C*-algebras and topological dynamics: From dynamical systems to operator algebras

Ian F. Putnam, University of Victoria

C^* -algebras

A C^* -algebra is a set A :

(1) an algebra over \mathbb{C} , (2) an involution $a \rightarrow a^*$ which is conjugate linear, $(ab)^* = b^*a^*$, (3) a norm, $\|\cdot\|$, in which it is a Banach algebra (i.e. is complete), (4) $\| a^* a \| = \| a \|^{2}$, for all a in A.

Often, we will assume the algebra is unital.

Examples:

 (1) C, the complex numbers, (2) $M_n(\mathbb{C})$, the $n \times n$ matrices over \mathbb{C} , (3) $\mathcal{B}(\mathcal{H})$, the bounded linear operators on a Hilbert space H .

Commutative C[∗] -algebras

Let X be a compact Hausdorff space. Then

 $C(X) = \{f : X \to \mathbb{C} \mid f \text{ continuous } \},\$

with pointwise algebraic operations and supremum norm is a commutative, unital C^* -algebra. More generally, if X is locally compact, then $C_0(X)$, the continuous functions vanishing at infinity, is a commutative C^* -algebra.

- Theorem 1 (Gelfand-Naimark). 1. Every commutative C^* -algebra is isomorphic to $C_0(X)$, for some locally compact Hausdorff space X .
	- 2. $C_0(X)$ and $C_0(Y)$ are isomorphic if and only if X and Y are homeomorphic.

Gelfand-Naimark dictionary

The notions on the right may be generalized to all C^* -algebras. For ideals, one or two-sided? Generally, there are too many of the former and perhaps none of the latter.

K-theory

For a C^* -algebra, A (assume unital), there is an abelian group, $K_0(A)$. It is based on projections, elements p such that

$$
p^2 = p = p^*.
$$

One considers projections in $M_n(A), n \geq 1$, the $n \times n$ matrices over A, with a notion of equivalence, \sim . If there is an invertible v such that $vpv^{-1} = q$, then $p \sim q$.

Equivalence classes form a semigroup: $p \in$ $M_n(A), q \in M_m(A)$,

$$
p \oplus q = \left[\begin{array}{cc} p & 0 \\ 0 & q \end{array} \right] \in M_{m+n}(A)
$$

with identity 0. The set of formal differences

 $K_0(A) = \{ [p] - [q] \mid p, q \text{ projections } \},$ is a group, with a positive cone,

 $K_0(A)^+ = \{ [p] - [0] \mid p$ a projection } and a distinguished positive element [1].

A trace $\tau : A \to \mathbb{C}$ is a linear functional which is

1. positive: $\tau(a^*a) \geq 0$, $a \in A$,

2. trace property: $\tau(ab) = \tau(ba)$ (similarity invariant)

It extends to $M_n(A)$ with the same properties $\left(\tau((a_{i\,j}))\,=\,\sum_i \tau(a_{i\,i})\right)$ and induces a positive group homomorphism

$$
\hat{\tau}: K_0(A) \to \mathbb{R}, \quad \hat{\tau}(K_0(A)^+) \subset [0, \infty).
$$

Example: C

Lemma 2. Two projections p and q in $M_n(\mathbb{C})$ are similar if and only if $Trace(p) = rank(p)$ $rank(q) = Trace(q).$

Proposition 3. The map $Tr: K_0(\mathbb{C}) \to \mathbb{Z}$

 $Tr([p] - [q]) = Trace(p) - Trace(q)$ is an isomorphism. Under this, $K_0(\mathbb{C})^+=$ $\{0, 1, 2, 3, \ldots\} = \mathbb{Z}^+.$

Construction of non-commutative C^* -algebras from dynamics

Let X be a compact Hausdorff space. Consider homeomorphisms, ϕ , whose domain and range are both open subsets of X. Suppose that $\mathcal F$ is collection of such functions such that:

1. if ϕ, ψ are in F, so is $\phi \cap \psi$,

2. if
$$
\phi, \psi
$$
 are in \mathcal{F} , so is $\phi \circ \psi$,

3. if
$$
\phi
$$
 is in $\mathcal F$, so is ϕ^{-1} ,

4. the collection of open sets U in X such that id_U is in F generates the topology of X.

It follows that

 $R = \bigcup \mathcal{F} = \{(x, \phi(x)) \mid \phi \in \mathcal{F}, x \in Dom(\phi)\}\$

is an equivalence relation and $\mathcal F$ is a basis for a topology of R . We assume that this topology is second countable and Hausdorff. As a consequence the equivalence classes are countable.

