C^* -algebras and Tilings, Aperiodic Order, CIRM, Luminy

Ian F. Putnam, University of Victoria

September 10, 2007

- 1. C[∗] -algebra basics
- 2. C^* -algebras from dynamics
- 3. Morita equivalence
- 4. C^* -algebras from projection tilings
- 5. K-theory for C^* -algebras

Part 1 : C^{*}-algebra basics Definition 1. A C^* -algebra is a set A:

- \bullet A is an algebra over $\mathbb C$, the complex numbers (Not nec. commutative or unital)
- there is an involution $a \to a^*$, $a \in A$
- A has a norm, $\| \ \|$,

such that

- $(a + \lambda b)^* = a^* + \overline{\lambda}b^*, a, b \in A$,
- $(ab)^* = b^*a^*, a, b \in A$,
- A is complete in $\| \, \|$,
- $\|a^*a\| = \|a\|^2, a \in A.$

Examples:

- C, the complex numbers,
- For $n \geq 1$, $M_n(\mathbb{C})$, $n \times n$ complex matrices. ∗=conjugate transpose.
- For H a complex Hilbert space, $\mathcal{B}(\mathcal{H})$, the bounded linear operators on \mathcal{H} . $*$ = adjoint.
- Any $A \subset \mathcal{B}(\mathcal{H})$ which is an algebra, closed under *, closed in the norm topology.

Let X be a compact, Hausdorff space.

 $C(X) = \{f : X \to \mathbb{C} \mid f \text{ continuous } \}.$ It is a C^* -algebra with pointwise algebraic operations, $*=$ pointwise complex conjugation, $\| \cdot \|$ is the supremum norm.

We can generalize: if the space X is locally compact, replace $C(X)$ with $C_0(X)$, the continuous complex functions which vanish at infinity. This is unital if and only if X is compact.

These are both commutative.

Gelfand-Naimark Theorem: Every commutative C^* -algebra arises in this way. $C_0(X)$ and $C_0(Y)$ are isomorphic if and only if X and Y are homeomorphic.

Theorem 2. The functor $X \to C_0(X)$ is an equivalence of categories between locally compact, Hausdorff spaces and commutative C^* algebras.

- Can we extend standard topological notions to C^* -algebras?
- Are the some geometric constructions of non-commutative C^* -algebras?

Gelfand-Naimark dictionary:

An application: Hilbert space $L^2[0,1]$.

Let
$$
Cut = \{p2^{-k} \mid p, k \in \mathbb{Z}\} \cap [0, 1]
$$

For each $a < b$ in Cut , let $\chi_{[a,b)}$ denote the characteristic function of $[a, b)$, which we regard as an operator on $L^2[0,1]$ by pointwise multplication.

Let A be the closed linear span of $\{\chi_{[a,b)} \mid a < \}$ $b, a, b \in Cut$ in $\mathcal{B}(L^2[0, 1]).$

This is a commutative, unital C^* -algebra. Hence, $A \cong C(X)$, for some X. What is X?

It should be a space where our functions $\chi_{[a,b)}$ are continuous: from [0, 1], remove each point a in Cut and replace it with two points a^-, a^+ . Topologically, imagine a^- as a left endpoint of $[0, a]$ and $a⁺$ as a right endpoint for $[a, 1]$, separated by a gap. This is X and it is a Cantor set.

Part 2: C^* -algebras from dynamics

Situation 1: Topological equivalence relations

Let X be a compact, Hausdorff space.

 R an equivalence relation on X .

 $r, s: R \rightarrow X$ are the projections:

$$
r(x,y) = x, s(x,y) = y, (x,y) \in R.
$$

Assume R has an étale topology: r, s are open and local homeomorphisms.

Idea: if (x, y) is in R, there are open sets $x \in U$, $y \in V$ and a (unique) homeomorphism $\rho: U \rightarrow$ V such that

$$
\rho(x) = y,
$$

$$
\{(u, \rho(u)) \mid u \in U\} \subset R.
$$

 $C^*(R)$:

First look at $C_c(R)$, the continuous, complexvalued functions of compact support on R . It is a linear space in an obvious way. Define a product and involution:

$$
(f \cdot g)(x, y) = \sum_{\substack{(x,z) \in R \\ f^*(x, y) = f(y, x)}} f(x, z)g(z, y),
$$

Complete in a norm to get a C^* -algebra, $C^*(R)$.

