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Part 1 : C∗-algebra basics
Definition 1. A C∗-algebra is a set A:

• A is an algebra over C, the complex num-
bers (Not nec. commutative or unital)

• there is an involution a→ a∗, a ∈ A

• A has a norm, ‖ ‖,

such that

• (a+ λb)∗ = a∗ + λb∗, a, b ∈ A,

• (ab)∗ = b∗a∗, a, b ∈ A,

• A is complete in ‖ ‖,

• ‖ a∗a ‖=‖ a ‖2, a ∈ A.

2



Examples:

• C, the complex numbers,

• For n ≥ 1, Mn(C), n×n complex matrices.

∗=conjugate transpose.

• For H a complex Hilbert space, B(H), the

bounded linear operators on H. ∗= adjoint.

• Any A ⊂ B(H) which is an algebra, closed

under ∗, closed in the norm topology.
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Let X be a compact, Hausdorff space.

C(X) = {f : X → C | f continuous }.
It is a C∗-algebra with pointwise algebraic op-
erations, ∗= pointwise complex conjugation,
‖ ‖ is the supremum norm.

We can generalize: if the space X is locally
compact, replace C(X) with C0(X), the con-
tinuous complex functions which vanish at in-
finity. This is unital if and only if X is compact.

These are both commutative.

Gelfand-Naimark Theorem: Every commu-
tative C∗-algebra arises in this way. C0(X) and
C0(Y ) are isomorphic if and only if X and Y
are homeomorphic.

Theorem 2. The functor X → C0(X) is an
equivalence of categories between locally com-
pact, Hausdorff spaces and commutative C∗-
algebras.
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Topology

C∗-algebras

Commutative C∗-algebras

6

?

• Can we extend standard topological no-
tions to C∗-algebras?

• Are the some geometric constructions of
non-commutative C∗-algebras?
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Gelfand-Naimark dictionary:

Topology Commutative C∗-alg’s

closed set closed ideal

Y ⊂ X I = {f ∈ C(X) | f |Y = 0}
is a closed ideal in C0(X)

Borel measure functional

µ ϕµ(f) =
∫
X fdµ

ϕµ : C0(X) → C

K-theory K-theory
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An application: Hilbert space L2[0,1].

Let Cut = {p2−k | p, k ∈ Z} ∩ [0,1]

For each a < b in Cut, let χ[a,b) denote the

characteristic function of [a, b), which we re-

gard as an operator on L2[0,1] by pointwise

multplication.

Let A be the closed linear span of {χ[a,b) | a <
b, a, b ∈ Cut} in B(L2[0,1]).

This is a commutative, unital C∗-algebra. Hence,

A ∼= C(X), for some X. What is X?

It should be a space where our functions χ[a,b)
are continuous: from [0,1], remove each point

a in Cut and replace it with two points a−, a+.

Topologically, imagine a− as a left endpoint

of [0, a] and a+ as a right endpoint for [a,1],

separated by a gap. This is X and it is a Cantor

set.
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Part 2: C∗-algebras from dynamics

Situation 1: Topological equivalence relations

Let X be a compact, Hausdorff space.

R an equivalence relation on X.

r, s : R→ X are the projections:

r(x, y) = x, s(x, y) = y, (x, y) ∈ R.

Assume R has an étale topology: r, s are open

and local homeomorphisms.

Idea: if (x, y) is in R, there are open sets x ∈ U ,

y ∈ V and a (unique) homeomorphism ρ : U →
V such that

ρ(x) = y,

{(u, ρ(u)) | u ∈ U} ⊂ R.
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C∗(R):

First look at Cc(R), the continuous, complex-
valued functions of compact support on R. It
is a linear space in an obvious way. Define a
product and involution:

(f · g)(x, y) =
∑

(x,z)∈R
f(x, z)g(z, y),

f∗(x, y) = f(y, x).

Complete in a norm to get a C∗-algebra, C∗(R).

Example: X = {1,2, . . . , N}, R = X ×X.

C∗(R) = MN(C).

