C*-algebras and Tilings, Aperiodic Order, CIRM, Luminy

Ian F. Putnam, University of Victoria

September 10, 2007

- 1. C^* -algebra basics
- 2. C^* -algebras from dynamics
- 3. Morita equivalence
- 4. C^* -algebras from projection tilings
- 5. K-theory for C^* -algebras

Part 1 : C*-algebra basics **Definition 1.** A C*-algebra is a set A:

- A is an algebra over C, the complex numbers (Not nec. commutative or unital)
- there is an involution $a \to a^*$, $a \in A$
- A has a norm, || ||,

such that

- $(a + \lambda b)^* = a^* + \overline{\lambda}b^*$, $a, b \in A$,
- $(ab)^* = b^*a^*, a, b \in A$,
- A is complete in || ||,
- $|| a^*a || = || a ||^2, a \in A.$

Examples:

- $\bullet~\mathbb{C},$ the complex numbers,
- For n ≥ 1, M_n(ℂ), n × n complex matrices.
 *=conjugate transpose.
- For \mathcal{H} a complex Hilbert space, $\mathcal{B}(\mathcal{H})$, the bounded linear operators on \mathcal{H} . *= adjoint.
- Any $A \subset \mathcal{B}(\mathcal{H})$ which is an algebra, closed under *, closed in the norm topology.

Let X be a compact, Hausdorff space.

 $C(X) = \{f : X \to \mathbb{C} \mid f \text{ continuous } \}.$ It is a C^* -algebra with pointwise algebraic operations, *= pointwise complex conjugation, $\| \|$ is the supremum norm.

We can generalize: if the space X is *locally* compact, replace C(X) with $C_0(X)$, the continuous complex functions which vanish at infinity. This is unital if and only if X is compact.

These are both *commutative*.

Gelfand-Naimark Theorem: Every commutative C^* -algebra arises in this way. $C_0(X)$ and $C_0(Y)$ are isomorphic if and only if X and Y are homeomorphic.

Theorem 2. The functor $X \to C_0(X)$ is an equivalence of categories between locally compact, Hausdorff spaces and commutative C^* -algebras.

- Can we extend standard topological notions to C^* -algebras?
- Are the some geometric constructions of non-commutative C^* -algebras?

Gelfand-Naimark dictionary:

Topology	Commutative C^* -alg's
closed set	closed ideal
$Y \subset X$	$I = \{f \in C(X) \mid f Y = 0\}$ is a closed ideal in $C_0(X)$
Borel measure	functional
μ	$\begin{aligned} \varphi_{\mu}(f) &= \int_{X} f d\mu \\ \varphi_{\mu} &: C_{0}(X) \to \mathbb{C} \end{aligned}$
K-theory	K-theory

An application: Hilbert space $L^2[0, 1]$.

Let
$$Cut = \{p2^{-k} \mid p, k \in \mathbb{Z}\} \cap [0, 1]$$

For each a < b in Cut, let $\chi_{[a,b)}$ denote the characteristic function of [a,b), which we regard as an operator on $L^2[0,1]$ by pointwise multplication.

Let A be the closed linear span of $\{\chi_{[a,b)} \mid a < b, a, b \in Cut\}$ in $\mathcal{B}(L^2[0,1])$.

This is a commutative, unital C^* -algebra. Hence, $A \cong C(X)$, for some X. What is X?

It should be a space where our functions $\chi_{[a,b)}$ are continuous: from [0,1], remove each point a in *Cut* and replace it with two points a^-, a^+ . Topologically, imagine a^- as a left endpoint of [0, a] and a^+ as a right endpoint for [a, 1], separated by a gap. This is X and it is a Cantor set.

Part 2: *C**-algebras from dynamics

Situation 1: Topological equivalence relations

Let X be a compact, Hausdorff space.

R an equivalence relation on X.

 $r, s : R \to X$ are the projections:

$$r(x,y) = x, s(x,y) = y, (x,y) \in R.$$

Assume R has an étale topology: r, s are open and local homeomorphisms.