Example: $X = \{1, 2, ..., N\}, R = X \times X$.

$$
C^*(R) = M_N(\mathbb{C}).
$$

Start with $C(X) = \mathbb{C}^N = span\{\chi_1, \ldots, \chi_N\}$ and add $e_{i,j}$ such that

$$
e_{i,j}^* e_{i,j} = \chi_j,
$$

$$
e_{i,j} e_{i,j}^* = \chi_i,
$$

The last example illustrates a general property:

$$
f \in C(X) \to \delta(f)(x, y) = \begin{cases} f(x) & x = y \\ 0 & x \neq y \end{cases}
$$

embeds $C(X)$ as a unital subalgebra of $C^*(R)$.

Assume $U, V \subset X$ are clopen, $\rho: U \to V$ as before, let $w(x, y) = 1, x \in U, y = \rho(x), w(x, y) = 1$ 0, otherwise.

$$
w^*w = \delta(\chi_U),
$$

\n
$$
ww^* = \delta(\chi_V),
$$

\n
$$
w\delta(f)w^* = \delta(f \circ \rho)
$$

if f is supported in U .

Example: X locally compact, $R =$ (equality).

$$
C^*(R) = C_0(X).
$$

Example (Kellendonk): $\mathcal{P} = \{p_1, \ldots, p_N\}$, a finite set of prototiles in \mathbb{R}^d . Each has a distinguished interior point $x(p_i)$ called a puncture.

Translate: $x(p_i + y) = x(p_i) + y, y \in \mathbb{R}^d$

Suppose Ω a compact, translation invariant collection of tilings which are made from translates of P .

$$
\Omega_{punc} = \{ T \in \Omega \mid x(t) = 0, \text{ for some } t \in T \}.
$$

 $R_{punc} = \{(T, T + x) | T, T + x \in \Omega_{punc}, x \in R^d\}$ is an étale groupoid.

Let $T \in \Omega$, $t_1, t_2 \in T$:

$$
U = \{T' \mid t_1 - x(t_1), t_2 - x(t_1) \in T'\}
$$

\n
$$
V = \{T' \mid t_1 - x(t_2), t_2 - x(t_2) \in T'\}
$$

\n
$$
\rho(T') = T' + x(t_1) - x(t_2).
$$

Situation 2: Actions of countable groups

 G a countable abelian (for notation) group, X a loc. cmpct Hausdorff space, φ an action of G on X :

$$
s \in G, \varphi^s : X \to X,
$$

is a homeomorphism.

Action is free if $\varphi^s(x) = x \Rightarrow s = 0$.

 $C_0(X) \times_{\varphi} G$: Generators: $C_0(X)$, $u_s, s \in G$, Relations:

$$
u_0 = 1,
$$

\n
$$
u_s u_t = u_{s+t},
$$

\n
$$
u_s^* = u_{-s},
$$

\n
$$
u_s f u_s^* = f \circ \varphi^{-s}
$$

\n
$$
u_s f = (f \circ \varphi^{-s}) u_s
$$

\n
$$
s, t \in G, f \in C_0(X).
$$

Consider all formal sums

$$
\sum_{s \in G} f_s u_s
$$

where only finitely many $f_s \in C(X)$ are nonzero. The rules above define product and involution. We give this a norm and then complete.

Idea: Each s in G defines an automorphism of $C_0(X)$: $f \to f \circ \varphi^{-s}$. Here $\delta(f) = f u_0$ and $C_0(X) \subset C_0(X) \times_{\varphi} G$ and all these automorphisms become inner. u_s is a unitary. (Caution: u_s is in $C_0(X)\times_{\varphi} G$ only if X is compact.)

Example: $X = \{1, ..., N\}, G = \mathbb{Z}_N$, φ is addition, mod $N.$ $C(X) \times G \cong M_N$.

Comparison of topological equivalence relations and actions of countable groups.

```
Start with (X, G, \varphi).
```
Let

$$
R_{\varphi} = \{ (x, \varphi^{s}(x)) \mid x \in X, s \in G \},
$$

is an equivalence relation. The classes are the orbits.

