Aperiodic order with a little
topology and dynamical

systems

Ian F. Putnam,
University of Victoria

Introduction to aperiodic order
Constructing examples
Some basic topology which is helpful

Some more advanced topology that is help-
ful
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A Penrose tiling



An Octagonal or Ammann-Beenker tiling



Work in Euclidean space R¢: B(xz,r) denotes
the usual open ball at x, radius r.

A tile is a polyhedron in RY.
A tiling is a collection of tiles with disjoint in-
teriors that cover R%. Usually we assume there

are only finitely many tiles up to rigid motions
(or translations).

A patch in a tiling is a finite subcollection of
the tiles.

Tiles may be translated: t+ z, t C R%, z € RY.

A tiling T may be translated: T4+ x = {t + x|
teT}.

T is periodic if T'4 x =T, for some x # 0.

Periodicity is pleasant.
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Aperiodicity is easy:

Consider a tiling of the plane by unit squares,
matching edge to edge and vertex to vertex.

Replace one square by two rectangles:

Or more drastically, at each square, randomly
choose whether to leave the square as it is or
replace it with the pair of rectangles.

The latter destroys order.

“Aesthetic delight lies somewhere between bore-
dom and confusion” - E.H. Gombrich.



Aperiodic Order

In the 1960's and 70’s, various geometric pat-
terns in Euclidean space were discovered which
displayed a high degree of regularity, but not
periodicity. The most famous are Roger Pen-
rose’ tilings. There are an uncountable num-
ber of such tilings (even after ignoring transla-
tions), but they all have the same highly reg-
ular local structure.

As a specific example, the Penrose tilings are
repetitive: given any finite patch in any Pen-
rose tiling, there is a constant R such that the
same patch will appear in any ball of radius R
in any other Penrose tiling,
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“Face it, Fred-—you're lost!”



beam _
material collector

In 1980, Shechtman et. al. discovered physical
materials whose diffraction pattern showed:

e pure-point diffraction: concentration at a
countable point-set, indicating a highly or-
dered atomic arrangement

e five-fold rotational symmetry, impossible for
periodic patterns.

There are by now several hundred of such ma-

terials, now called quasicrystals.
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Constructions of aperiodic order: by sub-
stitution

The Penrose substitution:

A 4

PP
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The substitution rule defines, for each prototile
p, w(p) a patch with union Ap, A > 1. This can
be extended:

to translates: w(p + ) = w(p) + Az,

to patches: w({t1,...,txy} = Unw(t;)

These can be used to find growing collections
of consistent patches whose union is a tiling.

14
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Figﬁre 3: A Penrose Tiling
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The projection method

Begin with the lattice ZN c RYV. Let C be the
unit cube in R¥V.

Select a d-dimensional subspace E c RY satis-
fying ENZY = {0} and E 4+ Z" dense in RV,
Let 7 be the orthogonal projection of RN onto
E.

Define

A=rg((E+C)nzMY).

This is an aperiodic discrete set in £ and can
be made into a tiling.
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Local rules or shifts of finite type

A a finite set (alphabet). Partition A x A into
A (for allowed) and F (for forbidden).

Xp= {(an)nEZ | an € A, (an,an_|_1) e A, all n}

Imagine a graph with vertices A and an edge
from a to b if (a,b) is in A. Then X 4 consists
of infinite paths in the graph.

Problem: Is X 4, empty?

1. It is easy to find an algorithm to see whether
or not the graph has a cycle: (a1,a2,...,an,a1)
with (an,a,41) and (ay,a1) in A.

2. If it has a cycle, X 4 contains a periodic
sequence

(...,an,a1,a2,...,aN,G] ...)

3. If there is no cycle then X 4 is empty. (Proof:
if we have an element, then (aq,as,...,apn)
contains a repeated entry if N > #A.)

21



In dimension 2: Same A, divide the set of all
2 X 2 arrays from A into A and F.

Amn+1 Om+4+1,n+1 E.A}

XA — {(am,n)(m,n)EZQ | am.n At 1m
Same question: is X 4 empty?

1. H. Wang: If there is an algorithm which
determines an answer, it does so by finding a
periodic array.

2. Berger: there exists an example in which

X 4 Is non-empty, but contains only aperiodic
elements.

The bad news: #A =~ 20, 000.
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R. Robinson (1960's):
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Robinson’s aperiodic set R1 of six tiles,
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Topology for tilings

Fix a finite set of prototiles which are polygons.
We look at all tilings made of tiles which are
translates of these, meeting vertex to vertex
and edge to edge.