Idea: if (x, y) is in R, there are open sets $x \in U$, $y \in V$ and a (unique) homeomorphism $\rho : U \rightarrow V$ such that

$$egin{array}{rcl}
ho(x) &=& y, \ \{(u,
ho(u)) \mid u \in U\} &\subset& R. \end{array}$$

 $C^{*}(R)$:

First look at $C_c(R)$, the continuous, complexvalued functions of compact support on R. It is a linear space in an obvious way. Define a product and involution:

$$(f \cdot g)(x, y) = \sum_{\substack{(x,z) \in R \\ f^*(x, y)}} f(x, z)g(z, y),$$

Complete in a norm to get a C^* -algebra, $C^*(R)$.

Example: $X = \{1, 2, ..., N\}, R = X \times X$.

$$C^*(R) = M_N(\mathbb{C}).$$

Start with $C(X) = \mathbb{C}^N = span\{\chi_1, \dots, \chi_N\}$ and add $e_{i,j}$ such that

$$e_{i,j}^* e_{i,j} = \chi_j, \\ e_{i,j} e_{i,j}^* = \chi_i,$$

The last example illustrates a general property:

$$f \in C(X) \to \delta(f)(x,y) = \begin{cases} f(x) & x = y \\ 0 & x \neq y \end{cases}$$

embeds C(X) as a unital subalgebra of $C^*(R)$.

Assume $U, V \subset X$ are clopen, $\rho : U \to V$ as before, let $w(x, y) = 1, x \in U, y = \rho(x), w(x, y) = 0$, otherwise.

$$w^*w = \delta(\chi_U),$$

$$ww^* = \delta(\chi_V),$$

$$w\delta(f)w^* = \delta(f \circ \rho)$$

if f is supported in U.

Example: X locally compact, R == (equality).

$$C^*(R) = C_0(X).$$

Example (Kellendonk): $\mathcal{P} = \{p_1, \ldots, p_N\}$, a finite set of prototiles in \mathbb{R}^d . Each has a distinguished interior point $x(p_i)$ called a puncture.

Translate: $x(p_i + y) = x(p_i) + y, y \in \mathbb{R}^d$

Suppose Ω a compact, translation invariant collection of tilings which are made from translates of \mathcal{P} .

$$\Omega_{punc} = \{T \in \Omega \mid x(t) = 0, \text{ for some } t \in T\}.$$

 $R_{punc} = \{(T, T + x) \mid T, T + x \in \Omega_{punc}, x \in \mathbb{R}^d\}$ is an étale groupoid.

Let $T \in \Omega$, $t_1, t_2 \in T$:

$$U = \{T' \mid t_1 - x(t_1), t_2 - x(t_1) \in T'\}$$

$$V = \{T' \mid t_1 - x(t_2), t_2 - x(t_2) \in T'\}$$

$$\rho(T') = T' + x(t_1) - x(t_2).$$

Situation 2: Actions of countable groups

G a countable abelian (for notation) group, Xa loc. cmpct Hausdorff space, φ an action of G on X:

$$s \in G, \varphi^s \colon X \to X,$$

is a homeomorphism.

Action is free if $\varphi^s(x) = x \Rightarrow s = 0$.

 $C_0(X) \times_{\varphi} G$: Generators: $C_0(X)$, $u_s, s \in G$, **Relations:**

$$u_{0} = 1,$$

$$u_{s}u_{t} = u_{s+t},$$

$$u_{s}^{*} = u_{-s},$$

$$u_{s}fu_{s}^{*} = f \circ \varphi^{-s}$$

$$u_{s}f = (f \circ \varphi^{-s})u_{s}$$

$$t \in G, f \in C_{0}(X).$$

 $s, t \in G, f \in C_0(X)$

Consider all formal sums

$$\sum_{s \in G} f_s u_s$$

where only finitely many $f_s \in C(X)$ are nonzero. The rules above define product and involution. We give this a norm and then complete.

Idea: Each s in G defines an automorphism of $C_0(X)$: $f \to f \circ \varphi^{-s}$. Here $\delta(f) = fu_0$ and $C_0(X) \subset C_0(X) \times_{\varphi} G$ and all these automorphisms become inner. u_s is a unitary. (Caution: u_s is in $C_0(X) \times_{\varphi} G$ only if X is compact.)

Example: $X = \{1, ..., N\}, G = \mathbb{Z}_N, \varphi$ is addition, mod N. $C(X) \times G \cong M_N$.

