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Étale equivalence relations

A local homeomorphism, ϕ, of X is a homeo-

morphism from one open subset of X to an-

other.

Recall that ϕ ⊂ X×X, so in usual notation ϕ :

d(ϕ) → r(ϕ), where d, r be the two canonical

projections from X ×X to X.
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A local action, F, is collection of local home-

omorphisms such that:

1. {U ⊂ X | idU ∈ F} is a neighbourhood base

for X.

2. if ϕ is in F, so is ϕ−1,

3. if ϕ,ψ are in F, so is ϕ ◦ ψ,

4. if ϕ,ψ are in F, so is ϕ ∩ ψ.

It follows from the first three conditions that

R = ∪F = {(x, ϕ(x)) | ϕ ∈ F , x ∈ d(ϕ)}

is an equivalence relation.

The fourth implies that F is a basis for a topol-

ogy of R. We assume that this topology is sec-

ond countable. As a consequence the equiva-

lence classes are countable.

Such an equivalence relation, with this topol-

ogy, is called étale.
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Example 1.

If ϕ is a free action of G on X, then let

F = {ϕs|U | s ∈ G,U ⊂ X open }.

and

(x, s) ∈ X ×G→ (x, ϕs(x)) ∈ Rϕ

is a homeomorphism.

Example 2.

X = [0,1] and R = ∆X ∪{(1,0), (0,1)}. There

is no topology on R which makes it étale.
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We say that R is minimal if every equivalence

class is dense. (Does not need topology.)

A measure µ on X is R-invariant if

µ(d(ϕ)) = µ(r(ϕ)),

for every ϕ in F. (Depends only on R).

(X1, R1) and (X2, R2) are orbit equivalent, writ-

ten R1 ∼ R2, if there is a homeomorphism

h : X1 → X2 such that h × h(R1) = R2 or

h[x]R1
= [h(x)]R2

for all x in X1.

R1 and R2 are isomorphic, written R1
∼= R2 if,

in addition, h × h : R1 → R2 is a homeomor-

phism.
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C∗-algebras

If X is a compact, Hausdorff space, then

C(X) = {f : X → C | f continuous }

is a commutative, unital C∗-algebra.

Every commutative, unital is ∗-isomorphic to

C(X), for some compact Hausdorff space X.

If (X,R) is an étale equivalence relation, then

C∗(X,R) is a natural C∗-algebra which replaces

C(X/R). (Usually, X/R is a ‘bad’ space.)

6



Consider Cc(R) with the obvious linear struc-

ture and product

f · g(x, y) =
∑

(x,z)∈R
f(x, z)g(z, y),

and involution f∗(x, y) = f(y, x).

Then endow Cc(R) with a norm and complete.

Example 1: X compact, Hausdorff, R = equal-

ity. C∗(X,R) = C(X) = C(X/R).

Example 2: X = {1,2, . . . , N}, R = X ×X.

C∗(X,R) ∼= MN(C).

Generally, f ∈ C(X) → fχ∆ ∈ C∗(X,R) is a

homomorphism.

7



For general X,R, the formula for the product

on Cc(R):

f · g(x, y) =
∑

(x,z)∈R
f(x, z)g(z, y),

has problems.

Example 3: X = [0,1] R = ∆ ∪ {(0,1), (1,0)}.

χ{(0,1)}χ{(1,0)} = χ{(0,0)}

which is not a continuous function on R.

The condition that R is étale is exactly what

is needed for this to be well-defined.
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Example 5: X compact, ϕ an action of G.

Fix a ϕ-invariant measure on X. Hilbert space

L2(X) with operators

f · ξ(x) = f(x)ξ(x), f ∈ C(X),

and

uaξ = ξ ◦ ϕ−a, a ∈ G.

If the action is free and minimal,

C∗(X,R) = C∗{f, ua | f ∈ C(X), a ∈ G}.

Identifying R and X ×G, ua = χX×{a}.
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AF equivalence relations

A Bratteli diagram is a vertex set V = V0∪V1∪
. . . and an edge set E = E1∪E2∪ . . . with initial
and terminal maps i : En → Vn−1, t : En → Vn.
Each Vn and En are finite with V0 = {v0}.
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Let X be the set of infinite paths from v0:

X = {(x1, x2, . . .) | xn ∈ En, t(xn) = i(xn+1)}

Relative topology from X ⊂ ΠnEn.

If p = (p1, p2, . . . , pN) is a finite path, we let

C(p) = {x ∈ X | xn = pn,1 ≤ n ≤ N},

which is clopen.

For paths p, q of length N , with t(pN) = t(qN),

define ϕ : C(p)→ C(q) by

ϕ(p1, p2, . . . , pN , xN+1, xN+2, . . .)

= (q1, q2, . . . , qN , xN+1, xN+2, . . .).

The set of all such ϕ is a local action, F.
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R is tail equivalence:

(x, y) ∈ R⇔ ∃N, xn = yn, n ≥ N.

For fixed N , let

(x, y) ∈ RN ⇔ xn = yn, n ≥ N.

We have

R1 ⊂ R2 ⊂ · · · , R = ∪NRN .

and each RN is a compact, open subequiva-

lence relation.

This makes them tractible, but rich.
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Invariant measures for AF-equivalence relations.

