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Part 1 : C*-algebra basics
Definition 1. A C*-algebra is a set A:

e A is an algebra over C, the complex num-
bers (Not nec. commutative or unital)

e there is an involution a — a™, a € A

e A has a norm,

4

such that
e (a+ M\b)* =a*+N\b*, a,be A,
e (ab)* = b*a*, a,bec A,
e A is complete in |||,

o ||aal||=| a ||2, a € A.



Examples:

e C, the complex numbers,

e Forn>1, M,(C), n xn complex matrices.
x—=Conjugate transpose.

e For H a complex Hilbert space, B(H), the
bounded linear operators on ‘H. = adjoint.

e Any A C B(H) which is an algebra, closed
under %, closed in the norm topology.



Let X be a compact, Hausdorff space.

C(X)={f:X —C| f continuous }.

It is a C*-algebra with pointwise algebraic op-
erations, x= pointwise complex conjugation,
| || is the supremum norm.

We can generalize: if the space X is locally
compact, replace C(X) with Cp(X), the con-
tinuous complex functions which vanish at in-
finity. This is unital if and only if X is compact.

These are both commutative.

Gelfand-Naimark Theorem: Every commu-
tative C*-algebra arises in this way. Cp(X) and
Co(Y) are isomorphic if and only if X and Y
are homeomorphic.

Theorem 2. The functor X — Cp(X) is an
equivalence of categories between locally com-
pact, Hausdorff spaces and commutative C*-
algebras.



Topology

Commutative C*-algebras

C*-algebras

e Can we extend standard topological no-
tions to C*-algebras?

e Are the some geometric constructions of
non-commutative C*-algebras?



Gelfand-Naimark dictionary:

Topology Commutative C*-alg’s
closed set closed ideal
YCX I={feC(X)]|fly =0}
is a closed ideal in Cp(X)
Borel measure functional
I ou(f) = [x fdu

pu Co(X) —C

K-theory K-theory




An application: Hilbert space L?[0,1].
Let Cut = {p2~% | p,k € Z} N[0, 1]

For each a < b in Cut, let xp,;) denote the
characteristic function of [a,b), which we re-
gard as an operator on L2[0,1] by pointwise
multplication.

Let A be the closed linear span of {x, | a <
b,a,b € Cut} in B(L?[0,1]).

This is a commutative, unital C*-algebra. Hence,
A= C(X), for some X. What is X7

It should be a space where our functions x, p)
are continuous: from [0, 1], remove each point
a in Cut and replace it with two points a—,a™.
Topologically, imagine a— as a left endpoint
of [0,a] and a1 as a right endpoint for [a, 1],
separated by a gap. Thisis X and it is a Cantor
set.



Part 2: C*-algebras from dynamics
Situation 1: Topological equivalence relations
Let X be a compact, Hausdorff space.

R an equivalence relation on X.

r,s . R — X are the projections:

r(z,y) = z,s(z,y) =y, (z,y) € R.

Assume R has an étale topology: r,s are open
and local homeomorphisms.

Idea: if (x,y) isin R, there are open sets xz € U,
y € V and a (unigue) homeomorphism p: U —
V such that

p(x) = y,
{(u,p(uw)) |lueU} C R.



C*(R):

First look at C.(R), the continuous, complex-
valued functions of compact support on R. It
IS a linear space in an obvious way. Define a
product and involution:

(z,2)ER

fly,x).

f(x,y)
Complete in a norm to get a C*-algebra, C*(R).

Example: X ={1,2,...,. N}, R= X x X.

Start with C(X) = CV = span{x1,...,xn} and
add € j such that

*
eiaj ei?j X] )
3k

€i,5%.5 — X



The last example illustrates a general property:

feCx) = 8(H)(a,y) = { A

embeds C(X) as a unital subalgebra of C*(R).

Assume U,V C X are clopen, p:U — V as be-
fore, let w(z,y) = 1,z € U,y = p(x),w(z,y) =
0, otherwise.

w'w = §(xv),
ww* = 6(xv),
wo(flw* = 6(fop)

if f is supported in U.

Example: X locally compact, R == (equal-
ity).

C*(R) = Co(X).
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Example (Kellendonk): P = {p1,...,pn}, @ fi-
nite set of prototiles in R?. Each has a distin-
guished interior point z(p;) called a puncture.

Translate: x(p; +y) = x(p;) + v,y € RY

Suppose 2 a compact, translation invariant
collection of tilings which are made from trans-
lates of P.

