standard order.

Suppose that V and V ′ are two finite sets of vertices and E is a set of edges
between them, meaning that there are initial and terminal maps i : E → V
and t : E → V ′. We may define a group homomorphism, ε : ZV → ZV ′, by
setting

ε(v) =
∑
i(e)=v

t(e), v ∈ V.

This defines ε on the generators of ZV and has a unique extension which is a
group homomorphism. Equivalently, if we let E(v, v′) denote the set of edges
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e with i(e) = v, t(e) = v′, and ε(v, v′) = #E(v, v′), for any v ∈ V, v′ ∈ V ′,
then

ε(v) =
∑
v′∈V ′

ε(v, v′)v′, v ∈ V.

It is clear this homomorphism is positive in the sense that it maps the positive
cone in its domain into the positive cone in the range.

From the Bratteli diagram, (V,E), we may construct a sequence of abelian
groups and homomorphisms:

ZV0
ε1→ ZV1

ε2→ ZV2 · · ·

where εn is the group homomorphism obtained as above from the edge set
En, for n ≥ 1. For convenience, for any m < n, we let

εm,n = εn ◦ · · · ◦ εm+1 : ZVm → ZVn.

The inductive limit of such a system, which we denote by G(V,E), is de-
fined as follows. Consider the disjoint union of the groups, which we denote⊔
n ZVn. We define an equivalence relation: if a is in ZVm and a′ is in ZVm′ ,

a ∼ a′ if there exists n > m,m′ such that εm,n(a) = εm′,n(a′). Alternately, ∼
is the equivalence relation generated by a ∼ εn+1(a), for n ≥ 0 and a in ZVn.
Let G(V,E) denote the quotient of

⊔
n ZVn by this equivalence relation. If

a is in ZVn, we let [a, n] denote its class in G(V,E). Although
⊔
n ZVn is

not itself a group, it is easy to see that G(V,E) has a group structure by
defining [a,m] + [a′,m′] = [εm,n(a) + εm′,n(a′), n], where n > m,m′. The
group has a positive cone, G(V,E)+ = {[a, n] | n ≥ 1, a ∈ Z+Vn}. A word of
warning is in order. It is entirely possible that a is in ZVm and is not positive
there, yet εm,n(a) is in Z+Vn, for some n > m. We will see an example in
a moment. In this case, [a,m] is in G(V,E)+. We also note that this group
has a distinguished positive element, [v0, 0].

Let us provide a couple of simple examples. First, suppose that each Vn
has one vertex, denoted vn, and each En has two edges. In this case, the maps
between the groups are all injective. This simplifies things: if two elements
lie in the same ZVn, they are equivalent if and only if they are equal. Using
this fact, it is easy to show that

G(V,E) ∼= {
k

2n
| k ∈ Z, n ≥ 0}.

In fact, the isomorphism sends [kvn, n] to k
2n

.
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Next suppose that Vn has two vertices (for n ≥ 1) which we denoted by
vn and v′n. Suppose En consists of three edges (for n ≥ 2), one from vn−1 to
vn, one from vn−1 to v′n and one from v′n−1 to vn. Here, each of the maps in
our sequence (n ≥ 2) is actually a group isomorphism and it follows that the
obvious map from ZV1 to G(V,E) is an isomorphism. That is at the level
of groups. The order is more subtle. For example, v1 − v′1 is not positive
in ZV1, however its image in ZV2 is v′2 which is positive. We leave it as an
exercise to check that the image of nv1 − n′v′1 is positive in G(V,E) if and
only if nγ − n′ ≥ 0, where γ is the golden mean.

The next result gives our combinatorial description of the the invariant
D(X,R), when (X,R) is an AF-equivalence relation. From the statement
given, the proof is just a matter of checking the claimed map is well-defined
and does indeed define an isomorphism.

Theorem 6.5. Let (V,E) be a Bratteli diagram and (X,R) be its associated
AF-equivalence relation. We have

D(X,R) ∼= G(V,E) ∼= K0(C∗(X,R)),

as ordered abelian groups with order unit. Moreover, for a path p from v0 to
t(p) in Vn, the isomorphism between the first two carries [χUp ] in D(X,R) to
[t(p), n] in G(V,E).

Next, we turn to the issue of computing Dm(X,R) for an AF-equivalence
relation. Here the key issue is identifying the invariant measures and we have
the following.