Start with C(X) = CN = span{χ1, . . . , χN} and
add ei,j such that

e∗i,jei,j = χj,

ei,je
∗
i,j = χi,
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The last example illustrates a general property:

f ∈ C(X) → δ(f)(x, y) =

{
f(x) x = y
0 x 6= y

embeds C(X) as a unital subalgebra of C∗(R).

Assume U, V ⊂ X are clopen, ρ : U → V as be-

fore, let w(x, y) = 1, x ∈ U, y = ρ(x), w(x, y) =

0, otherwise.

w∗w = δ(χU),

ww∗ = δ(χV ),

wδ(f)w∗ = δ(f ◦ ρ)

if f is supported in U .

Example: X locally compact, R == (equal-

ity).

C∗(R) = C0(X).
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Example (Kellendonk): P = {p1, . . . , pN}, a fi-
nite set of prototiles in Rd. Each has a distin-
guished interior point x(pi) called a puncture.

Translate: x(pi + y) = x(pi) + y, y ∈ Rd

Suppose Ω a compact, translation invariant
collection of tilings which are made from trans-
lates of P.

Ωpunc = {T ∈ Ω | x(t) = 0, for some t ∈ T}.

Rpunc = {(T, T + x) | T, T + x ∈ Ωpunc, x ∈ Rd}
is an étale groupoid.

Let T ∈ Ω, t1, t2 ∈ T :

U = {T ′ | t1 − x(t1), t2 − x(t1) ∈ T ′}
V = {T ′ | t1 − x(t2), t2 − x(t2) ∈ T ′}

ρ(T ′) = T ′ + x(t1)− x(t2).
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Situation 2: Actions of countable groups

G a countable abelian (for notation) group, X

a loc. cmpct Hausdorff space, ϕ an action of

G on X:

s ∈ G,ϕs : X → X,

is a homeomorphism.

Action is free if ϕs(x) = x⇒ s = 0.

C0(X) ×ϕ G: Generators: C0(X), us, s ∈ G,

Relations:

u0 = 1,

usut = us+t,

u∗s = u−s,

usfu
∗
s = f ◦ ϕ−s

usf = (f ◦ ϕ−s)us

s, t ∈ G, f ∈ C0(X).
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Consider all formal sums∑
s∈G

fsus

where only finitely many fs ∈ C(X) are non-

zero. The rules above define product and in-

volution. We give this a norm and then com-

plete.

Idea: Each s in G defines an automorphism

of C0(X): f → f ◦ ϕ−s. Here δ(f) = fu0 and

C0(X) ⊂ C0(X) ×ϕ G and all these automor-

phisms become inner. us is a unitary. (Cau-

tion: us is in C0(X)×ϕG only if X is compact.)

Example: X = {1, . . . , N}, G = ZN , ϕ is addi-

tion, mod N . C(X)×G ∼= MN .
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Gelfand-Naimark dictionary (for free actions):

Dynamics (X,G,ϕ) C∗-alg. C0(X)×ϕ G

closed invariant set two-sided closed ideal

Y ⊂ X I = {
∑
s fsus | fs|Y = 0}−

is a closed two-sided ideal
in C0(X)×ϕ G

invariant measure trace

µ τµ(
∑
s fsus) =

∫
X f0dµ

τµ(ab) = τµ(ba)
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Comparison of topological equivalence relations

and actions of countable groups.

Start with (X,G,ϕ).

Let

Rϕ = {(x, ϕs(x)) | x ∈ X, s ∈ G},

is an equivalence relation. The classes are the

orbits.

If G acts freely (ϕs(x) = x only if s = e),

this can be given an étale topology. The local

homeomorphisms are ϕs, s ∈ G.

C(X)×ϕ G ∼= C∗(Rϕ).
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Situation 3: Continuous group actions

G a locally compact abelian group, X a locally

compact Hausdorff space, ϕ an action of G on

X:

s ∈ G,ϕs : X → X,

is a homeomorphism.