If G acts freely $(\varphi^s(x) = x$ only if $s = e)$, this can be given an étale topology. The local homeomorphisms are $\varphi^s, s \in G$.

$$
C(X) \times_{\varphi} G \cong C^*(R_{\varphi}).
$$

Situation 3: Continuous group actions

 G a locally compact abelian group, X a locally compact Hausdorff space, φ an action of G on X :

$$
s \in G, \varphi^s : X \to X,
$$

is a homeomorphism.

 $C_c(X\times G)$ is a linear space and is given a product and involution:

$$
(f \cdot g)(x, s) = \int_G f(x, t)g(\varphi^t(x), s - t)d\lambda(t),
$$

$$
f^*(x, s) = f(\varphi^{-s}(x), s),
$$

 f, g in $C_c(X \times G)$, x in X, s in G,

 λ is Haar measure on G .

G discrete: $u_s(x,t) = \begin{cases} 1 & t=s \\ 0 & t \neq s \end{cases}$ 0 $t \neq s$

Part 4: Morita equivalence for C^* -algebras (Rieffel, Muhly-Renault-Williams)

"Morita equivalence is more natural than isomorphism" - A. Connes.

If A and B are Morita equivalent $(A \sim B)$, then

- \bullet A and B have isomorphic lattices of closed two-sided ideals
- there is a bijection between classes of representations as operators on Hilbert space
- \bullet A and B have isomorphic K-theory

What is not preserved:

- linear dimension
- commutativity

Example 1: $M_m(\mathbb{C}) \sim M_n(\mathbb{C})$ are Morita equivalent for all $m, n \geq 1$.

Example 2: φ a free, wandering action of G on X. $q: X \to X/R_\varphi$ is the quotient map. Wandering implies that the space of orbits X/R_{φ} is Hausdorff in the quotient topology.

 $A = C_0(X) \times_{\varphi} G \sim B = C_0(X/R_{\varphi})$ are Morita equivalent.

e.g. $C_0(\mathbb{R})\times\mathbb{Z}\sim C(S^1).$

Moral: if the quotient X/R_φ is a bad space (there is some recurrence in φ), then $C_0(X)\times_{\varphi}$ G is its non-commutative replacement.

Example 3: X locally compact, Hausdorff, φ an action of G, ψ an action of H,

$$
\varphi^s \circ \psi^t = \psi^t \circ \varphi^s, s \in G, t \in H.
$$

If the actions φ and ψ are both wandering, then

$$
A = C_0(X/R_{\varphi}) \times_{\psi} H
$$

\n
$$
B = C_0(X/R_{\psi}) \times_{\varphi} G
$$

\n
$$
C = C_0(X) \times_{\varphi \times \psi} (G \times H)
$$

are all Morita equivalent.

Example 4: If φ is an R-action on X and has a transversal T, let ψ be the Poincaré first return map on T . Under mild conditions,

$$
C_0(X) \times_{\varphi} \mathbb{R} \sim C_0(T) \times_{\psi} \mathbb{Z}.
$$

Example 5: Let Ω be a continuous hull. It has an action of \mathbb{R}^d and we consider the C^* -algebra $C(\mathsf{\Omega})\times\mathbb{R}^d.$

Recall

 $\Omega_{punc} = \{T \in \Omega \mid x(t) = 0, \text{ some } t \in T\}$

and

 $R_{punc} = \{(T, T + x) | T, T + x \in \Omega_{punc}\}$ and the C^* -algebra $C^*(R_{punc})$.

- Ω_{punc} is a transverse to the \mathbb{R}^d -action,
- $\bullet\,$ restricting the \mathbb{R}^d -orbits to Ω_{punc} gives R_{punc} which is étale
- every \mathbb{R}^d orbit in Ω meets $\Omega_{punc}.$

 $C^*(R_{punc})$ and $C(\Omega)\times\mathbb{R}^d$ are Morita equivalent.

