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• Introduction to aperiodic order

• Constructing examples

• Some basic topology which is helpful

• Some more advanced topology that is help-

ful
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A Penrose tiling
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An Octagonal or Ammann-Beenker tiling
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Work in Euclidean space Rd; B(x, r) denotes

the usual open ball at x, radius r.

A tile is a polyhedron in Rd.

A tiling is a collection of tiles with disjoint in-

teriors that cover Rd. Usually we assume there

are only finitely many tiles up to rigid motions

(or translations).

A patch in a tiling is a finite subcollection of

the tiles.

Tiles may be translated: t+ x, t ⊂ Rd, x ∈ Rd.

A tiling T may be translated: T + x = {t+ x |
t ∈ T}.

T is periodic if T + x = T , for some x 6= 0.

Periodicity is pleasant.
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Aperiodicity is easy:

Consider a tiling of the plane by unit squares,

matching edge to edge and vertex to vertex.

Replace one square by two rectangles:

-

Or more drastically, at each square, randomly

choose whether to leave the square as it is or

replace it with the pair of rectangles.

The latter destroys order.

“Aesthetic delight lies somewhere between bore-

dom and confusion” - E.H. Gombrich.
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Aperiodic Order

In the 1960’s and 70’s, various geometric pat-

terns in Euclidean space were discovered which

displayed a high degree of regularity, but not

periodicity. The most famous are Roger Pen-

rose’ tilings. There are an uncountable num-

ber of such tilings (even after ignoring transla-

tions), but they all have the same highly reg-

ular local structure.

As a specific example, the Penrose tilings are

repetitive: given any finite patch in any Pen-

rose tiling, there is a constant R such that the

same patch will appear in any ball of radius R

in any other Penrose tiling,
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beam
material collector

In 1980, Shechtman et. al. discovered physical
materials whose diffraction pattern showed:

• pure-point diffraction: concentration at a
countable point-set, indicating a highly or-
dered atomic arrangement

• five-fold rotational symmetry, impossible for
periodic patterns.

There are by now several hundred of such ma-
terials, now called quasicrystals.
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Constructions of aperiodic order: by sub-

stitution

The Penrose substitution:
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The substitution rule defines, for each prototile

p, ω(p) a patch with union λp, λ > 1. This can

be extended:

to translates: ω(p+ x) = ω(p) + λx,

to patches: ω({t1, . . . , tN} = ∪nω(ti)

These can be used to find growing collections

of consistent patches whose union is a tiling.
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The projection method

Begin with the lattice ZN ⊂ RN . Let C be the

unit cube in RN .

Select a d-dimensional subspace E ⊂ RN satis-

fying E ∩ ZN = {0} and E + ZN dense in RN .

Let πE be the orthogonal projection of RN onto

E.

Define

Λ = πE((E + C) ∩ ZN).

This is an aperiodic discrete set in E and can

be made into a tiling.
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Local rules or shifts of finite type

A a finite set (alphabet). Partition A× A into
A (for allowed) and F (for forbidden).

XA = {(an)n∈Z | an ∈ A, (an, an+1) ∈ A, all n}.
Imagine a graph with vertices A and an edge
from a to b if (a, b) is in A. Then XA consists
of infinite paths in the graph.

Problem: Is XA empty?

1. It is easy to find an algorithm to see whether
or not the graph has a cycle: (a1, a2, . . . , aN , a1)
with (an, an+1) and (aN , a1) in A.

2. If it has a cycle, XA contains a periodic
sequence

(. . . , aN , a1, a2, . . . , aN , a1 . . .)

3. If there is no cycle then XA is empty. (Proof:
if we have an element, then (a1, a2, . . . , aN)
contains a repeated entry if N > #A.)
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In dimension 2: Same A, divide the set of all

2× 2 arrays from A into A and F.

XA = {(am,n)(m,n)∈Z2 | am,n+1 am+1,n+1
am,n am+1,n

∈ A}

Same question: is XA empty?

1. H. Wang: If there is an algorithm which

determines an answer, it does so by finding a

periodic array.

2. Berger: there exists an example in which

XA is non-empty, but contains only aperiodic

elements.

The bad news: #A ≈ 20,000.
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R. Robinson (1960’s):
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Topology for tilings

Fix a finite set of prototiles which are polygons.

We look at all tilings made of tiles which are

translates of these, meeting vertex to vertex

and edge to edge.

Define a metric: d(T, T ′) < ε if there exist y, y′

in B(0, ε) with (T − y) = (T ′− y′) on B(0, ε−1).