Cc(X×G) is a linear space and is given a prod-

uct and involution:

(f · g)(x, s) =
∫
G
f(x, t)g(ϕt(x), s− t)dλ(t),

f∗(x, s) = f(ϕ−s(x), s),

f, g in Cc(X ×G), x in X, s in G,

λ is Haar measure on G.

G discrete: us(x, t) =

{
1 t = s
0 t 6= s
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Part 4: Morita equivalence for C∗-algebras
(Rieffel, Muhly-Renault-Williams)

“Morita equivalence is more natural than iso-

morphism” - A. Connes.

If A and B are Morita equivalent (A ∼ B), then

• A and B have isomorphic lattices of closed

two-sided ideals

• there is a bijection between classes of rep-

resentations as operators on Hilbert space

• A and B have isomorphic K-theory
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What is not preserved:

• linear dimension

• commutativity

Example 1: Mm(C) ∼Mn(C) are Morita equiv-

alent for all m,n ≥ 1.

18



Example 2: ϕ a free, wandering action of G on

X. q : X → X/Rϕ is the quotient map. Wan-

dering implies that the space of orbits X/Rϕ is

Hausdorff in the quotient topology.

A = C0(X) ×ϕ G ∼ B = C0(X/Rϕ) are Morita

equivalent.

e.g. C0(R)× Z ∼ C(S1).

Moral: if the quotient X/Rϕ is a bad space

(there is some recurrence in ϕ), then C0(X)×ϕ
G is its non-commutative replacement.
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Example 3: X locally compact, Hausdorff, ϕ

an action of G, ψ an action of H,

ϕs ◦ ψt = ψt ◦ ϕs, s ∈ G, t ∈ H.

If the actions ϕ and ψ are both wandering, then

A = C0(X/Rϕ)×ψ H
B = C0(X/Rψ)×ϕ G
C = C0(X)×ϕ×ψ (G×H)

are all Morita equivalent.

Example 4: If ϕ is an R-action on X and has a

transversal T , let ψ be the Poincaré first return

map on T . Under mild conditions,

C0(X)×ϕ R ∼ C0(T )×ψ Z.
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Example 5: Let Ω be a continuous hull. It has
an action of Rd and we consider the C∗-algebra
C(Ω)× Rd.

Recall

Ωpunc = {T ∈ Ω | x(t) = 0, some t ∈ T}

and

Rpunc = {(T, T + x) |, T, T + x ∈ Ωpunc

and the C∗-algebra C∗(Rpunc).

• Ωpunc is a transverse to the Rd-action,

• restricting the Rd-orbits to Ωpunc gives Rpunc
which is étale

• every Rd orbit in Ω meets Ωpunc.

C∗(Rpunc) and C(Ω)×Rd are Morita equivalent.
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Part 5: C∗-algebras for projection method

tilings (Forrest-Hunton-Kellendonk)

Data:

• Rd, physical space (to be tiled),

• H, internal space, locally cpct ab. group,

• π : Rd ×H → Rd, π⊥ : Rd ×H → H,

• L ⊂ Rd×H, discrete, co-compact (lattice),

• π|L, π⊥|L one-to-one, L = π⊥(L) dense in

H.

• W ⊂ H, compact, regular, λ(∂W ) = 0.
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A point x in Rd ×H is non-singular if

π⊥(x+ L) ∩ ∂W = ∅.

N is the set of non-singular points.

Λx = π{y ∈ x+ L | π⊥(y) ∈W}

is a Delone set, called a regular model set.

The hull Ω is the completion of

{Λx | x ∈ N}.

Comments:

• N is invariant under the actions of Rd and

L,

• Λx+s = Λx, if s ∈ L,

• Λx+u = Λx + u, if u ∈ Rd.
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Lemma 3. Suppose xn ∈ N converges to x ∈
Rd × H. Λxn converges in Ω (i.e. is Cauchy

in the tiling metric) if and only if, for every

s ∈ L, the sequence π⊥(xn) is eventually either

in W + s or in its complement.

Theorem 4. For s ∈ L,

Λx → χW+s(x), x ∈ N ∩H

extends to a continuous function on Ω.

