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Cantor minimal systems

Let X be a Cantor set; compact, totally dis-
connected, metrizable, no isolated points.

Let G be a countable, discrete abelian group
with an action ¢ on X: for s in G,

0’ X — X
IS @ homeomorphism,
900 — Zan
pPopl = T,

s,t in G.

e The action is free if, p%(x) =z only if s =
0,

e The orbit of z in X is {©%(x) | s € G},

e [ he action is minimal if, for every = in X,
its orbit is dense in X.



2°°-odometer

Let X = {0,1} and define ¢ to be addition
of (1,0,0,...), mod 2, with carry over to the
right. For example:

¢(0,0,1,0,1,1,...)

©(1,1,1,0,0,1,...)
p(1,1,1,1,1,1,...)

(1,0,1,0,1,1,...)
(0,0,0,1,0,1,...)
(0,0,0,0,0,0,...)

Z, action, ¢ is the nth iterate of o, n > 1, or
the —nth iterate of ¢~ 1, n < 0.

X is also the ring of 2-adic integers and the
map is addition of 1.



More generally:

Let X be a compact Hausdorff space. Consider
homeomorphisms, ¢, whose domain and range
are both open subsets of X. Suppose that F
is collection of such functions such that:

1. if p,v are in F, so is o N,

2. if o, arein F, so is p o1,

3. if pisin F, sois o1,

4. the collection of open sets U in X such that
udyr is in F generates the topology of X.

It follows that

R=UF = {(z,9(z)) | p € F,x € Dom(p)}

IS an equivalence relation and F is a basis for
a topology of R. We assume that this topol-
ogy is second countable and Hausdorff. As a
consequence the equivalence classes are count-
able.

Such an equivalence relation, with this topol-
ogy, is called étale.



If ¢ is a free action of GG on X, then let
F={¢’|lU|seG,UCX open }.
and
Ry ={(z,¢(x)) | z € X,s € G}.

Equivalence classes are the orbits.

In general, R is minimal if every equivalence
class is dense.



AF-relations

A Bratteli diagram is a vertex set V = \VpuV71 U
...and an edge set £E = F{UE>U... with initial
and terminal maps ¢ : Fn — V,,_1,t . Ep — V.
Each V,, and E, are finite with Vi = {vg}.

Vo

En

i(e) 1
e E-
t(e) V2



Let X be the set of infinite paths from wvg:

X = {(z1,22,...) | n € En,t(zn) = i(xp11)}

Relative topology from X C Ny Ey,.
If p= (p1,p2,...,pyN) IS A finite path, we let

C(p) ={z € X |xn =pn,1 <n <N},

which is clopen.

For paths p,q of length N, with t(py) = t(gn),
define ¢ : C(p) — C(q) by

©(P1,P2, - s PNsTN+1, TN425 - - -)
— (q17QQ7'"7QN7$N—|—17$N—|—27”')°

The set of all such ¢ is F.

R is tail equivalence:

(z,y) € R< dN,zp = yn,n > N.



For fixed N, let

(x,y) € Ry < xn = yn,n > N.
We have

RiCRyC- -+, R=UyNRpN.

Definition 1. An étale equivalence relation R
on X is AF if X is totally disconnected and
R is the union of an increasing sequence of
compact, open subequivalence relations.

Theorem 2. Every AF-relation can be presented
by a Bratteli diagram.



Recall: 2°°-odometer

Let X = {0,1}Y and define ¢ to be addition of
(1,0,0,...), with carry over to the right. For
example:

©(0,0,1,0,1,1,...) (1,0,1,0,1,1,...)

©(1,1,1,0,0,1,...) = (0,0,0,1,0,1,...)
0(1,1,1,1,1,1,...) (0,0,0,0,0,0,...)

Let R C R, be the equivalence relation gener-
ated by {(z,p(x)) |z # (1,1,1,...)}. Consider
the Bratteli diagram with one vertex and two
edges at every level ( labelled 0 and 1). Then
R is just tail equivalence.