Gelfand-Naimark dictionary (for free actions):	
Dynamics (X, G, φ)	C^* -alg. $C_0(X) \times_{\varphi} G$
closed invariant set	two-sided closed ideal
$Y \subset X$	$I = \{\sum_{s} f_{s}u_{s} \mid f_{s} Y = 0\}^{-}$ is a closed two-sided ideal in $C_{0}(X) \times_{\varphi} G$
invariant measure	trace
μ	$\tau_{\mu}(\sum_{s} f_{s}u_{s}) = \int_{X} f_{0}d\mu$
	$ au_{\mu}(ab) = au_{\mu}(ba)$

Comparison of topological equivalence relations and actions of countable groups.

```
Start with (X, G, \varphi).
```

Let

$$R_{\varphi} = \{ (x, \varphi^s(x)) \mid x \in X, s \in G \},\$$

is an equivalence relation. The classes are the orbits.

If G acts freely $(\varphi^s(x) = x \text{ only if } s = e)$, this can be given an étale topology. The local homeomorphisms are $\varphi^s, s \in G$.

$$C(X) \times_{\varphi} G \cong C^*(R_{\varphi}).$$

Situation 3: Continuous group actions

G a locally compact abelian group, X a locally compact Hausdorff space, φ an action of G on X:

$$s \in G, \varphi^s : X \to X,$$

is a homeomorphism.

 $C_c(X \times G)$ is a linear space and is given a product and involution:

$$(f \cdot g)(x,s) = \int_G f(x,t)g(\varphi^t(x),s-t)d\lambda(t),$$

$$f^*(x,s) = f(\varphi^{-s}(x),s),$$

f,g in $C_c(X \times G)$, x in X, s in G,

 λ is Haar measure on G.

G discrete: $u_s(x,t) = \begin{cases} 1 & t = s \\ 0 & t \neq s \end{cases}$

Part 4: Morita equivalence for C*-algebras (Rieffel, Muhly-Renault-Williams)

"Morita equivalence is more natural than isomorphism" - A. Connes.

If A and B are Morita equivalent $(A \sim B)$, then

- A and B have isomorphic lattices of closed two-sided ideals
- there is a bijection between classes of representations as operators on Hilbert space
- A and B have isomorphic K-theory

What is *not* preserved:

- linear dimension
- commutativity

Example 1: $M_m(\mathbb{C}) \sim M_n(\mathbb{C})$ are Morita equivalent for all $m, n \geq 1$.

Example 2: φ a free, wandering action of G on $X. q: X \to X/R_{\varphi}$ is the quotient map. Wandering implies that the space of orbits X/R_{φ} is Hausdorff in the quotient topology.

 $A = C_0(X) \times_{\varphi} G \sim B = C_0(X/R_{\varphi})$ are Morita equivalent.

e.g. $C_0(\mathbb{R}) \times \mathbb{Z} \sim C(S^1)$.

Moral: if the quotient X/R_{φ} is a bad space (there is some recurrence in φ), then $C_0(X) \times_{\varphi}$ G is its non-commutative replacement. Example 3: X locally compact, Hausdorff, φ an action of G, ψ an action of H,

$$\varphi^s \circ \psi^t = \psi^t \circ \varphi^s, s \in G, t \in H.$$

If the actions φ and ψ are both wandering, then

$$A = C_0(X/R_{\varphi}) \times_{\psi} H$$

$$B = C_0(X/R_{\psi}) \times_{\varphi} G$$

$$C = C_0(X) \times_{\varphi \times \psi} (G \times H)$$

are all Morita equivalent.

Example 4: If φ is an \mathbb{R} -action on X and has a transversal T, let ψ be the Poincaré first return map on T. Under mild conditions,

$$C_0(X) \times_{\varphi} \mathbb{R} \sim C_0(T) \times_{\psi} \mathbb{Z}.$$

Example 5: Let Ω be a continuous hull. It has an action of \mathbb{R}^d and we consider the C^* -algebra $C(\Omega) \times \mathbb{R}^d$.

Recall

 $\Omega_{punc} = \{T \in \Omega \mid x(t) = 0, \text{ some } t \in T\}$

and

 $R_{punc} = \{(T, T + x) |, T, T + x \in \Omega_{punc}$ and the C*-algebra C*(R_{punc}).

