C*-algebras and topological dynamics: From dynamical systems to operator algebras

Ian F. Putnam, University of Victoria

C^* -algebras

A C^* -algebra is a set A:

- (1) an algebra over \mathbb{C} ,
- (2) an involution $a \to a^*$ which is conjugate linear, $(ab)^* = b^*a^*$,
- (3) a norm, $\|\cdot\|$, in which it is a Banach algebra (i.e. is complete),
- (4) $||a^*a|| = ||a||^2$, for all a in A.

Often, we will assume the algebra is unital.

Examples:

- (1) \mathbb{C} , the complex numbers,
- (2) $M_n(\mathbb{C})$, the $n \times n$ matrices over \mathbb{C} ,
- (3) $\mathcal{B}(\mathcal{H})$, the bounded linear operators on a Hilbert space \mathcal{H} .

Commutative C^* -algebras

Let X be a compact Hausdorff space. Then

$$C(X) = \{ f : X \to \mathbb{C} \mid f \text{ continuous } \},$$

with pointwise algebraic operations and supremum norm is a commutative, unital C^* -algebra. More generally, if X is locally compact, then $C_0(X)$, the continuous functions vanishing at infinity, is a commutative C^* -algebra.

- **Theorem 1** (Gelfand-Naimark). 1. Every commutative C^* -algebra is isomorphic to $C_0(X)$, for some locally compact Hausdorff space X.
 - 2. $C_0(X)$ and $C_0(Y)$ are isomorphic if and only if X and Y are homeomorphic.

Gelfand-Naimark dictionary

X	$C_0(X)$
compact	unital
closed subset	closed ideal
$Y \subset X$	$I = \{f \mid f Y = 0\}$
point	maximal ideal
$\mid x$	$I = \{f \mid f(x) = 0\}$
measure	linear functional
$\mid \mu \mid$	$\phi(f) = \int f d\mu$
topological dimension	stable rank
K-theory	K-theory

The notions on the right may be generalized to all C^* -algebras. For ideals, one or two-sided? Generally, there are too many of the former and perhaps none of the latter.

K-theory

For a C^* -algebra, A (assume unital), there is an abelian group, $K_0(A)$. It is based on projections, elements p such that

$$p^2 = p = p^*.$$

One considers projections in $M_n(A), n \ge 1$, the $n \times n$ matrices over A, with a notion of equivalence, \sim . If there is an invertible v such that $vpv^{-1} = q$, then $p \sim q$.

Equivalence classes form a semigroup: $p \in M_n(A), q \in M_m(A)$,

$$p \oplus q = \begin{bmatrix} p & 0 \\ 0 & q \end{bmatrix} \in M_{m+n}(A)$$

with identity 0. The set of formal differences

$$K_0(A) = \{[p] - [q] \mid p, q \text{ projections }\},$$
 is a group, with a positive cone,

 $K_0(A)^+ = \{[p] - [0] \mid p \text{ a projection }\}$ and a distinguished positive element [1]. A $trace \ \tau : A \to \mathbb{C}$ is a linear functional which is

- 1. positive: $\tau(a^*a) \ge 0$, $a \in A$,
- 2. trace property: $\tau(ab) = \tau(ba)$ (similarity invariant)

It extends to $M_n(A)$ with the same properties $(\tau((a_{ij})) = \sum_i \tau(a_{ii}))$ and induces a positive group homomorphism

$$\hat{\tau}: K_0(A) \to \mathbb{R}, \ \hat{\tau}(K_0(A)^+) \subset [0, \infty).$$

Example: \mathbb{C}

Lemma 2. Two projections p and q in $M_n(\mathbb{C})$ are similar if and only if Trace(p) = rank(p) = rank(q) = Trace(q).

Proposition 3. The map $Tr: K_0(\mathbb{C}) \to \mathbb{Z}$

$$Tr([p] - [q]) = Trace(p) - Trace(q)$$

is an isomorphism. Under this, $K_0(\mathbb{C})^+ = \{0,1,2,3,\ldots\} = \mathbb{Z}^+$.

Construction of non-commutative C^* -algebras from dynamics

Let X be a compact Hausdorff space. Consider homeomorphisms, ϕ , whose domain and range are both open subsets of X. Suppose that \mathcal{F} is collection of such functions such that:

- 1. if ϕ, ψ are in \mathcal{F} , so is $\phi \cap \psi$,
- 2. if ϕ, ψ are in \mathcal{F} , so is $\phi \circ \psi$,
- 3. if ϕ is in \mathcal{F} , so is ϕ^{-1} ,
- 4. the collection of open sets U in X such that id_U is in \mathcal{F} generates the topology of X.