Theorem 3. Let ¢ be a minimal Z-action on
a Cantor set X. Choose y in X and let R C
R, be the equivalence relation generated by
{(z,01(x)) | x #y}. Then R is a minimal AF-
relation and

Ry = RV (y,*(v))
(V means the equivalence relation generated
by).

Proof. Choose Y7 D Y> D ---, clopen sets with
intersection {y} and let Ry be the equivalence
relation generated by {(z,¢o%(z)) | = ¢ Yn}.
Then

R{ CR>C---: IRy = R,
and each Ry is compact and open. [ ]

Consequence: every minimal homeomorphism
of a Cantor can be presented as a map on a
Bratteli diagram. The edges are ordered and
the map is to take successor under a type of re-
verse lexicographic order. The Bratteli-Vershik
model.
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Orbit equivalence and isomorphism

Definition 4. Fori = 1,2, let R; be an equiva-
lence relation on the topological space X;. Rq
and Ro are orbit equivalent, written R1 ~ R>
if there is a homeomorphism h . X1 — X5 such
that h x h(R1) = Rp or hlz]gr, = [h(z)]Rg, for
all x in X1.

Definition b. For: = 1,2, let R; be an étale
equivalence relation on the topological space
X;. Ry and R, are isomorphic, written R1 = R»
if there is a homeomorphism h . X1 — X5 such
that h x h : R{ — Ro iIs a homeomorphism.

Remark 1. It follows from a result of Sierpinski
that for R;,1 = 1,2 arising from actions of dis-
crete groups on connected spaces X,;,1 = 1, 2,
orbit equivalence is equivalent to conjugacy of
the actions. Hence, we restrict to totally dis-
connected spaces.
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Invariants

X, Cantor set, R, an étale equivalence relation.

Definition 6. A probability measure u on X is
R-invariant if

pu(e(U)) = u(U),
for all p €¢ F, U C Dom(yp), Borel. Let M(R)
denote the set of all such measures. R is

uniquely ergodic if there is a unique R-invariant
measure.

C(X,Z) = {f:X —Z| f continuous }
Bn(X,R) = {f€C(X,2)| [ fdu=0.
for all p € M(R)}
B(X,R) = <{xv—Xew)|¥r€EZF,

U C Dom(yp),clopen} >

B(X,R) C Bm(X,R)CC(X,Z).
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We define
D(R) = C(X,Z)/B(X,R)
Notice that D,,(R) is a quotient of D(R).

These are abelian groups and have an order:

DR)T = {[f1]f>0}
Dm(R)T {[f]] f >0}

and a distinguished positive element: [1].

Theorem 7. 1. (D(R),D(R)™,[1]) is an invari-
ant of isomorphism.

2. (Dm(R), Dm(R)7T,[1]) is an invariant of or-
bit equivalence.

Theorem 8. If M(R) = {u} (R is uniquely er-
godic), then
Dm(R) = {uw(E) | EC X clopen } +Z C R.
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D(R) and D,,(R) for AF-relations R

Theorem 9. Let (V,E) be a Bratteli diagram
and (X, R) its AF-relation. (D(R),D(R)T,[1])
is isomorphic to the inductive limit

(ZVo, ZTVo) B3 (Zv1, 27 V1) 3 (2Va, 21 V5) B

where

"YTL('U) — Z t(e)a
1(e)=v

or
(z,2+) 2 (zm, (zF)ym) 22 (22, (zH)ne) 3

where n;, = #V,, and A, is the adjacency ma-
trix of E,.. The element vg is mapped to [1].

The inductive limit of groups G4 it Go 2 ...
Is
UnGn/{g ~ an(g) | g € Gn}.
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Idea of proof: D(R) =C(X,Z)/B(X,R). For a
path p of length N, C(p) is clopen,
XC(p) € C(X,7Z):

[xc(p)] € D(R) — t(pn) € ZVN.