Definition 5. Consider A, the C∗-algebra of

operators on L2(H,λ) generated by C0(H) and

χW+s, s ∈ L. Let Ĥ be its spectrum; i.e. A ∼=
C0(Ĥ).

The action of L on E extends to Ĥ. L ⊂ H is

dense implies that Ĥ is totally disconnected.
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Theorem 6. The hull Ω is homeomorphic to

Rd × Ĥ/L

The actions of Rd and L on Rd × Ĥ are com-

muting, free and wandering:

Theorem 7.C0(Rd×Ĥ/L)×Rd is Morita equiv-

alent to

C0(Ĥ)× L.

The actions of G = Rd and L ∼= L on Rd × Ĥ

are commuting and wandering:

Rd × Ĥ/Rd ∼= Ĥ.
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Further reductions:

Assume H = RN . So L ∼= L ∼= Zd+N , as an

abstract group: C0(Ĥ) × Zd+N . The action

is by translation by the vectors L, which is a

dense subgroup of RN .

Ĥ is RN disconnected along the boundaries of

W and its translates by L. In many cases, this

can be done in other ways, e.g. by lines.

Example: Fibonacci: d = 1, N = 1, L = Z +

αZ. W = [a, b]. Ĥ is R1 disconnected along the

Z + αZ-orbits of a and b (one orbit or two?).

Example: Penrose: d = 2, N = 2, L is the sub-

group of the plane generated by exp(2πij/5), j =

0,1,2,3,4. Ĥ is the plane disconnected along

the 5 lines through the origin and exp(2πij/5), j =

0,1,2,3,4, and all translates of them by L.
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Example: TTT (Tübingen triangle tiling) Same

is the Penrose, but rotate the 5 original lines

by π/10.

Example: Octagonal tiling: d = 2, N = 2,

L is the subgroup generated by exp(πij/4), j =

0,1,2,3. Ĥ is the plane disconnected along the

4 lines through the origin and exp(πij/4), j =

0,1,2,3, and all translates by L.

One more reduction (still with H = RN). List

a set of generators of L: s1, . . . , sd+N . Act on

a disconnected H = RN . The action of the

first N of them is free and wandering: let Ĥ0

denote the quotient, which is a Cantor set. It is

really a disconnected N-torus. Our C∗-algebra

is Morita equivalent to

C(Ĥ)× Zd+N = C(Ĥ0)× Zd.
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Part 6: K-theory for C∗-algebras

To a C∗-algebra, A, there are associated two

abelian groups, K0(A) and K1(A). These are

based on

projections p2 = p = p∗

unitaries u∗ = u−1,

respectively, in A. It is a recepticle for such

data and also an invariant for A. There is (by

now) quite a lot of machinery for computing

it.
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K0(A) : Assume A with unit.

p is a projection if p2 = p = p∗.

Equivalence of projections:

Murray- p ∼ q ∃v, v∗v = p, vv∗ = q,
von Neumann

similarity p ∼s q ∃v, vpv−1 = q

unitary eq. p ∼u q ∃v∗ = v−1, vpv−1 = q
homotopy p ∼h q ∃t→ pt, p0 = p, p1 = q

Note that v above must be in A.

Addition of projections: if p, q are orthogonal
(pq = 0), then p+ q is a projection.

Mn(A) is the set of n×n matrices with entries
from A. It is a C∗-algebra. Its unit is 1n. For
a ∈Mn(A), b ∈Mm(A),

a⊕ b =

[
a 0
0 b

]
∈Mm+n(A).
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Pn(A), projections in Mn(A).

P1(A) ⊂ P2(A) ⊂ P3(A) ⊂
by identifying p and p⊕0. Let P (A) = ∪nPn(A).

Equivalence: In P (A), we have ∼=∼s=∼u=∼h.
Problem: p+ p0 ∼ q+ p0 ; p ∼ q.

Define p ≈ q if and only if p ⊕ 1n ∼ q ⊕ 1n, for
some n. [p] is the class modulo ≈.

