Some interactions between operator algebras and dynamical systems

Ian F. Putnam, University of Victoria

Étale equivalence relations

A *local homeomorphism*, φ , of X is a homeomorphism from one open subset of X to another.

Recall that $\varphi \subset X \times X$, so in usual notation φ : $d(\varphi) \to r(\varphi)$, where d, r be the two canonical projections from $X \times X$ to X. A *local action*, \mathcal{F} , is collection of local homeomorphisms such that:

1. $\{U \subset X \mid id_U \in \mathcal{F}\}$ is a neighbourhood base for X.

2. if φ is in \mathcal{F} , so is φ^{-1} ,

3. if φ, ψ are in \mathcal{F} , so is $\varphi \circ \psi$,

4. if φ, ψ are in \mathcal{F} , so is $\varphi \cap \psi$.

It follows from the first three conditions that

$$R = \cup \mathcal{F} = \{ (x, \varphi(x)) \mid \varphi \in \mathcal{F}, x \in d(\varphi) \}$$

is an equivalence relation.

The fourth implies that \mathcal{F} is a basis for a topology of R. We assume that this topology is second countable. As a consequence the equivalence classes are countable.

Such an equivalence relation, with this topology, is called *étale*. Example 1.

If φ is a free action of G on X, then let $\mathcal{F} = \{\varphi^s | U \mid s \in G, U \subset X \text{ open } \}.$ and

$$(x,s) \in X \times G \to (x,\varphi^s(x)) \in R_{\varphi}$$

is a homeomorphism.

Example 2.

X = [0,1] and $R = \Delta_X \cup \{(1,0), (0,1)\}$. There is *no* topology on R which makes it étale.

We say that R is *minimal* if every equivalence class is dense. (Does not need topology.)

A measure μ on X is R-invariant if

$$\mu(d(\varphi)) = \mu(r(\varphi)),$$

for every φ in \mathcal{F} . (Depends only on R).

 (X_1, R_1) and (X_2, R_2) are orbit equivalent, written $R_1 \sim R_2$, if there is a homeomorphism $h : X_1 \to X_2$ such that $h \times h(R_1) = R_2$ or $h[x]_{R_1} = [h(x)]_{R_2}$ for all x in X_1 .

 R_1 and R_2 are *isomorphic*, written $R_1 \cong R_2$ if, in addition, $h \times h : R_1 \to R_2$ is a homeomorphism.

C^* -algebras

If X is a compact, Hausdorff space, then $C(X) = \{f : X \to \mathbb{C} \mid f \text{ continuous }\}$ is a commutative, unital C^* -algebra.

Every commutative, unital is *-isomorphic to C(X), for some compact Hausdorff space X.

If (X, R) is an étale equivalence relation, then $C^*(X, R)$ is a natural C^* -algebra which replaces C(X/R). (Usually, X/R is a 'bad' space.)

Consider $C_c(R)$ with the obvious linear structure and product

$$f \cdot g(x,y) = \sum_{(x,z) \in R} f(x,z)g(z,y),$$

and involution $f^*(x,y) = \overline{f(y,x)}$.

Then endow $C_c(R)$ with a norm and complete.

Example 1: X compact, Hausdorff, R = equal $ity. C^*(X, R) = C(X) = C(X/R).$

Example 2: $X = \{1, 2, ..., N\}, R = X \times X.$

 $C^*(X,R) \cong M_N(\mathbb{C}).$

Generally, $f \in C(X) \rightarrow f\chi_{\Delta} \in C^*(X, R)$ is a homomorphism.

7

For general X, R, the formula for the product on $C_c(R)$:

$$f \cdot g(x,y) = \sum_{(x,z) \in R} f(x,z)g(z,y),$$

has problems.

Example 3: $X = [0, 1] R = \Delta \cup \{(0, 1), (1, 0)\}.$

$$\chi_{\{(0,1)\}}\chi_{\{(1,0)\}} = \chi_{\{(0,0)\}}$$

which is *not* a continuous function on R.

The condition that R is étale is *exactly* what is needed for this to be well-defined.

Example 5: X compact, φ an action of G.