Theorem 6.6. Let (V,E) be a Bratteli diagram and (X,R) be its associated
AF-equivalence relation. Assume that (X,R) is minimal. There is a bijective
correspondence between the following.

1. The set µ ∈M(X,R), the R-invariant measures on X.

2. The set of positive group homomorphisms τ : G(V,E) → R such that
τ [v0, 0] = 1.

3. The set of functions ω : ∪nVn → [0, 1] such that ω(v0) = 1 and for any
v in ∪nVn, we have

ω(v) =
∑
i(e)=v

ω(t(e)).
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Let us give a brief sketch of the main ideas.
The first is to observe that any measure µ gives a group homomorphism

from C(X,Z) to R which is positive and takes the order unit to 1. Moreover,
if the measure is R-invariant, then this map is zero on all functions of the
form χd(γ) − χr(γ), where γ is a compact, open local homeomorphism in R.
Hence, this map descends to a well-defined positive group homomorphism
from D(X,R) to R. By simply identifying D(X,R) with G(V,E) by Theorem
6.5, we obtain a group τ as desired.

If we begin with τ as above, we define ω(v) = τ [v, n], for any vertex v in
Vn. The property given on ω follows from the fact that εn+1(v) =

∑
i(e)=v t(e)

and so [v, n] =
∑

i(e)=v[t(v), n+ 1].
Given a function ω, we may define a measure µ as follows. For any path

p from v0 to Vn, we define µ(Up) = ω(t(p)). It remains to check that this is
well-defined and extends to all clopen sets.

Secondly, to define an invariant measure, µ, we must assign a value to
each clopen set in X. Each clopen set may be written as a finite union of
disjoint cylinder sets. So it suffices for us to determine µ(U(p)), for each
finite path p in the diagram. Moreover, if p and q are two such paths with
t(p) = t(q) = v, then γp,q is a compact, open local homeomorphism with
d(γ) = Up and r(γ) = Uq and therefore these sets must have the same
measure. That is, µ(Up) can only depend on t(p). In addition, we know that,
for fixed p,

Up = ∪i(e)=t(p)Upe
and the sets in this union are pairwise disjoint. It follows that

µ(Up) =
∑

i(e)=t(p)

µ(Upe).

This result has an interesting consequence. We know that the groups
D(X,R) and Dm(X,R) are defined in terms of the étale equivalence relation
(X,R) and we have seen the latter is a quotient of the former. From the
result above, it follows that the latter may actually be recovered from the
former, as follows.

Corollary 6.7. Let (X,R) be a minimal AF-equivalence relation. Let H be
the subgroup of D(X,R) which is the intersection of all kernels of positive
group homomorphisms to R. Then

D(X,R)/H ∼= Dm(X,R),
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as ordered abelian groups, where a coset in the quotient is positive if and only
if it contains a positive element.

We have already given a simple combinatorial condition on a Bratteli
diagram which is necessary and sufficient for the minimality of its associated
AF-equivalence relation. We next note that this property can also be detected
through the invariant D(X,R).

Theorem 6.8. Let (X,R) be an AF-equivalence relation. It is minimal if
and only if the only order ideals in D(X,R) are 0 and D(X,R).

We conclude by mentioning an extremely important result, the Effros-
Handelman-Shen Theorem. We know that every AF-equivalence relation
arises from a Bratteli diagram and we also now know how, if we are given
the Bratteli diagram (V,E), we can compute its invariant as G(V,E). A
question which remains is: which ordered abelian groups may arise from this
construction? In other words, if (G,G+) is some ordered abelian group, does
it arise from a Bratteli diagram?

Theorem 6.9 (Effros-Handelman-Shen). Let (G,G+) be an ordered abelian
group. There exists a Bratteli diagram (V,E) such that G ∼= G(V,E), as
ordered abelian groups, if and only if the following are satisfied:

1. G is countable,

2. G is unperforated. That is, if a is in G and, for some positive integer
n, na is in G+, then a is in G+,

3. G has the Riesz interpolation property. That is, if a1, a2, b1, b2 are
in G and satisfy ai ≤ bj, for all i, j, then there exists c in G with
a1, a2 ≤ c ≤ b1, b2.

We remark that the properties listed are easily seen to be satisfied for the
group Zd and it is a nice exercise the see they will hold in the limit group
G(V,E) as well, so the ’only if’ direction of the result is quite easy. The
other direction is highly non-trivial the most useful aspect of the result.

