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A Penrose tiling
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An Octagonal or Ammann-Beenker tiling
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Another Octagonal tiling
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Flip-flop
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Aperiodic Order

In the 1960’s and 70’s, various geometric pat-

terns in Euclidean space were discovered which

displayed a high degree of regularity, but not

periodicity.

The most famous are Roger Penrose’ tilings.

There are an uncountable number of such tilings

(even after ignoring translations), but they all

have the same highly regular local structure.

For example: given any finite patch in any Pen-

rose tiling, there is a constant R such that the

same patch will appear in any ball of radius R

in any other Penrose tiling.
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In 1980, Shechtman et. al. discovered physi-

cal materials (now called quasicrystals) which

display the same kind of aperiodic order: pure-

point diffraction patterns, but five-fold rota-

tional symmetry. There are by now several

hundred such materials known.

There is no definition of ‘Aperiodic order’, per

se, but there are methods for producing exam-

ples. The two most common are the Substi-

tution Method and the Projection Method.

Many famous tilings, such as the Penrose tiling

and the Ammann-Beenker or octagonal tiling

may be constructed by both methods.
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The Penrose substitution:
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The projection method

We begin with the data:

Physical space G ∼= Rd

Internal space H ∼= RN

Projections π : G×H → G

π⊥ : G×H → H
Lattice L ⊂ G×H
Window W ⊂ H

We require

π | L injective
L = π⊥(L) ⊂ H dense

W a polyhedron

For x in G×H, define

G ⊃ Λx = π((x+ L) ∩ (G×W )).
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For x in G×H, define

Λx = π((x+ L) ∩ (G×W )).

for x non-singular : (x + L) ∩ (G × ∂W ) = ∅.
N ⊂ G×H denotes the non-singular points.

The result is a model set. It is uniformly dense

and uniformly discrete (Delone set). It is ape-

riodic.

Observe:

x+ L = y + L ⇒ Λx = Λy

Parameter space: N/L ⊂ G×H/L.

Λx+s = Λx + s if s ∈ G.

Dynamical system with G acting.
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Octagonal tilings:

The internal space H = R2,
Lattice L = Z{e1, e2, e3, e4},

Projected lattice L = π⊥(L),
Window W .

-
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We define a metric on {Λx | x ∈ N}:

d(Λ,Λ′) < ε

if there exist y, y′ ∈ G, |y|, |y′| < ε with

(Λ− y) ∩B(0, ε−1) = (Λ′ − y′) ∩B(0, ε−1)

The hull, Ω, is the completion of {Λx | x ∈ N}
in this metric.

We note:

Ω is compact,
Λ ∈ Ω may be seen as a subset, Λ ⊂ G

G acts by translation, minimal and free

We are interested in the crossed product C∗-
algebra

C(Ω)×G.
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Example:

G = R1 = H, L = Rθ(Z2) as before, W = [0,1].

The origin is singular as it sits on the boundary

of W . Consider Λ(0,t) for small values of t.

For t > 0, (0, t) ∈ (0, t)+L is in the strip G×W

and hence 0 is in Λ(0,t).

For t < 0, (0, t) is not in the strip and 0 is not

in Λ(0,t).

As t tends to zero from below,

Λ(0,t) → Λ,

where Λ does not containing 0. As t tends to

zero from above,

Λ(0,t) → Λ ∪ {0}.
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Consider the C∗-algebra

{f · χW + g · χH\W | f, g ∈ C0(H)}
(as multiplications operators on L2(H)).

The spectrum is just H, with ∂W removed,
replaced by two copies, one is a limit of the
interior points of W , the other of the exterior
points. (Castle with moat.)

Instead, consider

C∗{f, χW+a | f ∈ C0(H), a ∈ L}.
(Caution: L is a dense subgroup of H!) Let
H̃(W ) denote its spectrum. That the C∗-algebra
contains C0(H) means H̃(W ) maps onto H.

Theorem 1.The space G× H̃(W ) has contin-
uous actions of L and G. moreover, we have

(Ω, G) ∼= (G× H̃(W )/L, G),

as dynamical systems.

Theorem 2.The C∗-algebra C(Ω)×G is strongly
Morita equivalent to C0(H̃(W ))× L.
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How to improve on H̃(W )?

Let P be the set of all affine, codmiension one

hyperplanes which form the boundaries of W ,

along with all their translates by L. For P in

P, let P+ and P− denote the two half-spaces

obtained as H \ P .

Consider

C∗{f · χP± | f ∈ C0(H), P ∈ P}.

Let H̃(P) denote it spectrum. Each hyper-

plane in P is replaced by two.

Proposition 3 (Forrest, Hunton, Kellendonk).

Assume W is the canonical window, namely the

projection of the unit cube in L to H. Then

H̃(W ) = H̃(P).

18



Octagonal tiling: P consists of the L-translates

of four lines, the two axes and the two lines

through the origin with slopes ±1. Let Pi de-

note the translations under L of the first i of

them, 1 ≤ i ≤ 3.

We have:

C0(H)× L ⊂ C0(H̃(P1))× L

⊂ C0(H̃(P2))× L

⊂ C0(H̃(P3))× L

⊂ C0(H̃(P))× L.

This allows us to compute the K-theory of

these C∗-algebras, working up the chain.
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C0(H)× L ⊂ C0(H̃(P1))× L.

Let P1 be the x-axis, L1 = L ∩ P1
∼= Z2 and

L = L1⊕L′
1. So P1+L1 = P1 and {P1+L′

1} =
P1.

Let i+, i− be the two inclusions of P1 into
H̃(P1) as the boundaries of P+

1 and P−
1 .

For f in C0(H̃(P1)), define π±(f) in Cb(P1×L′
1)

by

π±(f)(x, s) = f(i±(x) + s).

Observe that for f in C0(H):

π+(fχ
P+
1
)(x, s)− π−(fχP+

1
)(x, s) = f(x)δ0(s)

which is in C0(P1 × L′
1).

If we include L-actions, we have

C0(P1 × L′
1)× L = C0(P1 × L′

1)× L1 × L′
1

∼= C0(P1)× L1 ⊗K(l2(L′
1)).
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Each map π± may be extended to include the

action of L and we obtain

π± : C0(H̃(P1))× L → M(C0(P1)× L1 ⊗K)

Range(π+ − π−) ⊂ C0(P1)× L1 ⊗K.

This means that

[π+, π−] ∈ KK(C0(H̃(P1))× L,C0(P1)× L1).

This map becomes part of a six-term exact

sequence

K∗(C0(H)× L)
K∗(C0(H̃(P1))× L)
K∗(C0(P1)× L1)

The first is (Morita equivalent to) a noncom-

mutative 4-torus and the last to a noncommu-

tative 2-torus.
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A similar exact sequence may be used on the

inclusion

C0(H̃(P1))× L ⊂ C0(H̃(P2))× L.

Continuing this reproduces a spectral sequence

first obtained by Forrest-Hunton-Kellendonk in

cohomology.

What is special to the situation in the oc-

tagonal tiling here is that P1 is the internal

space and L1 the projected lattice for a one-

dimensional projection method tiling: these are

the horizontal patterns in the flip-flop.
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