 $C_c(R)$ is the linear space of continuous, compactly supported functions on R . Endow it with a product and involution:

$$
(f \cdot g)(x, y) = \sum_{z \in [x]_R} f(x, z)g(z, y)
$$

$$
f^*(x, y) = \overline{f(y, x)}, (x, y) \in R.
$$

For x in X and f in $C_c(R)$ consider the operator $\pi_x(f)$ on $l^2[x]_R$:

$$
\pi_x(f)\xi(y) = \sum_{z \in [x]_R} f(y,z)\xi(z).
$$

 $\parallel f \parallel = \sup_x \parallel \pi_x(f) \parallel$ is a norm.

The completion of $C_c(R)$ is $C^*(R)$.

Example: $X = \{1, 2, ..., N\}, R = X \times X$, $C^*(R) \cong M_N(\mathbb{C})$.

Example: X arbitrary, $R =$ equality, $C^*(R) \cong C(X).$

There is an inclusion $\Delta : C(X) \rightarrow C^*(R)$ by $\Delta(f)(x, y) = f(x)$, if $x = y$ and 0 otherwise.

Theorem 4. 1. If $Y \subset X$ is closed and \mathcal{F} invariant, then

 ${f \in C_c(R) | f | Y \times Y = 0}^-$

is a closed two-sided ideal in $C^*(R)$. 2. If μ is a *F*-invariant measure, then

$$
\tau(f) = \int_X f(x, x) d\mu(x)
$$

is a trace.

The correspondences above are bijective.

Theorem 5. If the quotient space X/R is Hausdorff then $C^*(R)$ is Morita equivalent to $C(X/R)$.

Quote 6 (Connes). Morita equivalence is more natural than isomorphism.

Group actions

Let X be a compact, Hausdorff space, G a countable discrete group, ϕ an free action of G on X by homeomorphisms:

$$
\phi^s: X \longrightarrow X \quad s \in G,\tag{1}
$$

$$
\phi^e = id_X \tag{2}
$$

$$
\phi^{st} = \phi^s \circ \phi^t \quad s, t \in G. \tag{3}
$$

$$
\phi^s(x) = x \quad \Rightarrow \quad s = e. \tag{4}
$$

Let

$$
\mathcal{F} = \{ \phi^s | U \mid s \in G, U \subset X \text{ open } \}.
$$

and

$$
R_{\phi} = \{ (x, \phi^{s}(x)) \mid x \in X, s \in G \}.
$$

Equivalence classes are the orbits.

 $C^*(R_{\phi})$ is generated by:

$$
\Delta(C(X)), u_s, s \in G
$$

such that

$$
u_{st} = u_s u_t, \t s, t \in G
$$

$$
u_s^* u_s = u_s u_s^* = 1, \t s \in G
$$

$$
u_s \Delta(f) u_s^* = \Delta(f \circ \varphi^s), \t f \in C(X).
$$

That is, the automorphisms $f \to f \circ \varphi^s$ of $C(X)$ are inner.

(Henceforth, we drop ∆.)

Example 1: Irrational rotation on the circle

 $X\,=\,S^1,\,\,G\,=\,\mathbb{Z},\,\,\phi^n(z)\,=\,e^{2\pi i n\theta}z,\,$ where θ is irrational. $(S^1/R_\phi$ disaster!!)

 $A_\theta\ =\ C(S^1)\times_\phi\mathbb{Z}$ is simple (no closed twosided ideals) and has unique trace τ . Rieffel:

Theorem 7 (Powers-Rieffel-Pimsner-Voiculescu).

$$
\widehat{\tau}: K_0(A_\theta) \stackrel{\cong}{\rightarrow} \mathbb{Z} + \theta \mathbb{Z} \subset \mathbb{R}.
$$

Theorem 8. If ϕ : $S^1 \rightarrow S^1$ has no periodic points, then there is an irrational θ such that

$$
K_0(C(S^1) \times_{\phi} \mathbb{Z}) \cong \mathbb{Z} + \theta \mathbb{Z} \subset \mathbb{R}.
$$

AF-relations

A Bratteli diagram is a vertex set $V = V_0 \cup V_1 \cup V_2$... and an edge set $E = E_1 \cup E_2 \cup ...$ with initial and terminal maps $i: E_n \to V_{n-1}, t: E_n \to V_n$. Each V_n and E_n are finite with $V_0 = \{v_0\}.$

Let X be the set of infinite paths from v_0 :

 $X = \{(x_1, x_2, \ldots) \mid x_n \in E_n, t(x_n) = i(x_{n+1})\}$ Relative topology from $X \subset \prod_n E_n$. If $p = (p_1, p_2, \ldots, p_N)$ is a finite path, we let

$$
C(p) = \{ x \in X \mid x_n = p_n, 1 \le n \le N \},\
$$

which is clopen.

