Orbit equivalence for Cantor minimal systems

Ian F. Putnam, University of Victoria

joint work with Thierry Giordano (Ottawa), Hiroki Matui (Chiba), Christian Skau (Trondheim)

Cantor minimal systems

Let X be a Cantor set; compact, totally disconnected, metrizable, no isolated points.

Let G be a countable, discrete abelian group with an action φ on X: for s in G,

$$\varphi^s:X\to X$$

is a homeomorphism,

$$\varphi^0 = id_X,
\varphi^s \circ \varphi^t = \varphi^{s+t},$$

s, t in G.

- The action is *free* if, $\varphi^s(x) = x$ only if s = 0,
- The *orbit* of x in X is $\{\varphi^s(x) \mid s \in G\}$,
- The action is *minimal* if, for every x in X, its orbit is dense in X.

2^{∞} -odometer

Let $X = \{0,1\}^{\mathbb{N}}$ and define φ to be addition of $(1,0,0,\ldots)$, mod 2, with carry over to the right. For example:

$$\varphi(0,0,1,0,1,1,\ldots) = (1,0,1,0,1,1,\ldots)$$

$$\varphi(1,1,1,0,0,1,\ldots) = (0,0,0,1,0,1,\ldots)$$

$$\varphi(1,1,1,1,1,1,\ldots) = (0,0,0,0,0,0,\ldots)$$

 \mathbb{Z} action, φ^n is the nth iterate of φ , $n \geq 1$, or the -nth iterate of φ^{-1} , n < 0.

X is also the ring of 2-adic integers and the map is addition of 1.

More generally:

Let X be a compact Hausdorff space. Consider homeomorphisms, φ , whose domain and range are both open subsets of X. Suppose that \mathcal{F} is collection of such functions such that:

- 1. if φ, ψ are in \mathcal{F} , so is $\varphi \cap \psi$,
- 2. if φ, ψ are in \mathcal{F} , so is $\varphi \circ \psi$,
- 3. if φ is in \mathcal{F} , so is φ^{-1} ,
- 4. the collection of open sets U in X such that id_U is in $\mathcal F$ generates the topology of X.

It follows that

$$R = \cup \mathcal{F} = \{(x, \varphi(x)) \mid \varphi \in \mathcal{F}, x \in Dom(\varphi)\}\$$

is an equivalence relation and \mathcal{F} is a basis for a topology of R. We assume that this topology is second countable and Hausdorff. As a consequence the equivalence classes are countable.

Such an equivalence relation, with this topology, is called *étale*.

If φ is a free action of G on X, then let

$$\mathcal{F} = \{ \varphi^s | U \mid s \in G, U \subset X \text{ open } \}.$$

and

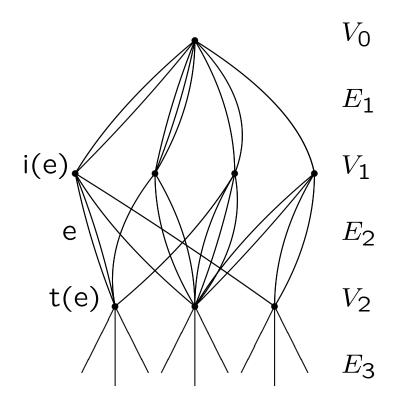
$$R_{\varphi} = \{(x, \varphi^s(x)) \mid x \in X, s \in G\}.$$

Equivalence classes are the orbits.

In general, ${\cal R}$ is minimal if every equivalence class is dense.

AF-relations

A Bratteli diagram is a vertex set $V = V_0 \cup V_1 \cup \ldots$ and an edge set $E = E_1 \cup E_2 \cup \ldots$ with initial and terminal maps $i : E_n \to V_{n-1}, t : E_n \to V_n$. Each V_n and E_n are finite with $V_0 = \{v_0\}$.



Let X be the set of infinite paths from v_0 :

$$X = \{(x_1, x_2, \ldots) \mid x_n \in E_n, t(x_n) = i(x_{n+1})\}$$

Relative topology from $X \subset \Pi_n E_n$.

If $p = (p_1, p_2, \dots, p_N)$ is a finite path, we let

$$C(p) = \{x \in X \mid x_n = p_n, 1 \le n \le N\},\$$

which is clopen.

For paths p,q of length N, with $t(p_N)=t(q_N)$, define $\varphi:C(p)\to C(q)$ by

$$\varphi(p_1, p_2, \dots, p_N, x_{N+1}, x_{N+2}, \dots)$$
= $(q_1, q_2, \dots, q_N, x_{N+1}, x_{N+2}, \dots).$

The set of all such φ is \mathcal{F} .