Notice that if t(py) = t(gqn), then
XC(p) ~ Xo(g) € BX, R).

Theorem 10. Let (V, E) be a Bratteli diagram
and (X, R) be the associated AF-relation. There
is a bijection between f : UnyVy — [0, 1] such
that

flvo) =1,f(w) = > [f(t(e))

i(e)=v

and R-invariant probability measures given by:

n(C(p)) = f(t(pN)).

15



Example 1

) [ ) ® ®
7 2 7 2 7 2,
D(R) = Dm(R) = {p27F |peZ, kezZT}.
Example 2

[1 1] [1 1]
1 0 1 0
7 L1 52 72

—

D(R) = Du(R) = {m + (



Theorem 11 (Elliott-Krieger). Let (V*, EY), i =
1,2 be two Bratteli diagrams with associated
AF-relations, (X;,R;),1=1,2. TFAE:

1. (X1,R1) = (X2, R2)

2. (D(Ry),D(R1)T,[1]) 2 (D(Rp), D(Ro)T, [1])

3. the two diagrams may be “intertwined”:

(Vi E1)




Our main technical result for the study of orbit
equivalence is:

Theorem 12 (Absorption Theorem). Let (X, R)
be a minimal AF-relation. Suppose thatY C X
and () is an AF-relation on Y satisfying:

1. Y isclosed and u(Y) = 0, for all u in M(R),
2. other technical conditions,
Then the equivalence relation generated by R

and Q, R= RV Q, is orbit equivalent to R:

RVQ~ R.
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Absorption Thm: Application 1

Consider the AF-equivalence relation for fol-
lowing Bratteli diagram

el

0—7— D(R) — %2[1/3] — Dy(R) — 0.

%) . % .
S COR

X ={1,3} x {1,2,3 = path space of

[ ) ® ® @ (X7 R)
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1. D(R) = Dm(R) = 3Z[1/3],

~

2. RCR,
3. R=Rv((1,2,2,2...),(3,2,2,...)).

Apply the absorption theorem with

Y
Q

to conclude that

{(1,2,2,2...),(3,2,2,...)},
Y xY.
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Theorem 13. Let (X,R) be a minimal AF-
relation. There exists an AF-relation R C R
such that

R=RVQ(A.T.= R~ R),
and

(D(R), D(R)T,[1]) & (Dm(R), Dm(R)T, [1]).

Corollary 14. For minimal AF-relations (X, R),
(Dm(R), Dm(R)T,[1]) is a complete invariant
for orbit equivalence.

Proof. i = 1,2, (X;, R;) minimal AF. Let R;,i =
1,2 be as above. If Dy, (R1) = Dm(R»>), then

D(R1) £ Dm(R1) = Dm(R2) = D(Ry).

Elliott-Krieger implies
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Absorption Thm: Application 2

Theorem 15 (Revisited). Let ¢ be a minimal
Z-action on a Cantor set X. Choose y in X
and let R C Ry, be the equivalence relation
generated by {(z,o(z)) | « # y}. Then R
is a minimal AF-relation and

Ry = RV (y, 9 (v))

(V means the equivalence relation generated
by).

Let

Y ={y,¢*(¥)}), Q=Y xY
‘The Absorption Theorem implies that R, ~ R.

Theorem 16 (Giordano-P-Skau, 1991). For
minimal AF-relations and minimal Z-actions,
(X,R), (Dm(R), Dm(R)T,[1]) is a complete in-
variant for orbit equivalence.
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Theorem 17 (Giordano-Matui-P-Skau, 2005).
For minimal AF-relations, minimal Z-actions
and minimal Z?-actions, (X, R),

(Dm(R), Dm(R)T,[1]) is a complete invariant
for orbit equivalence.

Theorem 18 (Giordano-Matui-P-Skau, 2008).
For minimal AF-relations and minimal Z%-actions,
d>1, (X,R), (Dm(R),Dm(R)T,[1]) is a com-
plete invariant for orbit equivalence.
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