Qpune = {1 € Q| xz(t) =0, for some t e T}.

IS an étale groupoid.

Let T'€ €2, t1,to €T
U = {T"|t1 —x(t1),tr —x(t1) € T'}
4 {T" | t1 — z(t2),t2 — x(t2) € T'}
p(T) = T' 4+ x(t1) — z(t2).
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Situation 2: Actions of countable groups

G a countable abelian (for notation) group, X
a loc. cmpct Hausdorff space, ¢ an action of
G on X:

secG,0°: X — X,

IS @ homeomorphism.
Action is free if o%(z) = x = s = 0.

Co(X) xyp G: Generators: Co(X), us,s € G,
Relations:

ug = 1,
UsUt — Ug4t
U: — U—s,
usfug = fop ®
usf = (foe "us

s,t e G, feCyX).
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Consider all formal sums
> fsus

where only finitely many fs € C(X) are non-
zero. The rules above define product and in-
volution. We give this a norm and then com-
plete.

Idea: Each s in G defines an automorphism
of Co(X): f — fop 5 Here §(f) = fup and
Co(X) C Co(X) xo G and all these automor-
phisms become inner. ug is a unitary. (Cau-
tion: us is in Co(X) X, G only if X is compact.)

Example: X ={1,...,N},G = Zy, ¢ is addi-
tion, mod N. C(X) x G = My.
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Gelfand-Naimark dictionary (for free actions):

Dynamics (X, G, o) C*-alg. Co(X) X, G

closed invariant set two-sided closed ideal

YCX I:{Zsfsus I f8|Y:O}_
IS a closed two-sided ideal
invariant measure trace
7 TM(ZS fsus> — fX Jodu

7, (ab) = 7(ba)
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Comparison of topological equivalence relations
and actions of countable groups.

Start with (X, G, ).

Let

Ry ={(z,¢°(z)) |z € X,s € G},

IS an equivalence relation. The classes are the
orbits.

If G acts freely (o°(x) = x only if s = e),
this can be given an étale topology. The local
homeomorphisms are %, s € G.

C(X) X G = C*(Ryp).
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Situation 3: Continuous group actions

G a locally compact abelian group, X a locally
compact Hausdorff space, ¢ an action of G on
X:

secG,0°: X — X,

IS @ homeomorphism.

C.(X x @) is a linear space and is given a prod-
uct and involution:

(f-9@s) = [ @9 (@)s =)D,
Fes) = fe™@),s),
f,gin Co(X xG), zin X, sin G,

A is Haar measure on (.

1 t=s=s

G discrete: us(x,t) :{ 0 t+s
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Part 4: Morita equivalence for C*-algebras
(Rieffel, Muhly-Renault-Williams)

“Morita equivalence is more natural than iso-
morphism” - A. Connes.

If A and B are Morita equivalent (A ~ B), then

e A and B have isomorphic lattices of closed
two-sided ideals

e there is a bijection between classes of rep-
resentations as operators on Hilbert space

e A and B have isomorphic K-theory
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What is not preserved:

e linear dimension

e commutativity

Example 1: M,(C) ~ M,(C) are Morita equiv-
alent for all m,n > 1.
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Example 2: ¢ a free, wandering action of G on
X. q: X — X/Ry is the quotient map. Wan-
dering implies that the space of orbits X/Rgp IS
Hausdorff in the quotient topology.

A = Co(X) xp G ~ B = Co(X/Ry) are Morita
equivalent.
e.g. Co(R) xZ ~ C(SY).

Moral: if the quotient X/R¢ IS a bad space
(there is some recurrence in ¢), then Co(X) X
GG is its non-commutative replacement.
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Example 3: X locally compact, Hausdorff, ¢
an action of G, ¥ an action of H,

gpsoqpt:wtogos,sEG,tEH.

If the actions ¢ and ) are both wandering, then

A Co(X/Rgp) XwH
B = Co(X/Ry) %4 G
C = Co(X) Xpxy (G x H)

are all Morita equivalent.

Example 4: If ¢ is an R-action on X and has a
transversal T', let 1) be the Poincaré first return
map on 71'. Under mild conditions,

Co(X) X R ~ Co(T) Xw 4.
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Example 5: Let €2 be a continuous hull. It has
an action of R? and we consider the C*-algebra
C(2) x R4,
Recall

Qpune ={T € Q| xz(t) =0, someteT}
and

Rpunc = {(T,T + x) |7T7T + x € Qpunc

and the C*-algebra C*(Rpunc)-

e Quunc is a transverse to the R%action,

e restricting the R-orbits to Qpunc gives Rpunc
which is étale

e every R? orbit in Q meets Qpunec.