- Ω_{punc} is a transverse to the \mathbb{R}^d -action,
- restricting the \mathbb{R}^d -orbits to Ω_{punc} gives R_{punc} which is étale
- every \mathbb{R}^d orbit in Ω meets Ω_{punc} .

 $C^*(R_{punc})$ and $C(\Omega) \times \mathbb{R}^d$ are Morita equivalent.

Part 5: C*-algebras for projection method tilings (Forrest-Hunton-Kellendonk)

Data:

- \mathbb{R}^d , physical space (to be tiled),
- *H*, internal space, locally cpct ab. group,
- $\pi : \mathbb{R}^d \times H \to \mathbb{R}^d, \pi^{\perp} : \mathbb{R}^d \times H \to H$,
- $\mathcal{L} \subset \mathbb{R}^d \times H$, discrete, co-compact (lattice),
- $\pi | \mathcal{L}, \pi^{\perp} | \mathcal{L}$ one-to-one, $L = \pi^{\perp}(\mathcal{L})$ dense in H.
- $W \subset H$, compact, regular, $\lambda(\partial W) = 0$.

A point x in $\mathbb{R}^d \times H$ is non-singular if

$$\pi^{\perp}(x+\mathcal{L}) \cap \partial W = \emptyset.$$

 $\ensuremath{\mathcal{N}}$ is the set of non-singular points.

$$\Lambda_x = \pi\{y \in x + \mathcal{L} \mid \pi^{\perp}(y) \in W\}$$

is a Delone set, called a regular model set.

The hull $\boldsymbol{\Omega}$ is the completion of

$$\{\Lambda_x \mid x \in \mathcal{N}\}.$$

Comments:

• ${\mathcal N}$ is invariant under the actions of ${\mathbb R}^d$ and ${\mathcal L},$

•
$$\Lambda_{x+s} = \Lambda_x$$
, if $s \in \mathcal{L}$,

•
$$\Lambda_{x+u} = \Lambda_x + u$$
, if $u \in \mathbb{R}^d$.

Lemma 3. Suppose $x_n \in \mathcal{N}$ converges to $x \in \mathbb{R}^d \times H$. Λ_{x_n} converges in Ω (i.e. is Cauchy in the tiling metric) if and only if, for every $s \in L$, the sequence $\pi^{\perp}(x_n)$ is eventually either in W + s or in its complement.

Theorem 4. For $s \in L$,

$$\Lambda_x \to \chi_{W+s}(x), x \in \mathcal{N} \cap H$$

extends to a continuous function on Ω .

Definition 5. Consider A, the C^* -algebra of operators on $L^2(H, \lambda)$ generated by $C_0(H)$ and $\chi_{W+s}, s \in L$. Let \hat{H} be its spectrum; i.e. $A \cong C_0(\hat{H})$.

The action of L on E extends to \hat{H} . $L \subset H$ is dense implies that \hat{H} is totally disconnected.

Theorem 6. The hull Ω is homeomorphic to $\mathbb{R}^d \times \widehat{H}/\mathcal{L}$

The actions of \mathbb{R}^d and \mathcal{L} on $\mathbb{R}^d \times \hat{H}$ are commuting, free and wandering:

Theorem 7. $C_0(\mathbb{R}^d \times \hat{H}/\mathcal{L}) \times \mathbb{R}^d$ is Morita equivalent to

 $C_0(\hat{H}) \times L.$

The actions of $G = \mathbb{R}^d$ and $\mathcal{L} \cong L$ on $\mathbb{R}^d \times \hat{H}$ are commuting and wandering:

$$\mathbb{R}^d \times \widehat{H} / \mathbb{R}^d \cong \widehat{H}.$$

Further reductions:

Assume $H = \mathbb{R}^N$. So $L \cong \mathcal{L} \cong \mathbb{Z}^{d+N}$, as an abstract group: $C_0(\hat{H}) \times \mathbb{Z}^{d+N}$. The action is by translation by the vectors L, which is a dense subgroup of \mathbb{R}^N .

 \hat{H} is \mathbb{R}^N disconnected along the boundaries of W and its translates by L. In many cases, this can be done in other ways, e.g. by lines.

Example: Fibonacci: d = 1, N = 1, $L = \mathbb{Z} + \alpha\mathbb{Z}$. W = [a, b]. \hat{H} is \mathbb{R}^1 disconnected along the $\mathbb{Z} + \alpha\mathbb{Z}$ -orbits of a and b (one orbit or two?).