Definition 6.10. An ordered abelian group (G,G+) is a dimension group if
it satisfies the three conditions of the last theorem.
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7 The Bratteli-Elliott-Krieger Theorem

We now come to our first big result which is due to Ola Bratteli, George
Elliott and Wolfgang Krieger (all separately). It classifies AF-equivalence
relations up to isomorphism.

In order to state the result, we need to introduce an intertwining be-
tween two Bratteli diagrams. Suppose (V,E) and (V ′, E ′) are two Bratteli
diagrams. An intertwining between them consists of a monotone sequence of
integers n0 = 0 < n1 < n2 < · · · and a sequence of edge sets F1, F2, . . . along
with initial and terminal maps: for j odd, i : Fj → V ′nj−1

, t : Fj → Vnj
and

for j even, i : Fj → Vnj−1
, t : Fj → V ′nj

. That is, for j odd, the edges of Fj go
from level nj−1 in the second diagram to level nj in the first and the other
way for j even. It can be summarized by the following picture:
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Notice that we have collapsed the two vertices of V0 and V ′0 into a single
initial vertex. The key requirement is that, for j odd, the number of paths in
(V,E) between any vertex v in Vnj

and w in Vnj+2
must be the same as the

number of paths from v to w which pass through Fj+1 and Fj+2. Similarly,
for j even, the number of paths in (V ′, E ′) between any vertex v in V ′nj

and
w in V ′nj+2

must be the same as the number of paths from v to w which pass
through Fj+1 and Fj+2.
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Theorem 7.1 (Bratteli-Elliott-Krieger). Let (V,E) and (V ′, E ′) be two
Bratteli diagrams. The following are equivalent.

1. There exists an intertwining of the diagrams.

2. The AF-equivalence relations (XE, RE) and
(XE′), RE′) are isomorphic.

3. The C∗-algebras C∗(XE, RE) and C∗(XE′), RE′) are isomorphic.

4. The invariants (G(V,E), G(V,E)+, [v0]) and
(G(V ′, E ′), G(V ′, E ′)+, [v′0]) are isomorphic; i.e. there is a group iso-
morphism α : G(V,E)→ G(V ′, E ′) such that
α(G(V,E)+) = G(V ′, E ′)+ and α[v0] = [v′0].

First, a little historical background on the result. Bratteli introduced the
diagrams which now carry his name is his study of AF-algebras. Essentially,
he proved the equivalence of the first and third conditions. Elliott introduced
the invariant which was essentially the K-theory of the C∗-algebra and re-
alized it could be computed as our G(V,E), as we have explained. Thus
Elliott contributed the equivalence of the fourth condition. Krieger realized
the dynamical presentation of the C∗-algebra via the equivalence relation
and hence contributed the second condition.

Let us give a short sketch of some parts of the proof. If we have such an
intertwining, the condition on the numbers of paths involved in the definition
ensures that we may define bijections between these sets, one for every j. The
collection of these maps for j odd, will transform any infinite path in (V,E)
into one in the diagram with edge sets F1, F2, . . .. Moreover, these maps for
j even, or rather their inverses, will transform that path into one in (V ′, E ′).
Together, we have a map from XE to XE′ . It is a simple matter to check it
is an isomorphism between the equivalence relations.

The implication that the second condition implies the third is immediate.
Similarly, knowing that G(V,E) is the K-theory of the C∗-algebra means the
third implies the fourth.

The truly subtle part of the argument is that the fourth condition implies
the first and this is due to Elliott.

Finally, we state an immediate corollary which is most convenient for our
study of AF-equivalence relations.
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Corollary 7.2. AF-equivalence relations (X,R) and (X ′, R′) are isomorphic
if and only if D(X,R) and D(X ′, R′) are isomorphic ( as ordered abelian
groups with order unit).

8 The absorption theorem

The Bratteli-Elliott-Krieger Theorem of the last section gives us a complete
classification of AF-equivalence relations (X,R) up to isomorphism in terms
of a highly computable invariant, the ordered abelian group, D(X,R). The
two difficulties which now confront us are, first, we are aiming for classifica-
tion up to orbit equivalence rather than isomorphism and, secondly, we would
much prefer to classify group actions rather than AF-equivalence relations.

The key tool in achieving both of these aims is actually the same result
which we refer to as the absorption theorem. It is quite technical. Moreover,
there are at least three versions in the literature [11, 7, 19]! The reason is that
the first handled certain situations, but fell short short for the next objective.
Similarly the second wasn’t quite adequate for the third. However, it seems
that the last version, due to Hiroki Matui, is the most general which could
be hoped for. We will first present a particularly simple version which will
actually be sufficient for a couple of non-trivial applications later and we will
state Matui’s version.