Part 5: C^{*}-algebras for projection method tilings (Forrest-Hunton-Kellendonk)

Data:

- $\bullet\,$ \mathbb{R}^d , physical space (to be tiled),
- \bullet H, internal space, locally cpct ab. group,
- $\bullet\ \pi: \mathbb{R}^d \times H \to \mathbb{R}^d, \pi^\perp: \mathbb{R}^d \times H \to H$,
- $\mathcal{L} \subset \mathbb{R}^d \times H$, discrete, co-compact (lattice),
- \bullet $\pi|\mathcal{L},\pi^{\perp}|\mathcal{L}$ one-to-one, $L=\pi^{\perp}(\mathcal{L})$ dense in $H₁$
- $W \subset H$, compact, regular, $\lambda(\partial W) = 0$.

A point x in $\mathbb{R}^d \times H$ is non-singular if

$$
\pi^{\perp}(x+\mathcal{L})\cap\partial W=\emptyset.
$$

 N is the set of non-singular points.

$$
\Lambda_x = \pi \{ y \in x + \mathcal{L} \mid \pi^\perp(y) \in W \}
$$

is a Delone set, called a regular model set.

The hull Ω is the completion of

$$
\{\Lambda_x \mid x \in \mathcal{N}\}.
$$

Comments:

 \bullet $\mathcal N$ is invariant under the actions of $\mathbb R^d$ and $\mathcal{L},$

•
$$
\Lambda_{x+s} = \Lambda_x
$$
, if $s \in \mathcal{L}$,

•
$$
\Lambda_{x+u} = \Lambda_x + u
$$
, if $u \in \mathbb{R}^d$.

Lemma 3. Suppose $x_n \in \mathcal{N}$ converges to $x \in \mathcal{N}$ $\mathbb{R}^d \times H$. Λ_{x_n} converges in Ω (i.e. is Cauchy in the tiling metric) if and only if, for every $s\in L$,the sequence $\pi^\perp(x_n)$ is eventually either in $W + s$ or in its complement.

Theorem 4. For $s \in L$,

$$
\Lambda_x \to \chi_{W+s}(x), x \in \mathcal{N} \cap H
$$

extends to a continuous function on Ω.

Definition 5. Consider A , the C^* -algebra of operators on $L^2(H, \lambda)$ generated by $C_0(H)$ and $\chi_{W+s}, s\in L.$ Let \widehat{H} be its spectrum; i.e. $A\cong$ $C_0(\widehat{H})$.

The action of L on E extends to \widehat{H} . $L \subset H$ is dense implies that \widehat{H} is totally disconnected.

Theorem 6. The hull Ω is homeomorphic to $\mathbb{R}^d \times \widehat{H}/\mathcal{L}$

The actions of \mathbb{R}^d and $\mathcal L$ on $\mathbb{R}^d \times \widehat{H}$ are commuting, free and wandering:

Theorem 7. $C_0(\mathbb{R}^d{\times}\hat{H}/\mathcal{L}){\times}\mathbb{R}^d$ is Morita equivalent to

 $C_0(\widehat{H}) \times L$.

The actions of $G=\mathbb{R}^d$ and $\mathcal{L}\cong L$ on $\mathbb{R}^d\times \widehat{H}$ are commuting and wandering:

$$
\mathbb{R}^d \times \widehat{H}/\mathbb{R}^d \cong \widehat{H}.
$$

Further reductions:

Assume $H = \mathbb{R}^N$. So $L \cong \mathcal{L} \cong \mathbb{Z}^{d+N}$, as an abstract group: $C_0(\widehat{H})\times\mathbb{Z}^{d+N}$. The action is by translation by the vectors L , which is a dense subgroup of \mathbb{R}^N .

 \widehat{H} is \mathbb{R}^N disconnected along the boundaries of W and its translates by L . In many cases, this can be done in other ways, e.g. by lines.

Example: Fibonacci: $d = 1$, $N = 1$, $L = \mathbb{Z} +$ $\alpha\mathbb{Z}$. $W = [a, b]$. \hat{H} is \mathbb{R}^1 disconnected along the $\mathbb{Z} + \alpha \mathbb{Z}$ -orbits of a and b (one orbit or two?).