Define a metric: d(T,T") < € if there exist y, v’
in B(0,¢) with (T —y) = (T'—4') on B(0,e~1).

Notice d(T —x,T —vy) is small when the patches
in T at x and y agree (up to small translation).

If we start with a single square, once you de-
cide where to put a square covering the origin,
the rest is determined uniquely. Putting the
bottom edge on the origin is the same as the
corresponding point on the bottom edge; i.e.
a 2-torus.
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Theorem 1. With hypotheses as above, the
set of all tilings with this metric is compact.
Moreover, for each x in R2, the map T — T — x
is a homeomorphism; this is an action of R?
on this space.

Usually we consider a hull, €2, which is a sub-
set described by a substitution rule or as the
closure of {Ty—z | x € R?} for some fixed tiling
1o.

25



Some facts about €2 in the aperiodic case.

For fixed T in €2, the set
=r={T"|T=1T" on B(0,1)}

is totally disconnected with no isolated points
and is homeomorphic to {0, 1},

the map sending (77,z) in =7 x B(0,r) to
T+ is a homeomorphism to a neighbour-
hood of T' (matchbox manifold).

€2 is connected, but not path connected.

The path connected component of 71" is its
R2-orbit: {T — x| x € R?}.

If Ty is repetitive, then every R2-orbit is
dense.
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Cohomology of the hull

Topologists have a variety of algebraic tools
for the study of topological spaces: homotopy
groups, homology groups, cohomology groups
(Cech and de Rham), etc.

The tiling space €2 can be analyized this way.
There are effective techniques for computing
the Cech cohomology H*(2) for substitution
tilings (Anderson -P) and for projection method
tilings (Forrest-Hunton-Kellendonk). F. Gahler
even has software that will be the computa-
tions.

E.g. 2 the space of all Penrose tilings:

HY(Q) =7, H (Q) = 7°, H?(Q) = 78.

Why compute H*(2)? Short answer: H*(L2)
is (alleged to be) a quantitative measure of
aperiodicity.
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Homology vs. cohomology and the peri-
odic case

Suppose that T periodic tiling of RY. Let
Per(T) ={z € R* | T 4+ z =T}
Q is all translations of T and is R4/ Per(T).

The homology group H1(2) consists of loops
in €2. How do you find a loop of tilings? Sup-
pose z is in Per(T). Then

T(t) =T + tz,0 < t < 1,
is a loop of tilings since T%(0) = T%(1). In
fact,

x € Per(T) — T% € H1(Q2)

IS an isomorphism.

What happens if T is aperiodic? Remember
the path components look like RY, which is
contractible, but H*(<2) is still interesting.
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Shouldn’t invariants be geometric?

For the Penrose tilings, H}(Q) & Z°; doesn't
look like a quantitative measure of aperiodicity.

Let T be a tiling of R%. A function f:R%Y — A
is T-equivariant if, there is a constant R > 0O
such that, the value of f at  depends only on
the pattern of T' in an R-ball around =x.

That is, for any z,y in RY,

(T'—x2)NB(O,R)
= f(z)

(T —y)NB(0,R)
fy).

29



et Céi denote the set of all smooth differ-
ential forms of degree k on RY which are T-
equivariant.

C%(RQ) = { f(z,y), T — equiv}
Cg(RQ) ={ P(z,y)dz + Q(z,y)dy, T — equiv}
C’T(RQ) = { g(xz,y)dzdy, T — equiv}
_of, o
df = 8azdx -+ aydy
d(Pdx + Qdy) = <8—Q - 8_P> dxdy
or Oy

Define HY(R?) = ker(d)/Im(d) = closed / exact

Theorem 2 (Kellendonk -P.).

HA(RY) =2 H*(Q,R).

30



If w= Pdx + Qdy is in C%, we can take

T(w =|imv0lR_1/ P, dx € R?
(@) =limvol(R)~" | (P.Q)
We get, in particular,
HY(Q) - HY(Q,R) = HF 5 R,
In the Penrose case, the image is generated by

the fifth-roots of 1. (This subgroup of R? is
rank 4, so the map has Z as a kernel.)

If T" is completely periodic, then the image of
HY(Q) is {z € R? |< z, Per(T) >C Z}, the dual

lattice.

Periodic = lattice. Aperiodic = dense in R2?
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