For paths p, q of length N, with $t(p_N) = t(q_N)$, define $\phi: C(p) \to C(q)$ by

$$
\phi(p_1, p_2, \dots, p_N, x_{N+1}, x_{N+2}, \dots)
$$

= $(q_1, q_2, \dots, q_N, x_{N+1}, x_{N+2}, \dots).$
The set of all such ϕ is \mathcal{F} .

 R is tail equivalence:

$$
(x, y) \in R \Leftrightarrow \exists N, x_n = y_n, n \ge N.
$$

Lemma 9. Let $e^N_{p,q}$ be its characteristic function of $\phi: C(p) \to C(q)$.

$$
e_{p,q}^N e_{p',q'}^N = e_{p,q'}^N, \text{ if } q = p',e_{p,q}^N e_{p',q'}^N = 0, \text{ if } q \neq p' (e_{p,q}^N)^* = e_{q,p}^N.
$$

and, for fixed N,

$$
A_N = span\{e_{p,q}^N\} \cong \bigoplus_{v \in V_N} M_{k(v)}(\mathbb{C}),
$$

where $k(v)$ is the number of paths to v .

Theorem 10.

$$
A_1 \subset A_2 \subset \cdots,
$$

\n
$$
(\cup_N A_N)^{-} = C^*(R)
$$

\n
$$
K_0(C^*(R)) \cong \lim_{N} \oplus_{V_1} \mathbb{Z} \to \oplus_{V_2} \mathbb{Z} \to \cdots
$$

 $C[*](R)$ is an AF-algebra (approximately finite dimensional).

Theorem 11 (Elliott-Krieger). Let $(V^i, E^i), i =$ 1, 2 be two Bratteli diagrams with associated AF-relations, $(X_i, R_i), i = 1, 2$. TFAE:

\n- 1.
$$
(X_1, R_1) \cong (X_2, R_2)
$$
\n- 2. $C^*(R_1) \cong C^*(R_2)$
\n- 3. $(K_0(C^*(R_1)), K_0(C^*(R_1))^+, [1]) \cong (K_0(C^*(R_2)), K_0(C^*(R_2))^+, [1])$
\n

4 the two diagrams may be "intertwined":

Chaotic (hyperbolic) systems

Suppose that $f: \mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{T}^2$ is induced by the matrix $\left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right]$. Its eigenvalues are $\gamma =$ $\frac{1+\sqrt{5}}{2}>1$ and $-1<-\gamma^{-1}<0$.

The two crucial features are:

1. the periodic points are dense in \mathbb{T}^2 2. the tangent space splits into contracting and expanding directions for the derivative. (Along the eigenvectors of the matrix.)

Let X be the expanding eigenspace projected into \mathbb{T}^2 (topologically it is a line). R is stable equivalence;

$$
(x, y) \in R \Leftrightarrow \lim_{n \to +\infty} d(f^n(x), f^n(y)).
$$

i.e. the points lie on the same contracting eigenspace.

Smale's Axiom A systems

 M a Riemannian manifold, f a diffeomorphism. The non-wandering set, $NW(f)$ is the set of all points x such that for any neighbourhood U of x, there is $n \geq 1$ such that $f^{n}(U) \cap U \neq \emptyset$. It is closed and contains all periodic points.

Axiom A:

1. $NW(f)$ is the closure of the periodic points, 2. the tangent space restricted to $NW(f)$ has a contractive/expansive splitting.

In the last example, $NW(f) = \mathbb{T}^2$. Typically, $NW(f)$ is a fractal. In the horseshoe, $M =$ S^2 and $NW(f)$ consists of one attracting fixpoint, one repelling fix-point and a Cantor set where the dynamics is:

 ${0,1}^{\mathbb{Z}},$ $f =$ left shift

Stable equivalence is tail equivalence on $\{0,1\}^{\mathbb{N}}$ and $C^*(R)$ is the AF-algebra from the Bratteli diagram with one vertex and two edges at each level.