We state the main idea, ignoring technical assumptions. Suppose that
(X,R) is a minimal AF-equivalence relation. We want to consider a ‘small’
extension of R. We have a closed subset Y ⊂ X and an equivalence relation
Q on Y . We let R ∨ Q be the smallest equivalence relation on X which
contains both R and Q. The conclusion of the absorption theorem is that
R∨Q is orbit equivalent to R. That is, R is able to absorb the small extension
Q. Of course, the trick is in describing exactly what we mean by ’small’.

It is interesting to consider what this result would look like in an ergodic
theory context. There, the set Y is small if it has measure zero. In this case,
R ∨Q = R, since they are the same on a set of full measure.

Here is the simplest (non-trivial) version.

Theorem 8.1. Let (X,R) be a minimal AF-equivalence relation (with X
infinite). If x, y are in X, then R ∨ {x, y}2 is orbit equivalent to R.

To state Matui’s version of the result, we need two definitions. Let (X,R)
be an étale equivalence relation. A closed set Y ⊂ X is said to be R-étale if

31



the equivalence relation R|Y = R ∩ (Y × Y ), with its relative topology from
R, is an étale equivalence relation on Y . Also, Y is said to be R-thin if

inf{µ(U) | U clopen , Y ⊂ U} = 0,

for every µ in M(X,R). (In usual measure theory terms µ(Y ) = 0, for every
measure µ in M(X,R).)

In the case of AF-equivalence relations, we may provide examples of R-
étale sets as follows. Let (V,E) be a Bratteli diagram. Suppose that F is a
subset of E with i(F ) = t(F )∪ {v0}. Let W = i(F ). We call (W,F ) (or just
F ) a subdiagram of (V,E). It is clear that the path space X(W,F ) is a subset
of X(V,E) and it is fairly easy to see that it is both closed and R-étale. (In
fact, there is a converse of this result: if (X,R) is an AF-equivalence relation
and Y is a closed, R-étale subset of X, then (X,R) and Y may be represented
by a Bratteli diagram (V,E) and a subdiagram (W,F ) as above. As we will
not need this result, see [10], Theorem 3.11 for a precise statement.)

Theorem 8.2 (Matui). Let (X,R) be a minimal AF-equivalence relation.
Let Y be a closed R-étale and R-thin subset of X and Q be an étale equiv-
alence relation on Y such that Q contains R|Y and the inclusion map is
continuous. Then there is a homeomorphism h : X → X such that

1. h× h(R ∨Q) = R,

2. h(Y ) is R-étale and R-thin,

3. h|Y × h|Y is a homeomorphism from Q to R|h(Y )

In particular, R ∨Q is orbit equivalent to R.

Obviously, the first part of the conclusion is the one we are mainly inter-
ested in. However, in some actual applications, we will need several applica-
tions of the result. That is, we will have a situation where, roughly speaking,
we have a finite sequence of closed sets Y1, Y2, . . . , Yn and equivalence rela-
tions Q1, Q2, . . . , Qn and we want to conclude that R is orbit equivalent to
R ∨Q1 ∨ · · · ∨Qn. The conditions listed in the conclusion allow us to make
n applications of the absorption theorem.
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9 Classification of minimal AF-equivalence

relations

We have already seen that the Bratteli-Elliott-Krieger Theorem provides a
complete invariant for isomorphism of AF-equivalence relations. In this sec-
tion, we discuss the classification of AF-equivalence relations up to orbit
equivalence. This will require the added assumption of minimality.

Just to get started, consider the following observation: if (X, R̃) is an
étale equivalence relation and R ⊂ R̃ is an open subequivalence relation, it
follows that R is also étale (see 3.12 of [11]). It is clear from the definition
6.2 that B(X,R) ⊂ B(X, R̃) and hence D(X, R̃) is a quotient of D(X,R).

It is then natural to ask the question: if we are given an étale equivalence
relation (X,R) and a quotient of D(X,R), is it possible the realize this
quotient by an extension R ⊂ R̃? (We should make it clear that R̃ is also
étale and the relative topology from it on R agrees with the given one on R.)
Although there is a general answer to this given in [22], let us concentrate
on a more specific version: is it possible to realize the group Dm(X,R) as an
extension R ⊂ R̃? The answer, at least for minimal AF-equivalence relation,
is not only yes, but we can say a good deal more.