Fix a φ -invariant measure on X. Hilbert space $L^2(X)$ with operators

$$f \cdot \xi(x) = f(x)\xi(x), f \in C(X),$$

and

$$u_a \xi = \xi \circ \varphi^{-a}, a \in G.$$

If the action is free and minimal,

$$C^*(X, R) = C^*\{f, u_a \mid f \in C(X), a \in G\}.$$

Identifying R and $X \times G$, $u_a = \chi_{X \times \{a\}}$.

AF equivalence relations

A Bratteli diagram is a vertex set $V = V_0 \cup V_1 \cup$... and an edge set $E = E_1 \cup E_2 \cup \ldots$ with initial and terminal maps $i : E_n \to V_{n-1}, t : E_n \to V_n$. Each V_n and E_n are finite with $V_0 = \{v_0\}$.

Let X be the set of infinite paths from v_0 :

 $X = \{(x_1, x_2, \ldots) \mid x_n \in E_n, t(x_n) = i(x_{n+1})\}$ Relative topology from $X \subset \prod_n E_n$. If $p = (p_1, p_2, \ldots, p_N)$ is a finite path, we let

$$C(p) = \{ x \in X \mid x_n = p_n, 1 \le n \le N \},\$$

which is clopen.

For paths p, q of length N, with $t(p_N) = t(q_N)$, define $\varphi : C(p) \to C(q)$ by

$$\varphi(p_1, p_2, \dots, p_N, x_{N+1}, x_{N+2}, \dots) = (q_1, q_2, \dots, q_N, x_{N+1}, x_{N+2}, \dots).$$

The set of all such φ is a local action, \mathcal{F} .

R is tail equivalence:

$$(x,y) \in R \Leftrightarrow \exists N, x_n = y_n, n \ge N.$$

For fixed N, let

$$(x,y) \in R_N \Leftrightarrow x_n = y_n, n \ge N.$$

We have

$$R_1 \subset R_2 \subset \cdots, \quad R = \cup_N R_N.$$

and each R_N is a compact, open subequivalence relation.

This makes them tractible, but rich.

Invariant measures for AF-equivalence relations.

We want to assign a measure to each clopen set. Clopen sets are the union of cylinder sets.

If p and q are paths with t(p) = t(q), then there is a local homeomorphism $\varphi : C(p) \to C(q)$ so $\mu(C(p)) = \mu(C(q))$; in other words, $\mu(C(P))$ depends only on t(p).

$$\mu(C(p)) = \omega(t(p)).$$

We require $\omega(v_0) = 1, \omega(v) = \sum_{i(e)=v} \omega(t(e)).$

There is a bijection between *R*-invariant measures μ and such functions $\omega : V \rightarrow [0, 1]$.

K-theory.

A, unital C^* -algebra, $K_0(A)$ abelian group

Flat earth version:

projections p in A: $p^2=p=p^\ast$,

 $p\sim q$: there exists v in $A,\;v^*v=p,vv^*=q$, or if there exists u in $A,\;upu^{-1}=q$,

If pq = 0, then p + q is a projection. p = 0 is the indentity.

Order $p \ge q$ if pq = q.

Example: $X = \{1, \ldots, N\}, R = X \times X, M_N(\mathbb{C}).$

1. Every projection is similar to one in C(X) (i.e. diagonal).

2. Two projections are similar if and only if they have the same rank, or the same trace.

Thus

$$K_0(M_N(\mathbb{C})) \cong \mathbb{Z}, p \to Rank(p).$$

Example: (X, R) AF.

1. Every projection is similar to one in C(X): χ_U , U clopen. Generated by $\chi_{C(p)}$'s.

2. If t(p) = t(q), $\varphi : C(p) \to C(q)$. Exercise: $\varphi \subset R$ is compact, open and

$$\chi_{\varphi}^* \chi_{\varphi} = \chi_{C(q)}, \quad \chi_{\varphi} \chi_{\varphi}^* = \chi_{C(p)}.$$

 $[\chi_{C(p)}]$ is determined by t(p).