R is tail equivalence:

$$(x,y) \in R \Leftrightarrow \exists N, x_n = y_n, n \ge N.$$

For fixed N, let

$$(x,y) \in R_N \Leftrightarrow x_n = y_n, n \ge N.$$

We have

$$R_1 \subset R_2 \subset \cdots, \quad R = \cup_N R_N.$$

Definition 1. An étale equivalence relation R on X is AF if X is totally disconnected and R is the union of an increasing sequence of compact, open subequivalence relations.

Theorem 2. Every AF-relation can be presented by a Bratteli diagram.

Recall: 2^{∞} -odometer

Let $X = \{0,1\}^{\mathbb{N}}$ and define φ to be addition of $(1,0,0,\ldots)$, with carry over to the right. For example:

$$\varphi(0,0,1,0,1,1,\ldots) = (1,0,1,0,1,1,\ldots)$$

$$\varphi(1,1,1,0,0,1,\ldots) = (0,0,0,1,0,1,\ldots)$$

$$\varphi(1,1,1,1,1,1,\ldots) = (0,0,0,0,0,0,\ldots)$$

Let $R \subset R_{\varphi}$ be the equivalence relation generated by $\{(x, \varphi(x)) \mid x \neq (1, 1, 1, \ldots)\}$. Consider the Bratteli diagram with one vertex and two edges at every level (labelled 0 and 1). Then R is just tail equivalence.

Theorem 3. Let φ be a minimal \mathbb{Z} -action on a Cantor set X. Choose y in X and let $R \subset R_{\varphi}$ be the equivalence relation generated by $\{(x, \varphi^1(x)) \mid x \neq y\}$. Then R is a minimal AF-relation and

$$R_{\varphi} = R \vee (y, \varphi^{1}(y))$$

(\vee means the equivalence relation generated by).

Proof. Choose $Y_1 \supset Y_2 \supset \cdots$, clopen sets with intersection $\{y\}$ and let R_N be the equivalence relation generated by $\{(x, \varphi^1(x)) \mid x \notin Y_N\}$. Then

$$R_1 \subset R_2 \subset \cdots$$
 , $\cup_N R_N = R$,

and each R_N is compact and open.

Consequence: every minimal homeomorphism of a Cantor can be presented as a map on a Bratteli diagram. The edges are ordered and the map is to take successor under a type of reverse lexicographic order. The Bratteli-Vershik model.

Orbit equivalence and isomorphism

Definition 4. For i=1,2, let R_i be an equivalence relation on the topological space X_i . R_1 and R_2 are orbit equivalent, written $R_1 \sim R_2$ if there is a homeomorphism $h: X_1 \to X_2$ such that $h \times h(R_1) = R_2$ or $h[x]_{R_1} = [h(x)]_{R_2}$ for all x in X_1 .

Definition 5. For i=1,2, let R_i be an étale equivalence relation on the topological space X_i . R_1 and R_2 are isomorphic, written $R_1 \cong R_2$ if there is a homeomorphism $h: X_1 \to X_2$ such that $h \times h: R_1 \to R_2$ is a homeomorphism.

Remark 1. It follows from a result of Sierpinski that for R_i , i = 1, 2 arising from actions of discrete groups on connected spaces X_i , i = 1, 2, orbit equivalence is equivalent to conjugacy of the actions. Hence, we restrict to totally disconnected spaces.

Invariants

X, Cantor set, R, an étale equivalence relation.

Definition 6. A probability measure μ on X is R-invariant if

$$\mu(\varphi(U)) = \mu(U),$$

for all $\varphi \in \mathcal{F}$, $U \subset Dom(\varphi)$, Borel. Let M(R) denote the set of all such measures. R is uniquely ergodic if there is a unique R-invariant measure.

$$C(X,\mathbb{Z}) = \{f : X \to \mathbb{Z} \mid f \text{ continuous }\}$$
 $B_m(X,R) = \{f \in C(X,\mathbb{Z}) \mid \int_X f d\mu = 0, \}$
for all $\mu \in M(R)\}$
 $B(X,R) = \langle \{\chi_U - \chi_{\varphi(U)} \mid \varphi \in \mathcal{F}, \}$
 $U \subset Dom(\varphi), clopen\} >$
 $B(X,R) \subset B_m(X,R) \subset C(X,\mathbb{Z}).$

We define

$$D(R) = C(X,\mathbb{Z})/B(X,R)$$

 $D_m(R) = C(X,\mathbb{Z})/B_m(X,R)$

Notice that $D_m(R)$ is a quotient of D(R).

These are abelian groups and have an order:

$$D(R)^+ = \{ [f] \mid f \ge 0 \}$$

 $D_m(R)^+ = \{ [f] \mid f \ge 0 \}$

and a distinguished positive element: [1].

- **Theorem 7.** 1. $(D(R), D(R)^+, [1])$ is an invariant of isomorphism.
 - 2. $(D_m(R), D_m(R)^+, [1])$ is an invariant of orbit equivalence.