Example: Penrose: d = 2, N = 2, L is the subgroup of the plane generated by $exp(2\pi i j/5)$, j = 0, 1, 2, 3, 4. \hat{H} is the plane disconnected along the 5 lines through the origin and $exp(2\pi i j/5)$, j = 0, 1, 2, 3, 4, and all translates of them by L. Example: TTT (Tübingen triangle tiling) Same is the Penrose, but rotate the 5 original lines by $\pi/10$.

Example: Octagonal tiling: d = 2, N = 2, L is the subgroup generated by $exp(\pi i j/4), j = 0, 1, 2, 3$. \hat{H} is the plane disconnected along the 4 lines through the origin and $exp(\pi i j/4), j = 0, 1, 2, 3$, and all translates by L.

One more reduction (still with $H = \mathbb{R}^N$). List a set of generators of L: s_1, \ldots, s_{d+N} . Act on a disconnected $H = \mathbb{R}^N$. The action of the first N of them is free and wandering: let \hat{H}_0 denote the quotient, which is a Cantor set. It is really a disconnected N-torus. Our C^* -algebra is Morita equivalent to

$$C(\hat{H}) \times \mathbb{Z}^{d+N} = C(\hat{H}_0) \times \mathbb{Z}^d.$$

Part 6: K-theory for C^* -algebras

To a C^* -algebra, A, there are associated two abelian groups, $K_0(A)$ and $K_1(A)$. These are based on

 $\begin{array}{ll} \mbox{projections} & p^2 = p = p^* \\ \mbox{unitaries} & u^* = u^{-1} \mbox{,} \end{array}$

respectively, in A. It is a recepticle for such data and also an invariant for A. There is (by now) quite a lot of machinery for computing it.

 $K_0(A)$: Assume A with unit.

p is a projection if $p^2 = p = p^*$.

Equivalence of projections:

 $\begin{array}{lll} \mbox{Murray-} & p \sim q & \exists v, v^*v = p, vv^* = q, \\ \mbox{von Neumann} & & \\ \mbox{similarity} & p \sim_s q & \exists v, vpv^{-1} = q \\ \mbox{unitary eq.} & p \sim_u q & \exists v^* = v^{-1}, vpv^{-1} = q \\ \mbox{homotopy} & p \sim_h q & \exists t \rightarrow p_t, p_0 = p, p_1 = q \end{array}$

Note that v above must be in A.

Addition of projections: if p,q are orthogonal (pq = 0), then p + q is a projection.

 $M_n(A)$ is the set of $n \times n$ matrices with entries from A. It is a C^* -algebra. Its unit is 1_n . For $a \in M_n(A), b \in M_m(A)$,

$$a \oplus b = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \in M_{m+n}(A).$$

 $P_n(A)$, projections in $M_n(A)$.

$$P_1(A) \subset P_2(A) \subset P_3(A) \subset$$

by identifying p and $p \oplus 0$. Let $P(A) = \bigcup_n P_n(A)$.

Equivalence: In P(A), we have $\sim = \sim_s = \sim_u = \sim_h$. Problem: $p + p_0 \sim q + p_0 \Rightarrow p \sim q$.

Define $p \approx q$ if and only if $p \oplus 1_n \sim q \oplus 1_n$, for some n. [p] is the class modulo \approx .

Addition: $p,q \in P(A)$, $p = p \oplus 0$, $q \sim 0 \oplus q$, which are orthogonal, and so

 $[p] + [q] = [p \oplus q]$

is a well-defined addition.

 $P(A)/\approx$ is a semi-group with identity, [0]. $K_0(A)$ is its Grothendieck group, i.e. formal differences of classes of P(A):

 $K_0(A) = \{ [p] - [q] \mid p, q \in P(A) \}.$

It has a natural positive cone:

$$K_0(A)^+ = \{ [p] - [0] \mid p \in P(A) \}.$$

Example: \mathbb{C}

Consider matrices over \mathbb{C} :

Lemma 8. Two projections p and q in $M_n(\mathbb{C})$ are similar if and only if rank(p) = rank(q).