Example: Penrose: $d = 2$, $N = 2$, L is the subgroup of the plane generated by $exp(2\pi i j/5), j =$ $0, 1, 2, 3, 4$. \hat{H} is the plane disconnected along the 5 lines through the origin and $exp(2\pi i j/5), j =$ $0, 1, 2, 3, 4$, and all translates of them by L .

Example: TTT (Tübingen triangle tiling) Same is the Penrose, but rotate the 5 original lines by $\pi/10$.

Example: Octagonal tiling: $d = 2$, $N = 2$, L is the subgroup generated by $exp(\pi i j/4), j =$ 0, 1, 2, 3. \hat{H} is the plane disconnected along the 4 lines through the origin and $exp(\pi i j/4), j =$ $0, 1, 2, 3$, and all translates by L .

One more reduction (still with $H = \mathbb{R}^N$). List a set of generators of $L: s_1, \ldots, s_{d+N}$. Act on a disconnected $H = \mathbb{R}^N$. The action of the first N of them is free and wandering: let \hat{H}_0 denote the quotient, which is a Cantor set. It is really a disconnected N -torus. Our C^* -algebra is Morita equivalent to

$$
C(\widehat{H}) \times \mathbb{Z}^{d+N} = C(\widehat{H}_0) \times \mathbb{Z}^d.
$$

Part 6: K-theory for C^* -algebras

To a C^* -algebra, A , there are associated two abelian groups, $K_0(A)$ and $K_1(A)$. These are based on

projections $p^2 = p = p^*$ unitaries $u^* = u^{-1}$,

respectively, in A. It is a recepticle for such data and also an invariant for A . There is (by now) quite a lot of machinery for computing it.

 $K_0(A)$: Assume A with unit.

 p is a projection if $p^2=p=p^*.$

Equivalence of projections:

Murray- $p \sim q$ $\exists v, v^*v = p, vv^* = q,$ von Neumann similarity $p\sim_s q$ $\exists v, vpv^{-1}=q$ unitary eq. $p \sim_u q \quad \exists v^* = v^{-1}, v p v^{-1} = q$ homotopy $p \sim_h q \exists t \rightarrow p_t, p_0 = p, p_1 = q$

Note that v above must be in A .

Addition of projections: if p, q are orthogonal $(pq = 0)$, then $p + q$ is a projection.

 $M_n(A)$ is the set of $n \times n$ matrices with entries from A. It is a C^* -algebra. Its unit is 1_n . For $a \in M_n(A), b \in M_m(A)$,

$$
a \oplus b = \left[\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right] \in M_{m+n}(A).
$$

 $P_n(A)$, projections in $M_n(A)$.

$$
P_1(A) \subset P_2(A) \subset P_3(A) \subset
$$

by identifying p and $p \oplus 0$. Let $P(A) = \bigcup_{n} P_n(A)$.

Equivalence: In $P(A)$, we have $\sim = \sim_s = \sim_u = \sim_h$. Problem: $p + p_0 \sim q + p_0 \nRightarrow p \sim q$.

Define $p \approx q$ if and only if $p \oplus 1_n \sim q \oplus 1_n$, for some *n*. [*p*] is the class modulo \approx .

Addition: $p, q \in P(A)$, $p = p \oplus 0$, $q \sim 0 \oplus q$, which are orthogonal, and so

 $[p] + [q] = [p \oplus q]$

is a well-defined addition.

 $P(A)/ \approx$ is a semi-group with identity, [0]. $K_0(A)$ is its Grothendieck group, i.e. formal differences of classes of $P(A)$:

 $K_0(A) = \{ [p] - [q] \mid p, q \in P(A) \}.$

It has a natural positive cone:

$$
K_0(A)^+ = \{ [p] - [0] \mid p \in P(A) \}.
$$

Example: C

Consider matrices over C:

Lemma 8. Two projections p and q in $M_n(\mathbb{C})$ are similar if and only if $rank(p) = rank(q)$.

Rank is not going to generalize easily to other C^* -algebras, but recall, for a projection $rank(p)$ = $Trace(p).$

Proposition 9. The map $Tr: K_0(\mathbb{C}) \to \mathbb{Z}$

 $Tr([p] - [q]) = Trace(p) - Trace(q)$

is an isomorphism. Under this, $K_0(\mathbb{C})^+=$ $\{0, 1, 2, 3, \ldots\} = \mathbb{Z}^+.$

Example: $C(S^2)$

If $p\in M_n(C(S^2))$, then $Trace(p(x))$ is continuous in x . If p is also a projection, its value is integral.