Theorem 8. If $M(R) = \{\mu\}$ (R is uniquely ergodic), then

$$D_m(R) = \{\mu(E) \mid E \subset X \text{ clopen }\} + \mathbb{Z} \subset \mathbb{R}.$$

D(R) and $D_m(R)$ for AF-relations R

Theorem 9. Let (V, E) be a Bratteli diagram and (X, R) its AF-relation. $(D(R), D(R)^+, [1])$ is isomorphic to the inductive limit

$$(\mathbb{Z}V_0, \mathbb{Z}^+V_0) \stackrel{\gamma_1}{\to} (\mathbb{Z}V_1, \mathbb{Z}^+V_1) \stackrel{\gamma_2}{\to} (\mathbb{Z}V_2, \mathbb{Z}^+V_2) \stackrel{\gamma_3}{\to}$$
where

$$\gamma_n(v) = \sum_{i(e)=v} t(e),$$

or

$$(\mathbb{Z}, \mathbb{Z}^+) \stackrel{A_1}{\rightarrow} (\mathbb{Z}^{n_1}, (\mathbb{Z}^+)^{n_1}) \stackrel{A_2}{\rightarrow} (\mathbb{Z}^{n_2}, (\mathbb{Z}^+)^{n_2}) \stackrel{A_3}{\rightarrow}$$

where $n_k = \#V_k$ and A_k is the adjacency matrix of E_k . The element v_0 is mapped to [1].

The inductive limit of groups $G_1 \stackrel{\alpha_1}{\to} G_2 \stackrel{\alpha_2}{\to} \cdots$ is

$$\cup_n G_n/\{g \sim \alpha_n(g) \mid g \in G_n\}.$$

Idea of proof: $D(R) = C(X,\mathbb{Z})/B(X,R)$. For a path p of length N, C(p) is clopen, $\chi_{C(p)} \in C(X,\mathbb{Z})$:

$$[\chi_{C(p)}] \in D(R) \to t(p_N) \in \mathbb{Z}V_N.$$

Notice that if $t(p_N) = t(q_N)$, then $\chi_{C(p)} - \chi_{C(q)} \in B(X, R)$.

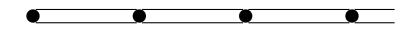
Theorem 10. Let (V, E) be a Bratteli diagram and (X, R) be the associated AF-relation. There is a bijection between $f : \cup_N V_N \to [0, 1]$ such that

$$f(v_0) = 1, f(v) = \sum_{i(e)=v} f(t(e))$$

and R-invariant probability measures given by:

$$\mu(C(p)) = f(t(p_N)).$$

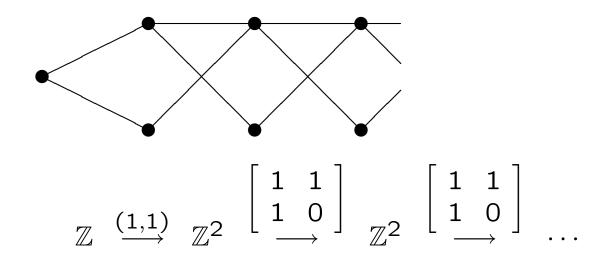
Example 1



$$\mathbb{Z} \quad \stackrel{2}{\longrightarrow} \quad \mathbb{Z} \quad \stackrel{2}{\longrightarrow} \quad \mathbb{Z} \quad \stackrel{2}{\longrightarrow} \quad \cdots$$

$$D(R) = D_m(R) = \{p2^{-k} \mid p \in \mathbb{Z}, k \in \mathbb{Z}^+\}.$$

Example 2



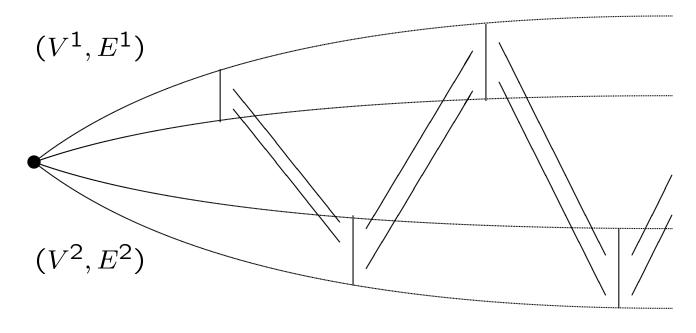
$$D(R) = D_m(R) = \{ m + \left(\frac{1 + \sqrt{5}}{2}\right) n \mid m, n \in \mathbb{Z} \}$$

Theorem 11 (Elliott-Krieger). Let (V^i, E^i) , i = 1, 2 be two Bratteli diagrams with associated AF-relations, (X_i, R_i) , i = 1, 2. TFAE:

1.
$$(X_1, R_1) \cong (X_2, R_2)$$

2.
$$(D(R_1), D(R_1)^+, [1]) \cong (D(R_2), D(R_2)^+, [1])$$

3. the two diagrams may be "intertwined":



Our main technical result for the study of orbit equivalence is:

Theorem 12 (Absorption Theorem). Let (X, R) be a minimal AF-relation. Suppose that $Y \subset X$ and Q is an AF-relation on Y satisfying:

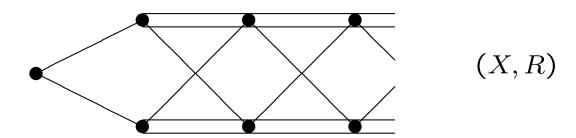
- 1. Y is closed and $\mu(Y) = 0$, for all μ in M(R),
- 2. other technical conditions,

Then the equivalence relation generated by R and Q, $\tilde{R} = R \vee Q$, is orbit equivalent to R:

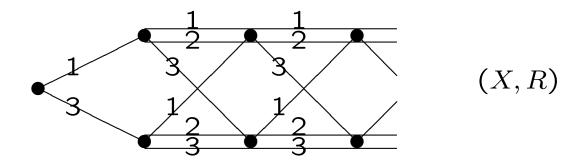
$$R \vee Q \sim R$$
.

Absorption Thm: Application 1

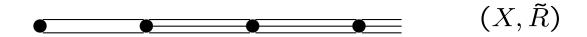
Consider the AF-equivalence relation for following Bratteli diagram



$$0 \to \mathbb{Z} \to D(R) \to \frac{1}{2}\mathbb{Z}[1/3] = D_m(R) \to 0.$$



$$X = \{1,3\} \times \{1,2,3\}^{\mathbb{N}} = \text{path space of }$$



1.
$$D(\tilde{R}) = D_m(\tilde{R}) = \frac{1}{2}\mathbb{Z}[1/3],$$

2.
$$R \subset \tilde{R}$$
,

3.
$$\tilde{R} = R \vee ((1, 2, 2, 2, \ldots), (3, 2, 2, \ldots)).$$

Apply the absorption theorem with

$$Y = \{(1, 2, 2, 2...), (3, 2, 2, ...)\},\$$

 $Q = Y \times Y.$

to conclude that

$$R \sim \tilde{R}$$
.

Theorem 13. Let (X,R) be a minimal AF-relation. There exists an AF-relation $R \subset \tilde{R}$ such that

$$\tilde{R} = R \vee Q(A.T. \Rightarrow \tilde{R} \sim R),$$

and

$$(D(\tilde{R}), D(\tilde{R})^+, [1]) \cong (D_m(R), D_m(R)^+, [1]).$$

Corollary 14. For minimal AF-relations (X, R), $(D_m(R), D_m(R)^+, [1])$ is a complete invariant for orbit equivalence.

Proof. i=1,2, (X_i,R_i) minimal AF. Let $\tilde{R}_i,i=1,2$ be as above. If $D_m(R_1)\cong D_m(R_2)$, then

$$D(\tilde{R}_1) \cong D_m(R_1) \cong D_m(R_2) \cong D(\tilde{R}_2).$$

Elliott-Krieger implies

$$R_1 \stackrel{A.T.}{\sim} \tilde{R}_1 \stackrel{E-K}{\cong} \tilde{R}_2 \stackrel{A.T.}{\sim} R_2.$$

Absorption Thm: Application 2

Theorem 15 (Revisited). Let φ be a minimal \mathbb{Z} -action on a Cantor set X. Choose y in X and let $R \subset R_{\varphi}$ be the equivalence relation generated by $\{(x, \varphi^1(x)) \mid x \neq y\}$. Then R is a minimal AF-relation and

$$R_{\varphi} = R \vee (y, \varphi^{1}(y))$$

(\vee means the equivalence relation generated by).

Let

$$Y = \{y, \varphi^1(y)\}, \quad Q = Y \times Y$$

The Absorption Theorem implies that $R_{\varphi} \sim R$.

Theorem 16 (Giordano-P-Skau, 1991). For minimal AF-relations and minimal \mathbb{Z} -actions, (X,R), $(D_m(R),D_m(R)^+,[1])$ is a complete invariant for orbit equivalence.

Theorem 17 (Giordano-Matui-P-Skau, 2005). For minimal AF-relations, minimal \mathbb{Z} -actions and minimal \mathbb{Z}^2 -actions, (X,R), $(D_m(R),D_m(R)^+,[1])$ is a complete invariant for orbit equivalence.

Theorem 18 (Giordano-Matui-P-Skau, 2008). For minimal AF-relations and minimal \mathbb{Z}^d -actions, $d \geq 1$, (X,R), $(D_m(R),D_m(R)^+,[1])$ is a complete invariant for orbit equivalence.