C*(Rpunc) and C(2) xR? are Morita equivalent.
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Part 5: (C*-algebras for projection method
tilings (Forrest-Hunton-Kellendonk)

Data:

e R? physical space (to be tiled),

e H, internal space, locally cpct ab. group,

e 71 RIXH >R 7t R H— H,

o L C RYx H, discrete, co-compact (lattice),

o 7|L, 7 |L one-to-one, L = n-(L£) dense in
H.

e W C H, compact, regular, A\(OW) = 0.
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A point x in RY x H is non-singular if

(x4 L) N oW = 0.

N is the set of non-singular points.

Ne=m{y€x+L|n(y) € W}

IS a Delone set, called a regular model set.

The hull €2 is the completion of
{Ng |z e N}

Comments:

e N\ is invariant under the actions of R? and
L,

o /\a;._|_8:/\aj, |f$€£,

¢ Npty =Nz +u, ifueRY
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Lemma 3. Suppose x, € N converges to x €
R? x H. Ag, converges in Q2 (i.e. is Cauchy
in the tiling metric) if and only if, for every
s € L, the sequence 1+ (zy) is eventually either
in W + s or in its complement.

Theorem 4. For se€ L,

Ny — Xw_|_8(w>,$ eNNH

extends to a continuous function on S2.

Definition 5. Consider A, the C*-algebra of
operators on L2(H, \) generated by Co(H) and
XWw4s,S € L. Let H be its spectrum; i.e. A=
Co(H).

The action of L on E extends to H. L C H is
dense implies that H is totally disconnected.
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Theorem 6. The hull €2 is homeomorphic to
RYx H/L

The actions of R? and £ on RY x H are com-
muting, free and wandering:

Theorem 7. Co(Rex H/L) xR% is Morita equiv-
alent to

Co(H) X L.

The actions of G =R% and £ = L on R? x A
are commuting and wandering:

RYx A/RY= A.
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Further reductions:

Assume H = RN, So L = £ =2 79N as an
abstract group: Cp(H) x Z%+N. The action
IS by translation by the vectors L, which is a
dense subgroup of R¥,

H is RY disconnected along the boundaries of
W and its translates by L. In many cases, this
can be done in other ways, e.g. by lines.

Example: Fibonacci: d =1, N=1, L = Z +
aZ. W = [a,b]. H is Rl disconnected along the
7. + aZ-orbits of a and b (one orbit or two?).

Example: Penrose: d =2, N = 2, L is the sub-
group of the plane generated by exp(27ij/5),j =
0,1,2,3,4. H is the plane disconnected along
the 5 lines through the origin and exp(2nij/5),j =
0,1,2,3,4, and all translates of them by L.
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Example: TTT (Tiubingen triangle tiling) Same
IS the Penrose, but rotate the 5 original lines
by 7/10.

Example: Octagonal tiling: d = 2, N = 2,
L is the subgroup generated by exp(mwij/4),j =
0,1,2,3. H is the plane disconnected along the
4 lines through the origin and exp(wij/4),j =
0,1,2,3, and all translates by L.

One more reduction (still with H = R¥Y). List
a set of generators of L: s1,...,844 5. ACt On
a disconnected H = R¥. The action of the
first N of them is free and wandering: let Hg
denote the quotient, which is a Cantor set. It is
really a disconnected N-torus. Our C*-algebra
IS Morita equivalent to

C(H) x 72N = C(Hp) x Z¢.
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Part 6: K-theory for C*-algebras

To a C*-algebra, A, there are associated two
abelian groups, Kg(A) and K1(A). These are
based on

projections p? =p = p*
1

unitaries ur=u"t,

respectively, in A. It is a recepticle for such
data and also an invariant for A. There is (by
now) quite a lot of machinery for computing
it.
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Ko(A) : Assume A with unit.
p is a projection if p? = p = p*.

Equivalence of projections:

Murray- p~gq Ju,v*v = p,vv* =q,
von Neumann
similarity  p ~sq Ju,vpv~1 = ¢
unitary eq. p~yq o =ov Lopvl =g

homotopy p~pq It — pt,po =p,P1 =¢q

Note that v above must be in A.