Theorem 9.1. Let (X,R) be a minimal AF-equivalence relation. There
exists a minimal AF-equivalence relation, R̃, on X, containing R, a closed
set Y ⊂ X and a compact étale equivalence relation Q on Y such that

1. (X,R), Y,Q satisfy the hypotheses of the absorption theorem 8.2,

2. R̃ = R ∨Q,

3. D(X, R̃) ∼= Dm(X,R), as ordered abelian groups with distinguished or-
der units.

In particular, (X,R) and (X, R̃) are orbit equivalent.

We will not give a proof, but it will probably be useful to have an example.
Consider the following Bratteli diagram:
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We let (X,R) denote the associated AF-equivalence relation. The reader
will note that we have added labels to the edges of the diagram. This is a
matter of convenience, for we can now see that the path space X is homeo-
morphic to {1, 3} × {1, 2, 3}N and the map is just reading the labels on the
edges.

Suppose that Vn = {vn, v′n}, for any n ≥ 1. Using Theorem 6.6, it is fairly
easy to see that there is a unique R-invariant measure which corresponds to
the function ω(vn) = ω(v′n) = 2−1 · 31−n, for n ≥ 1. The subgroup of
infinitesimals in G(V,E) is isomorphic to Z; its generator is [vn − v′n, n], for
any n ≥ 1. It is fairly easy to check that Dm(X,R) ∼= Z[1/3].

The AF-equivalence relation R̃ is just tail equivalence on the sequences
of {1, 3} × {1, 2, 3}N. The closed set Y consists of the two sequences x =
(1, 2, 2, . . .) and y = (3, 2, 2, . . .). We leave the reader with the amusing tasks
of proving R ⊂ R̃ and R̃ = R ∨ {x, y}2.

The example is quite revealing, but is far from the general case. It is
particularly simple for two reasons: the first is that the kernel of the natural
map from D(X,R) to Dm(X,R) is represented at each stage by elements of
the form [vn−v′n, n] and, secondly, that these are all the same for different n.
The second fact simply does not hold in general (the kernel of the map may
not be the infinite cyclic group). But most of the work in the proof involves
showing that the first property can be arranged through a careful choice of
the Bratteli diagram for (X,R). In general, the set Y will not be finite.

This rather technical result gives us enough to prove our classification for
minimal AF-equivalence relations up to orbit equivalence.

Corollary 9.2. Two minimal AF-equivalence relations (X1, R1) and
(X2, R2) are orbit equivalent if and only if Dm(X1, R1) and
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Dm(X2, R2) are isomorphic as ordered abelian groups with distinguished order
units.

The ’only if’ statement follows from the second part of Theorem 6.4. We
will explain the proof of the ’if’ direction.

We apply Theorem 9.1 (twice) to find AF-equivalence relations R̃1 ⊃ R1

on X1 and R̃2 ⊃ R2 on X2 such that

D(Xi, R̃i) ∼= Dm(Xi, Ri),

as ordered abelian groups with distinguished order unit, for i = 1, 2. It
follows from Theorem 9.1 that R̃1 ∼ R1 and R̃2 ∼ R2. Moreover, from the
hypothesis and the Bratteli-Elliott-Krieger Theorem 7.1 we have R̃1

∼= R̃2.
This completes the proof.

10 Minimal actions of Z and Zd, d ≥ 2

We discuss the structure of minimal actions of the groups Zd, d ≥ 1 on the
Cantor set and their classification up to orbit equivalence. We start with the
case d = 1, which is by far the simplest.

Let us begin with a fairly simple result.

Lemma 10.1. Let ϕ be a free minimal action of the group Z on the Cantor
set X. Let x be in X and let Y ⊂ X be a non-empty clopen set. There exists
n ≥ 1 such that ϕn(x) is in Y . Similarly, there exists m ≤ 0 such that ϕn(x)
is in Y .

To see this, consider the set Z of accumulation points of the sequence
ϕn(x),� 1. That is z is in Z if there exists an increasing sequence ni such
that limi→∞ ϕ

ni(x) = z. Since X is compact, this set is non-empty. It is also
closed and it is quite easy to see ϕn(Z) = Z, for any n ∈ Z. By minimality
and 2.6, Z must be all of X and hence contains Y . Since Y is open, the
conclusion follows.