 $[p]-[q] \in K_0(C(S^2)) \rightarrow Trace(p(x)) - Trace(q(x))$ is a homomorphism, but is not injective. There is a projection $p \in M_2(C(S^2))$ such that at every point $p(x)$ is similar to $1 \oplus 0$, but this similarity cannot be made continuous over S^2 .

Proposition 10. If X is totally disconnected, let $C(X, \mathbb{Z})$ be the group of continuous integervalued functions on X . The function Tr : $K_0(C(X)) \to C(X, \mathbb{Z})$ defined by

 $Tr([p] - [q])(x) = Trace(p(x)) - Trace(q(x))$ is an isomorphism. Under this, $K_0(C(X))^+ =$ $C(X,\mathbb{Z}^+)$.

 $U \subset X$ clopen, χ_{U} is a projection in $C(X)$ and also in $C(X, \mathbb{Z})$. The map takes $[\chi_U] - [0]$ to χ_{U} .

What about dynamics on $C(X)$? $G = \mathbb{Z}$: Pimsner-Voiculescu six-term exact sequences for K-theory of integer actions.

Proposition 11. For a minimal action of Z on a Cantor set X, $K_0(C(X) \times_{\varphi} \mathbb{Z})$ is isomorphic to

 $C(X,\mathbb{Z})/\{f - f \circ \varphi \mid f \in C(X,\mathbb{Z})\}$

and $K_0(C(X)\times_{\varphi}\mathbb{Z})^+$ is the image of $C(X,\mathbb{Z}^+)$.

Inclusion $C(X)\subset C(X)\times\mathbb{Z}$ gives $K_0(C(X))\cong\mathbb{Z}$ $C(X, \mathbb{Z}) \to K_0(C(X) \times \mathbb{Z}).$

Surjectivity: every projection in $C(X) \times \mathbb{Z}$ is similar to one in $C(X)$.

Let $U \subset X$ be clopen. χ_{U} is a projection in $C(X)$, but

$$
\chi_U \sim_u u_1 \chi_U u_1^* = \chi_U \circ \varphi^{-1} = \chi_{\varphi(U)}.
$$

If one replaces $\mathbb Z$ by $\mathbb Z^d,\,\, d>1,$ more sophisticated methods (spectral sequences) are needed.

Recall, every φ -invariant measure μ gives a trace τ_{μ} on $C(X) \times \mathbb{Z}$. This yields a map

$\widehat{\tau}_{\mu}: K_0(C(X) \times \mathbb{Z}) \to \mathbb{R}.$

If U is clopen, $\hat{\tau}_{\mu}[\chi_U] = \mu(U)$.

Theorem 12. a in $K_0(C(X)\times\mathbb{Z})$ is in $K_0(C(X)\times\mathbb{Z})$ $(\mathbb{Z})^+$ if and only if $a = 0$ or $\hat{\tau}_{\mu}(a) > 0$, for all μ .

For $d > 1$, the inclusion $C(X) \,\subset\, C(X) \times \mathbb{Z}^d$ induces $C(X,\mathbb{Z}) \to K_0(C(X)\times \mathbb{Z}^d)$ which is *not* onto.

Theorem 13 (Gap labelling: B-B-G, B-OO, K-P).

 $\widehat{\tau}_\mu (K_0(C(X)\times \mathbb{Z}^d)) \,\, = \,\, \widehat{\tau}_\mu (C(X,\mathbb{Z}))$ $= \{ \mu(U) \mid U \text{clopen} \} + \mathbb{Z}.$

There are some very sophisticated machinery for computing this.

Connes' analogue of the Thom isomorphism:

$$
K_i(C(X) \times \mathbb{R}^d) \cong K_{i+d}(C(X)).
$$

Can be used in the case $X = \Omega$, the continuous hull. $K_i(C(X))$ is closely related (especially in low dimensions) to the cohomology of X .

However, this isomorphism does not respect the order structure on K_0 .