Addition of projections: if p,q are orthogonal
(pg = 0), then p+ ¢ is a projection.

My (A) is the set of n x n matrices with entries
from A. It is a C*-algebra. Its unit is 1,,. For
a € Mp(A),be Mn(A),

a O

0 b S Mm—l—n(A)

a@bzl
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P, (A), projections in M,(A).

Pl(A) C PQ(A) C P3(A) C
by identifying p and p®0. Let P(A) = UpPr(A).

Equivalence: In P(A), we have ~n=n~g=rv,=nvy,.
Problem: p4+pog~q+pog# p~q.

Define px~gq ifand only if p® 1, ~qg® 15, for
some n. [p] is the class modulo =.

Addition: p,q € P(A), p =p® 0, g ~ 0 q,
which are orthogonal, and so

[p] + ld] = [p & q]

iIs a well-defined addition.

P(A)/ =~ is a semi-group with identity, [0].
Kg(A) is its Grothendieck group, i.e. formal
differences of classes of P(A):

Ko(A) = {lp]l —[g] | p,q € P(A)}.
It has a natural positive cone:

Ko(A)T = {[p] - [0] | p € P(A)}.
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Example: C
Consider matrices over C:

Lemma 8. Two projections p and q in M,(C)
are similar if and only if rank(p) = rank(q).

Rank is not going to generalize easily to other
C*-algebras, but recall, for a projection rank(p) =
Trace(p).

Proposition 9. The map Tr : Kg(C) — Z

Tr(lp] = lg]) = Trace(p) — Trace(q)

is an isomorphism. Under this, Kqo(C)T =
{0,1,2,3,..}=7Z7T.

31



Example: C(S2)

If p € M, (C(S2)), then Trace(p(x)) is continu-
ous in x. If p is also a projection, its value is
integral.

[pl—[q] € Ko(C(5%)) — Trace(p(z))—Trace(q(x))

IS a homomorphism, but is not injective. There
is a projection p € M»(C(S?)) such that at
every point p(x) is similar to 1 & 0, but this
similarity cannot be made continuous over S2,

Proposition 10. If X is totally disconnected,
let C(X,7Z) be the group of continuous integer-
valued functions on X. The function Tr
Ko(C(X)) — C(X,Z) defined by

Tr(lpl — lg))(z) = Trace(p(z)) — Trace(q(x))

is an isomorphism. Under this, Ko(C(X))T =
C(X,771).

U C X clopen, xy is a projection in C'(X) and
also in C(X,Z). The map takes [xy] — [0] to

XU -
32



What about dynamics on C(X)? G = Z: Pimsner-
Voiculescu six-term exact sequences for K-theory
of integer actions.

Proposition 11. For a minimal action of Z on
a Cantor set X, Ko(C(X) Xy Z) is isomorphic
to

C(X,Z)/{f — fop|feC(X,L)}
and Kqo(C(X) x,Z)T is the image of C(X,Z7T).

Inclusion C(X) C C(X) x Z gives Ko(C(X)) &
C(X,Z) — Ko(C(X) X 7Z).

Surjectivity: every projection in C(X) x Z is
similar to one in C(X).

Let U C X be clopen. xgy is a projection in
C(X), but

XU ~u U1XUUT = XU © @ T = Xo(u)-

If one replaces Z by Z%, d > 1, more sophisti-
cated methods (spectral sequences) are needed.
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Recall, every ¢e-invariant measure p gives a
trace 7, on C(X) x Z. This yields a map

Tu - Ko(C(X) xZ) — R.

If U is clopen, 7ulxy] = n(U).

Theorem 12.a in Kg(C(X)XZ) isin Ko(C(X) X
7)T if and only if a = 0 or 7,(a) > 0, for all p.

For d > 1, the inclusion C(X) C C(X) x Z¢
induces C(X,Z) — Ko(C(X) x Z%) which is not
onto.

Theorem 13 (Gap labelling: B-B-G, B-OO,

K-P).
Fu(Ko(C(X) x Z%)) 7u(C(X, 7))

{u(U) | Uclopen} + Z.
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There are some very sophisticated machinery
for computing this.

Connes’ analogue of the Thom isomorphism:

Ki(C(X) x R 2 K, 1 4(C(X)).

Can be used in the case X = 2, the continuous
hull. K;(C(X)) is closely related (especially in
low dimensions) to the cohomology of X.

However, this isomorphism does not respect
the order structure on Kj.
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