For any closed subset Y ⊂ X, we define RY to be the subequivalence
relation of Rϕ which is generated by {(x, ϕ−1(x)) | x /∈ Y }. We observe:

1. R∅ = Rϕ,

2. If Y ⊃ Y ′, then RY ⊂ RY ′ .
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More subtly, we have the following.

Lemma 10.2. If Y is non-empty, then RY is compact

We sketch the key idea. For y in Y , let λ(y) be the first positive integer
n such that ϕn(y) is in Y . This is well-defined from the Lemma above.
Moreover, it is easy to see that

λ−1{n} = Y ∩ ϕ−1(X \ Y ) ∩ · · · ∩ ϕ−n+1(X \ Y ) ∩ ϕ−n(Y ),

which is clearly both closed and open and it follows that the function λ is
continuous. It is fairly clear then that the RY -equivalence class of a point y
in Y is simply {y, ϕ1(y), . . . , ϕλ(y)−1(y)}. From these facts, the conclusion is
fairly easy.

Now we fix a point y in X and choose a sequence of clopen sets Y1 ⊃
Y2 ⊃ · · · such that ∩∞n=1Yn = {y}. Then, each RYn is a compact, open
subequivalence relation of Rϕ and their union is just Ry. Hence Ry is an AF-
equivalence relation. It is fairly easy to see that Ry is minimal and clearly
Ry ∨{(y, ϕ−1(y)}2 = Rϕ. By applying the Absorption Theorem 8.1, we have
proved:

Theorem 10.3. If ϕ is a minimal action of the group of integers on the
Cantor set X, then (X,Rϕ) is orbit equivalent to a minimal AF-equivalence
relation.

At this point, we can make a general observation: we have an invariant
(Dm(X,R)) and a class (minimal AF-equivalence relations) for which it is a
complete invariant. We also have another class (minimal actions of Z) and
each of these is equivalent to one in the first class. It follows at once, that
our invariant is complete for the union of the two classes.

Corollary 10.4. For the class of all minimal AF-equivalence relations and
all equivalence relations arising from minimal Z-actions on a Cantor set, the
invariant Dm(X,R) is a complete invariant for orbit equivalence.

Let us introduce a bit of terminology. Above we showed that if ϕ is a
minimal action of Z, then Rϕ is orbit equivalent to a minimal AF-equivalence
relation, (X ′, R′). That means that there is a homeomorphism h : X → X ′

such that h×h(R′) = Rϕ. We know from Theorem 4.11 that h×h cannot be
a homeomorphism between R′ and R. But if we simply transfer the topology
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of R′ using h × h, we see that Rϕ does possess another topology in which
it is AF. We say that an étale equivalence relation R is affable if it is orbit
equivalent to an AF-equivalence relation. (It can be given an AF-topology
or is ‘AF-able’.)

The same result above also holds for actions of Zd, d ≥ 2:

Theorem 10.5. Let ϕ be a minimal free action of the group Zd, d ≥ 2. Then
the orbit relation Rϕ is affable. In consequence, Dm(X,R) is a complete
invariant for orbit equivalence for the class of all minimal AF-equivalence
relations and all orbit relations Rϕ arising from the groups Zd, d ≥ 1.

The proof in the case d = 2 [8] is substantially more complicated than
d = 1, while d > 2 [9] is even more so. They are similar to the proof
above in that the main idea is to find a large AF-equivalence relation R
inside of Rϕ and by application of the Absorption Theorem, prove that Rϕ is
orbit equivalent to R and hence affable. The essential increased complexity
comes from the geometry of Rd as d increases. In these cases, the set Y is
(presumably never) finite. Moreover, the proof for Zd requires d applications
of the absorption theorem.

We close with a word on the history of the results since our presenta-
tion is slightly different. The first classification was given in [10] for minimal
Z-actions. In the same paper, it was extended to minimal AF-equivalence re-
lations by arguments which are not dissimilar to those we used in this section
to go the other way. That argument for Z-actions was rather ad-hoc. If we
compare it to what we have discussed here for the classification for minimal
AF-equivalence relations (which appears in [22]), the latter is not particularly
easier, but it is much more conceptual. Secondly, the argument for Z-actions
relied on a non-trivial fact from homological algebra, which seemed a little
out of place in the proof. Finally, the argument we have given here from [22]
emphasizes the importance of the absorption theorem. Basically, it is used
first to establish the classification of minimal AF-equivalence relations and
then also to show that the actions of various groups are affable.
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