If μ is an invariant measure, define $\tau : C_c(R) \rightarrow \mathbb{C}$ by

$$\tau(f) = \int_X f(x, x) d\mu(x),$$

satisfies $\tau(fg) = \tau(gf)$ (trace property) and gives

$$\hat{\tau}: K_0(C^*(X, R)) \to \mathbb{R}.$$

and the range is

$$\{\mu(U) \mid U \subset X \text{ clopen }\} + \mathbb{Z}.$$

16

Example 1

First, there is a unique invariant measure given by $\omega(v_N) = 2^{-N}$.

 $\hat{\tau}: K_0(C^*(X, R)) \cong \{p2^{-k} \mid p \in \mathbb{Z}, k \in \mathbb{Z}^+\}.$

Example 2

 $\hat{\tau}: K_0(C^*(X, R)) \cong \mathbb{Z} + \gamma \mathbb{Z} \subset \mathbb{R}.$

where γ is the golden mean.

What is different from the case of $M_N(\mathbb{C})$ is that $\tau(p) = \tau(q)$ does *not* imply $p \sim q$.

Example 3

 $\hat{\tau}: K_0(C^*(X, R)) \to \{p2^{-1}3^{-k} \mid p \in \mathbb{Z}, k \ge 0\}.$ has kernel $\mathbb{Z}([\chi_{C(e)}] - [\chi_{C(e')}]), e, e'$ the two edges in E_1 . **Theorem 1** (Elliott-Krieger). Let $(V^i, E^i), i = 1, 2$ be two Bratteli diagrams with associated AF-relations, $(X_i, R_i), i = 1, 2$. TFAE:

- 1. the two diagrams may be "intertwined"
- 2. $(X_1, R_1) \cong (X_2, R_2)$
- 3. $C^*(X_1, R_1) \cong C^*(X_2, R_2)$
- 4. $K_0(C^*(X_1, R_1)) \cong K_0(C^*(X_2, R_2))$ as ordered abelian groups with order unit.

Theorem 2 (Absorption Theorem). Let (X, R)be a minimal AF-relation. Suppose that $Y \subset X$ and Q is an AF-relation on Y satisfying:

- 1. Y is closed and $\mu(Y) = 0$, for all R-invariant μ .
- 2. other technical conditions,

Then the equivalence relation generated by Rand Q, $\tilde{R} = R \lor Q$, is orbit equivalent to R:

$$R \lor Q \sim R.$$

In general, if $R \subset \tilde{R}$ are both AF, then $K_0(C^*(X, \tilde{R}))$ is a quotient of $K_0(C^*(X, R))$; both are generated by projections in C(X), but the former has more equivalences.

Also, we have seen

 $\hat{\tau}$: $K_0(C^*(X, R)) \to \{\mu(U) \mid U \subset X \text{ clopen }\} + \mathbb{Z}$ is a quotient.

For R minimal, this can be realized by an $R\subset\tilde{R},$ also AF, such that

$$\tilde{R} = R \lor Q(\mathsf{A}.\mathsf{T}. \Rightarrow \tilde{R} \sim R),$$

Combining with the Elliott-Krieger Theorem, we get:

Corollary 3. For minimal, uniquely ergodic AFequivalence relations

$$\{\mu(U) \mid U \subset X \text{ clopen }\} + \mathbb{Z}$$

is a complete invariant for orbit equivalence.
22

Theorem 4. Let φ be a minimal \mathbb{Z} -action on a Cantor set X. Choose y in X and let $R \subset$ R_{φ} be the equivalence relation generated by $\{(x, \varphi^1(x)) \mid x \neq y\}$. Then R is a minimal AFrelation and

$$R_{\varphi} = R \lor (y, \varphi^{1}(y)).$$

Let

$$Y = \{y, \varphi^{1}(y)\}, \quad Q = Y \times Y$$

The Absorption Theorem implies that $R_{\varphi} \sim R$.

Theorem 5 (Giordano-P-Skau, 1991). For minimal uniquely ergodic AF-relations and \mathbb{Z} -actions, (X, R),

$$\{\mu(U) \mid U \subset X \text{ clopen }\} + \mathbb{Z}$$

is a complete invariant for orbit equivalence.