Notice d(T −x, T −y) is small when the patches

in T at x and y agree (up to small translation).

If we start with a single square, once you de-

cide where to put a square covering the origin,

the rest is determined uniquely. Putting the

bottom edge on the origin is the same as the

corresponding point on the bottom edge; i.e.

a 2-torus.
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Theorem 1. With hypotheses as above, the

set of all tilings with this metric is compact.

Moreover, for each x in R2, the map T → T −x

is a homeomorphism; this is an action of R2

on this space.

Usually we consider a hull, Ω, which is a sub-

set described by a substitution rule or as the

closure of {T0−x | x ∈ R2} for some fixed tiling

T0.
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Some facts about Ω in the aperiodic case.

• For fixed T in Ω, the set

ΞT = {T ′ | T = T ′ on B(0,1)}

is totally disconnected with no isolated points
and is homeomorphic to {0,1}N.

• the map sending (T ′, x) in ΞT × B(0, r) to
T ′+x is a homeomorphism to a neighbour-
hood of T (matchbox manifold).

• Ω is connected, but not path connected.

• The path connected component of T is its
R2-orbit: {T − x | x ∈ R2}.

• If T0 is repetitive, then every R2-orbit is
dense.

26



Cohomology of the hull

Topologists have a variety of algebraic tools
for the study of topological spaces: homotopy
groups, homology groups, cohomology groups
(Cech and de Rham), etc.

The tiling space Ω can be analyized this way.
There are effective techniques for computing
the Cech cohomology H∗(Ω) for substitution
tilings (Anderson -P) and for projection method
tilings (Forrest-Hunton-Kellendonk). F. Gähler
even has software that will be the computa-
tions.

E.g. Ω the space of all Penrose tilings:

H0(Ω) = Z, H1(Ω) = Z5, H2(Ω) = Z8.

Why compute H∗(Ω)? Short answer: H∗(Ω)
is (alleged to be) a quantitative measure of
aperiodicity.
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Homology vs. cohomology and the peri-

odic case

Suppose that T periodic tiling of Rd. Let

Per(T ) = {x ∈ Rd | T + x = T}.

Ω is all translations of T and is Rd/Per(T ).

The homology group H1(Ω) consists of loops

in Ω. How do you find a loop of tilings? Sup-

pose x is in Per(T ). Then

Tx(t) = T + tx,0 ≤ t ≤ 1,

is a loop of tilings since Tx(0) = Tx(1). In

fact,

x ∈ Per(T ) → Tx ∈ H1(Ω)

is an isomorphism.

What happens if T is aperiodic? Remember

the path components look like Rd, which is

contractible, but H∗(Ω) is still interesting.
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Shouldn’t invariants be geometric?

For the Penrose tilings, H1(Ω) ∼= Z5; doesn’t

look like a quantitative measure of aperiodicity.

Let T be a tiling of Rd. A function f : Rd → A

is T -equivariant if, there is a constant R > 0

such that, the value of f at x depends only on

the pattern of T in an R-ball around x.

That is, for any x, y in Rd,

(T − x) ∩B(0, R) = (T − y) ∩B(0, R)
⇒ f(x) = f(y).
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Let Ck
T denote the set of all smooth differ-

ential forms of degree k on RN which are T -

equivariant.

C0
T (R

2) = { f(x, y), T − equiv}
C1
T (R

2) = { P (x, y)dx+Q(x, y)dy, T − equiv}
C2
T (R

2) = { g(x, y)dxdy, T − equiv}

df =
∂f

∂x
dx+

∂f

∂y
dy

d(Pdx+Qdy) =

(
∂Q

∂x
−

∂P

∂y

)
dxdy

Define Hk
T (R

d) = ker(d)/Im(d) = closed / exact

Theorem 2 (Kellendonk -P.).

H∗
T (R

d) ∼= H∗(Ω,R).
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If ω = Pdx+Qdy is in C1
T , we can take

τ(ω) = lim
R

vol(R)−1
∫
|x|≤R

(P,Q)dx ∈ R2

We get, in particular,

H1(Ω) → H1(Ω,R) ∼= H1
T

τ→ R2.

In the Penrose case, the image is generated by

the fifth-roots of 1. (This subgroup of R2 is

rank 4, so the map has Z as a kernel.)

If T is completely periodic, then the image of

H1(Ω) is {x ∈ Rd |< x, Per(T ) >⊂ Z}, the dual

lattice.

Periodic ⇒ lattice. Aperiodic ⇒ dense in R2?
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