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Hyperbolicity

An invertible linear map T : R? — R? is hyper-
bolic if R = ES @ E¥, T-invariant,
C>00< <1,

|T"v]| < CA*||v]l, n>1 veEE?’
| T~ || < CX*||v||, n>1 veEY,

Same definition replacing R¢ by a vector bundle
(over compact space).

M compact manifold, ¢ : M — M diffeomor-
phism is Anosov if Do : T'M — T M is hyper-
bolic.

Smale: M, Axiom A: replace T'M above by
TM|NW(¢) = FE% @ EY where NW(yp) is the
set of non-wandering points. But NW(p) is
usually a fractal, not a submanifold.



Smale spaces (D. Ruelle)

(X,d) compact metric space,

@ . X — X homeomorphism 0 < A < 1,

For z in X and ¢ > 0 and small, there is a
local stable set X%(x,e) and a local unstable

set X¥%(x,¢):

1. X%(x,¢) x XY (x,e) is homeomorphic to a
neighbourhood of z,

2. @-invariance,

3.

d(e(y),e(z)) <Xd(y,z), y,z € X°(x,¢),
de (), 1 (2)) < Ad(y,2), y,z€ X%x,e),



That is, we have a local picture:

Global stable and unstable sets:

X'a) = {y| lim_d"(@),¢" () = 0}
XU@) = {y| lim d(e~"(2),¢ " (1)) =0}

T hese are equivalence relations.

X3(x,e) C X3(x), X% (x,e) C XU (x).



Example 1

Thelinear map A = ( i (1) ) IS hyperbolic. Let
~v > 1 be the Golden mean,

(v, 1A = ~(v,1)
(-1,7)A = —y 1(~1,7)

As det(A) = —1, it induces a homeomorphism
of R2/Z?2 which is Anosov.

X% and X% are Kronecker foliations with lines
of slope —y~ 1 and #.



X= Mg () -9\

n =0
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Example 3: Shifts of finite type (SFTs)

Let G = (G9,G1,i,t) be a finite directed graph.
Then we have the shift space and shift map:
Sa = {(eM_ | feat
i(eP T = t(e¥), for all n}
o(e)f = eFTL ieft shift”
The local product structure is given by
S5(e, 1) = {(...,%,x,x¢e% el e ..)}
>%e, 1) ={(.., e 2 e L e0 w5 %, .. )}



Smales spaces have a large supply of periodic
points and it is interesting to count them.

Adjacency matrix of G: G® = {1,2,...,N}, Ag
iIs N x N with

(Ag)i; = #edges from i to j

Theorem 1. Let A; be the adjancency matrix
of the graph G. For any p > 1, we have

#{e € g | oP(e) = e} =Tr(Ag).

This is reminiscent of the Lefschetz fixed-point
formula for smooth maps of compact mani-
folds.

Question 2. Is the right hand side actually the
result of o acting on some homology theory of
(Xg,0)7

Positive answers by Bowen-Franks and Krieger.
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Krieger’s invariants for SFT'’s

W. Krieger defined invariants, which we de-
note by D%(Xq,0), D*(Xn,0), for shifts of fi-
nite type by considering stable and unstable
equivalence as groupoids and taking its groupoid
C*-algebra:

Ko(C™(X?)), Ko(C™(X?))

In this case, these are both AF-algebras and

DN (S, 0) = limzN 26 7N A6 .

(For the unstable, replace Ag with AL.) Each
comes with a canonical automorphism.

Returning to Smale spaces ...



Bowen’s Theorem

Theorem 3 (Bowen). For a non-wandering Smale
space, (X, ), there exists a SFT (X,0) and

(X, 0) = (X, p),

with mo o = @ om, continuous, surjective and
finite-to-one.

First, this means that SFT’'s have a special
place among Smale spaces. Secondly, one can
try to understand (X, ¢) by investigating (X, o).
For example, they will have the same entropy.
Of course, (2,0) is not unique.

A. Manning used Bowen's Theorem to pro-
vide a formula counting the number of periodic
points for (X, ).
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For N > 0, define

ZN(T‘-) — {(607617“°76N) I
m(en) = m(eo),
0<n< N}
Forall N > 0, (X n(7),0) is also a shift of finite
type. Observe that Sy acts on X (m).

Theorem 4 (Manning). For a non-wandering
Smale space (X, ), (X,0) as above and p > 1,
we have

#{z € X | ¢P(z) = =}
= Y n(~DNTr(ol : D3(Zn(7))alt
— D3(Z ()t

Question 5 (Bowen). Is there a homology the-
ory for Smale spaces H«(X, p) which provides a
L_efschetz formula, counting the periodic points?

In fact, the groups D5(Z (7))t appear to be
giving a chain complex.
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Idea: forO<n < N, let §, : Zn(mw) > Zny_1(x)
be the map which deletes entry n.

Let (6n)x 1 DS(Z () — DS (Zy_1 ()% be
the induced map and 9 = 2 (—1)"(dn)« to
make a chain complex.

This is wrong: a map

p:(Z,0) = (X, 0)

between shifts of finite type does not always in-
duce a group homomorphism between Krieger's
invariants.