Rank is not going to generalize easily to other C^* -algebras, but recall, for a projection rank(p) = Trace(p).

Proposition 9. The map $Tr : K_0(\mathbb{C}) \to \mathbb{Z}$

Tr([p] - [q]) = Trace(p) - Trace(q)

is an isomorphism. Under this, $K_0(\mathbb{C})^+ = \{0, 1, 2, 3, \ldots\} = \mathbb{Z}^+$.

Example: $C(S^2)$

If $p \in M_n(C(S^2))$, then Trace(p(x)) is continuous in x. If p is also a projection, its value is integral.

 $[p]-[q] \in K_0(C(S^2)) \to Trace(p(x))-Trace(q(x))$ is a homomorphism, but is not injective. There is a projection $p \in M_2(C(S^2))$ such that at every point p(x) is similar to $1 \oplus 0$, but this similarity cannot be made continuous over S^2 .

Proposition 10. If X is totally disconnected, let $C(X,\mathbb{Z})$ be the group of continuous integervalued functions on X. The function Tr : $K_0(C(X)) \to C(X,\mathbb{Z})$ defined by

Tr([p] - [q])(x) = Trace(p(x)) - Trace(q(x))is an isomorphism. Under this, $K_0(C(X))^+ = C(X, \mathbb{Z}^+)$.

 $U \subset X$ clopen, χ_U is a projection in C(X) and also in $C(X,\mathbb{Z})$. The map takes $[\chi_U] - [0]$ to χ_U . What about dynamics on C(X)? $G = \mathbb{Z}$: Pimsner-Voiculescu six-term exact sequences for *K*-theory of integer actions.

Proposition 11. For a minimal action of \mathbb{Z} on a Cantor set X, $K_0(C(X) \times_{\varphi} \mathbb{Z})$ is isomorphic to

 $C(X,\mathbb{Z})/\{f-f\circ\varphi\mid f\in C(X,\mathbb{Z})\}$

and $K_0(C(X) \times_{\varphi} \mathbb{Z})^+$ is the image of $C(X, \mathbb{Z}^+)$.

Inclusion $C(X) \subset C(X) \times \mathbb{Z}$ gives $K_0(C(X)) \cong C(X,\mathbb{Z}) \to K_0(C(X) \times \mathbb{Z}).$

Surjectivity: every projection in $C(X) \times \mathbb{Z}$ is similar to one in C(X).

Let $U \subset X$ be clopen. χ_U is a projection in C(X), but

$$\chi_U \sim_u u_1 \chi_U u_1^* = \chi_U \circ \varphi^{-1} = \chi_{\varphi(U)}.$$

If one replaces \mathbb{Z} by \mathbb{Z}^d , d > 1, more sophisticated methods (spectral sequences) are needed.

Recall, every φ -invariant measure μ gives a trace τ_{μ} on $C(X) \times \mathbb{Z}$. This yields a map

$\hat{\tau}_{\mu} : K_0(C(X) \times \mathbb{Z}) \to \mathbb{R}.$

If U is clopen, $\hat{\tau}_{\mu}[\chi_U] = \mu(U)$.

Theorem 12. a in $K_0(C(X) \times \mathbb{Z})$ is in $K_0(C(X) \times \mathbb{Z})^+$ if and only if a = 0 or $\hat{\tau}_{\mu}(a) > 0$, for all μ .

For d > 1, the inclusion $C(X) \subset C(X) \times \mathbb{Z}^d$ induces $C(X,\mathbb{Z}) \to K_0(C(X) \times \mathbb{Z}^d)$ which is *not* onto.

Theorem 13 (Gap labelling: B-B-G, B-OO, K-P).

 $\hat{\tau}_{\mu}(K_0(C(X) \times \mathbb{Z}^d)) = \hat{\tau}_{\mu}(C(X,\mathbb{Z})) \\ = \{\mu(U) \mid Uclopen\} + \mathbb{Z}.$

There are some very sophisticated machinery for computing this.

Connes' analogue of the Thom isomorphism:

$$K_i(C(X) \times \mathbb{R}^d) \cong K_{i+d}(C(X)).$$

Can be used in the case $X = \Omega$, the continuous hull. $K_i(C(X))$ is closely related (especially in low dimensions) to the cohomology of X.

However, this isomorphism does *not* respect the order structure on K_0 .