Addition: p, q ∈ P (A), p = p ⊕ 0, q ∼ 0 ⊕ q,
which are orthogonal, and so

[p] + [q] = [p⊕ q]

is a well-defined addition.

P (A)/ ≈ is a semi-group with identity, [0].
K0(A) is its Grothendieck group, i.e. formal
differences of classes of P (A):

K0(A) = {[p]− [q] | p, q ∈ P (A)}.
It has a natural positive cone:

K0(A)+ = {[p]− [0] | p ∈ P (A)}.
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Example: C

Consider matrices over C:

Lemma 8. Two projections p and q in Mn(C)

are similar if and only if rank(p) = rank(q).

Rank is not going to generalize easily to other

C∗-algebras, but recall, for a projection rank(p) =

Trace(p).

Proposition 9. The map Tr : K0(C) → Z

Tr([p]− [q]) = Trace(p)− Trace(q)

is an isomorphism. Under this, K0(C)+ =

{0,1,2,3, . . .} = Z+.
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Example: C(S2)

If p ∈Mn(C(S2)), then Trace(p(x)) is continu-
ous in x. If p is also a projection, its value is
integral.

[p]−[q] ∈ K0(C(S2)) → Trace(p(x))−Trace(q(x))
is a homomorphism, but is not injective. There
is a projection p ∈ M2(C(S2)) such that at
every point p(x) is similar to 1 ⊕ 0, but this
similarity cannot be made continuous over S2.

Proposition 10. If X is totally disconnected,
let C(X,Z) be the group of continuous integer-
valued functions on X. The function Tr :
K0(C(X)) → C(X,Z) defined by

Tr([p]− [q])(x) = Trace(p(x))− Trace(q(x))

is an isomorphism. Under this, K0(C(X))+ =
C(X,Z+).

U ⊂ X clopen, χU is a projection in C(X) and
also in C(X,Z). The map takes [χU ] − [0] to
χU .
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What about dynamics on C(X)? G = Z: Pimsner-
Voiculescu six-term exact sequences for K-theory
of integer actions.

Proposition 11. For a minimal action of Z on
a Cantor set X, K0(C(X) ×ϕ Z) is isomorphic
to

C(X,Z)/{f − f ◦ ϕ | f ∈ C(X,Z)}

and K0(C(X)×ϕZ)+ is the image of C(X,Z+).

Inclusion C(X) ⊂ C(X)× Z gives K0(C(X)) ∼=
C(X,Z) → K0(C(X)× Z).

Surjectivity: every projection in C(X) × Z is
similar to one in C(X).

Let U ⊂ X be clopen. χU is a projection in
C(X), but

χU ∼u u1χUu
∗
1 = χU ◦ ϕ−1 = χϕ(U).

If one replaces Z by Zd, d > 1, more sophisti-
cated methods (spectral sequences) are needed.
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Recall, every ϕ-invariant measure µ gives a

trace τµ on C(X)× Z. This yields a map

τ̂µ : K0(C(X)× Z) → R.

If U is clopen, τ̂µ[χU ] = µ(U).

Theorem 12. a in K0(C(X)×Z) is in K0(C(X)×
Z)+ if and only if a = 0 or τ̂µ(a) > 0, for all µ.

For d > 1, the inclusion C(X) ⊂ C(X) × Zd

induces C(X,Z) → K0(C(X)×Zd) which is not

onto.

Theorem 13 (Gap labelling: B-B-G, B-OO,

K-P).

τ̂µ(K0(C(X)× Zd)) = τ̂µ(C(X,Z))

= {µ(U) | Uclopen}+ Z.
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There are some very sophisticated machinery

for computing this.

Connes’ analogue of the Thom isomorphism:

Ki(C(X)× Rd) ∼= Ki+d(C(X)).

Can be used in the case X = Ω, the continuous

hull. Ki(C(X)) is closely related (especially in

low dimensions) to the cohomology of X.

However, this isomorphism does not respect

the order structure on K0.
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