While it is true that p will map R°(X) to R3(X/)

the functorial properties of the construction of
groupoid C*-algebras is subtle.
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Let 7 : (Y,v) — (X,¢) be a factor map be-
tween Smale spaces. For every y in Y, we
have (Y*(y)) C X*(m(y)).

Definition 6. 7 is s-bijective if
w:Y%(y) - X5(w(y)) is bijective, for all y.

Theorem 7. If 7 is s-bijective thenm : Y%(y,e) —
X3(m(y),€) is a local homeomorphism.

Theorem 8. Let 7 : (X,0) — (X/,0) be a fac-
tor map between SFT's.

If = is s-bijective, then there is a map
7% D%(X,0) — D%(X/, o).
If = is u-bijective, then there is a map

7% D3(X/,0) — D(Z, 0).

Bowen's 7 : (X,0) — (X,¢) is not s-bijective
or u-bijective if X is a torus, for example.
13



A better Bowen’s Theorem

Let (X,p) be a Smale space. We look for a
Smale space (Y,v) and a factor map

Ts - (Yaw) — (Xa 90)

satisfying:

1. 75 is s-bijective,

2. dim(Y%(y,e)) = 0.

That is, Y¥(y,¢) is totally disconnected, while
YS(y,e) is homeomorphic to X*4(mws(y),€).

This is a “one-coordinate” version of Bowen's
T heorem.
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Similarly, we look for a Smale space (Z,¢() and
a factor map m, : (Z,() — (X, ) satisfying
dim(Z%(z,e)) = 0, and m, is u-bijective.

We call = = (Y, ¢, 7s,Z,(,m,) a s/u-bijective
pair for (X, ).

Theorem 9. If (X, ¢) is a non-wandering Smale
space, then there exists an s/u-bijective pair.

Consider the fibred product:

> ={(y,2) €Y x Z | ms(y) = mu(2)}
with

pyz\[)s
Y Z
7"'5\* Au
X

ps(y,z) = =z is s-bijective, pyu(y,z) = vy is u-
bijective. Hence, > is a SFT.
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For L, M > 0, we define

ZL,M(T‘-) — {(y07"'7yLazO7°°°7zM) ‘
Y EY,Zm S Z?

Ws(yl) — WU(Zm)}-
Each of these is a SFT.

Moreover, the maps

512

Y

2L M— 2[—-1M:

Sm: XL M~ ZLM-1
which delete y; and z;, are s-bijective and u-
bijective, respectively.

This is the key point! We have avoided the
iIssue which caused our earlier attempt to get
a chain complex to fail.
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We get a double complex:

D3(Eg )Wt D3 (Zq p)Mt - DS(Zp p) W

D¥(X0,1)™ - D3(£1,1)" - D*(Zp 1)~

D*(X0,0)™" - D*(1,0)" - D*(Z2,0) ™ -

oy S pm=nD*(Zp pr)

— S pm=N_1D5(Zp ar)

O = S o=l + =X (—1)mTMasy

HY(m) = ker(9x)/Im(0x41)-
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Recall: beginning with (X, ), we select an
s/u-bijective pair m = (Y, ¢, 75, Z,{m,) construct
the double complex and compute H}, (7).

Theorem 10. The groups Hj/(w) do not de-
pend on the choice of s/u-bijective pair .

From now on, we write H3, (X, ¢).

Theorem 11. The functor H{ (X, p) is covari-
ant for s-bijective factor maps, contravariant
for u-bijective factor maps.

Theorem 12. The groups H3 (X, ) are all fi-

nite rank and non-zero for only finitely many
N € 7.
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We can regard ¢ : (X,p) — (X,p), which is
both s and u-bijective and so induces an auto-
morphism of the invariants.

Theorem 13. (Lefschetz Formula) Let (X, p)
be any non-wandering Smale space and let p >
1.

So (DN Tr[(e)P: H(X,9) ®Q
NezZ

— Hy (X, ) ® Q]

#{z e X | ¢'(z) =z}
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Example 1: Shifts of finite type

If (X,p)=(X,0), then Y =% = Z is an s/u-
bijective pair.

The double complex D is:

O 0-—0

O 0-—0

DS(Z)-—0-—0
and H§(Z,0) = D3(X) and H(X,0) = 0, N #
0.
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Example 2: dim(X®(x,¢)) = 0.

(As an example, the solenoid we saw in exam-
ple 2.)

We may find a SFT and s-bijective map

s (X,0) = (X, ).

The Y =% 7= X is an s/u-bijective pair and
the double complex D?* is:

DS(ZO)alt%DS(Zl)alt%DS(ZQ>alt<7

21



Example 2': (X, p) = 2°°-solenoid (Bazett-
P.)

An s/u-bijective pair is Y = {0,1}%, the full
2-shift, Z = X and the double complex D? is

O 0-—0

O 0—0

Z[1/2]-—7-—0
and we get

HE(X, ) 2 2[1/2], Hi(X,9) 2 Z,
H%(Zg,0) =0,N #0,1.

Generalized 1-solenoids (Williams, Yi, Thom-
sen): Amini, P, Saeidi Gholikandi.
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Example 3: Our Anosov example (Bazett-
P.):

( 1 (1) ) ' R? /7% — R? /72

The double complex D?® looks like:

O 0 O
72<—7~—0
23%22%0%

and
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