We want to assign a measure to each clopen

set. Clopen sets are the union of cylinder sets.

If p and q are paths with t(p) = t(q), then there

is a local homeomorphism ϕ : C(p) → C(q) so

µ(C(p)) = µ(C(q)); in other words, µ(C(P ))

depends only on t(p).

µ(C(p)) = ω(t(p)).

We require ω(v0) = 1, ω(v) =
∑
i(e)=v ω(t(e)).

There is a bijection between R-invariant mea-

sures µ and such functions ω : V → [0,1].
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K-theory.

A, unital C∗-algebra, K0(A) abelian group

Flat earth version:

projections p in A: p2 = p = p∗,

p ∼ q: there exists v in A, v∗v = p, vv∗ = q, or

if there exists u in A, upu−1 = q,

If pq = 0, then p + q is a projection. p = 0 is

the indentity.

Order p ≥ q if pq = q.
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Example: X = {1, . . . , N}, R = X ×X, MN(C).

1. Every projection is similar to one in C(X)

(i.e. diagonal).

2. Two projections are similar if and only if

they have the same rank, or the same trace.

Thus

K0(MN(C)) ∼= Z, p→ Rank(p).
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Example: (X,R) AF.

1. Every projection is similar to one in C(X):

χU , U clopen. Generated by χC(p)’s.

2. If t(p) = t(q), ϕ : C(p) → C(q). Exercise:

ϕ ⊂ R is compact, open and

χ∗ϕχϕ = χC(q), χϕχ
∗
ϕ = χC(p).

[χC(p)] is determined by t(p).

If µ is an invariant measure, define τ : Cc(R)→
C by

τ(f) =
∫
X
f(x, x)dµ(x),

satisfies τ(fg) = τ(gf) (trace property) and

gives

τ̂ : K0(C∗(X,R))→ R.

and the range is

{µ(U) | U ⊂ X clopen }+ Z.
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Example 1

y y y y

First, there is a unique invariant measure given
by ω(vN) = 2−N .

τ̂ : K0(C∗(X,R)) ∼= {p2−k | p ∈ Z, k ∈ Z+}.

Example 2
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τ̂ : K0(C∗(X,R)) ∼= Z + γZ ⊂ R.

where γ is the golden mean.
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What is different from the case of MN(C) is

that τ(p) = τ(q) does not imply p ∼ q.

Example 3

y
e’

e

y

y

y

y

y

y
��

��
�
��

�

H
HHH

HHH
H

@
@
@
@
@
@
@
@�

�
�
�
�
�
�
�@
@
@
@
@
@
@
@�

�
�
�
�
�
�
�@
@
@

�
�
�

(X,R)

τ̂ : K0(C∗(X,R))→ {p2−13−k | p ∈ Z, k ≥ 0}.

has kernel Z([χC(e)] − [χC(e′)]), e, e′ the two

edges in E1.
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Theorem 1 (Elliott-Krieger). Let (V i, Ei), i =

1,2 be two Bratteli diagrams with associated

AF-relations, (Xi, Ri), i = 1,2. TFAE:

1. the two diagrams may be “intertwined”

2. (X1, R1) ∼= (X2, R2)

3. C∗(X1, R1) ∼= C∗(X2, R2)

4. K0(C∗(X1, R1)) ∼= K0(C∗(X2, R2)) as or-

dered abelian groups with order unit.
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Theorem 2 (Absorption Theorem). Let (X,R)

be a minimal AF-relation. Suppose that Y ⊂ X
and Q is an AF-relation on Y satisfying:

1. Y is closed and µ(Y ) = 0, for all R-invariant

µ.

2. other technical conditions,

Then the equivalence relation generated by R

and Q, R̃ = R ∨Q, is orbit equivalent to R:

R ∨Q ∼ R.
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In general, if R ⊂ R̃ are both AF, then
K0(C∗(X, R̃)) is a quotient of K0(C∗(X,R));
both are generated by projections in C(X), but
the former has more equivalences.

Also, we have seen

τ̂ : K0(C∗(X,R))→ {µ(U) | U ⊂ X clopen }+Z
is a quotient.

For R minimal, this can be realized by an R ⊂
R̃, also AF, such that

R̃ = R ∨Q(A.T.⇒ R̃ ∼ R),

Combining with the Elliott-Krieger Theorem,
we get:

Corollary 3. For minimal, uniquely ergodic AF-
equivalence relations

{µ(U) | U ⊂ X clopen }+ Z
is a complete invariant for orbit equivalence.
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Theorem 4. Let ϕ be a minimal Z-action on

a Cantor set X. Choose y in X and let R ⊂
Rϕ be the equivalence relation generated by

{(x, ϕ1(x)) | x 6= y}. Then R is a minimal AF-

relation and

Rϕ = R ∨ (y, ϕ1(y)).

Let

Y = {y, ϕ1(y)}, Q = Y × Y

The Absorption Theorem implies that Rϕ ∼ R.

Theorem 5 (Giordano-P-Skau, 1991). For min-

imal uniquely ergodic AF-relations and Z-actions,

(X,R),

{µ(U) | U ⊂ X clopen }+ Z

is a complete invariant for orbit equivalence.
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