It follows that

$$R = \cup \mathcal{F} = \{(x, \phi(x)) \mid \phi \in \mathcal{F}, x \in Dom(\phi)\}\$$

is an equivalence relation and \mathcal{F} is a basis for a topology of R. We assume that this topology is second countable and Hausdorff. As a consequence the equivalence classes are countable.

 $C_c(R)$ is the linear space of continuous, compactly supported functions on R. Endow it with a product and involution:

$$(f \cdot g)(x,y) = \sum_{z \in [x]_R} f(x,z)g(z,y)$$
$$f^*(x,y) = \overline{f(y,x)}, (x,y) \in R.$$

For x in X and f in $C_c(R)$ consider the operator $\pi_x(f)$ on $l^2[x]_R$:

$$\pi_x(f)\xi(y) = \sum_{z \in [x]_R} f(y, z)\xi(z).$$

 $\parallel f \parallel = sup_x \parallel \pi_x(f) \parallel$ is a norm.

The completion of $C_c(R)$ is $C^*(R)$.

Example: $X = \{1, 2, ..., N\}$, $R = X \times X$, $C^*(R) \cong M_N(\mathbb{C})$.

Example: X arbitrary, R = equality, $C^*(R) \cong C(X)$.

There is an inclusion $\Delta:C(X)\to C^*(R)$ by $\Delta(f)(x,y)=f(x)$, if x=y and 0 otherwise.

Theorem 4. 1. If $Y \subset X$ is closed and \mathcal{F} -invariant, then

$$\{f \in C_c(R) \mid f | Y \times Y = 0\}^-$$

is a closed two-sided ideal in $C^*(R)$.

2. If μ is a \mathcal{F} -invariant measure, then

$$\tau(f) = \int_X f(x, x) d\mu(x)$$

is a trace.

The correspondences above are bijective.

Theorem 5. If the quotient space X/R is Hausdorff then $C^*(R)$ is Morita equivalent to C(X/R).

Quote 6 (Connes). Morita equivalence is more natural than isomorphism.

Group actions

Let X be a compact, Hausdorff space, G a countable discrete group, ϕ an free action of G on X by homeomorphisms:

$$\phi^s: X \to X \quad s \in G,$$
 (1)

$$\phi^e = id_X \tag{2}$$

$$\phi^{st} = \phi^s \circ \phi^t \quad s, t \in G. \tag{3}$$

$$\phi^s(x) = x \quad \Rightarrow \quad s = e.$$
 (4)

Let

$$\mathcal{F} = \{ \phi^s | U \mid s \in G, U \subset X \text{ open } \}.$$

and

$$R_{\phi} = \{(x, \phi^s(x)) \mid x \in X, s \in G\}.$$

Equivalence classes are the orbits.

 $C^*(R_\phi)$ is generated by:

$$\Delta(C(X)), u_s, s \in G$$

such that

$$u_{st} = u_s u_t, \quad s, t \in G$$
 $u_s^* u_s = u_s u_s^* = 1, \quad s \in G$
 $u_s \Delta(f) u_s^* = \Delta(f \circ \varphi^s), \quad f \in C(X).$

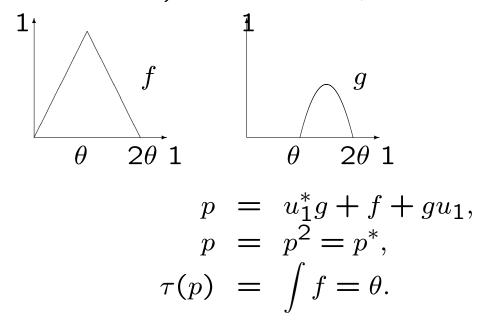
That is, the automorphisms $f \to f \circ \varphi^s$ of C(X) are *inner*.

(Henceforth, we drop Δ .)

Example 1: Irrational rotation on the circle

 $X=S^1$, $G=\mathbb{Z}$, $\phi^n(z)=e^{2\pi i n \theta}z$, where θ is irrational. $(S^1/R_\phi$ disaster!!)

 $A_{\theta} = C(S^1) \times_{\phi} \mathbb{Z}$ is simple (no closed two-sided ideals) and has unique trace τ . Rieffel:



Theorem 7 (Powers-Rieffel-Pimsner-Voiculescu).

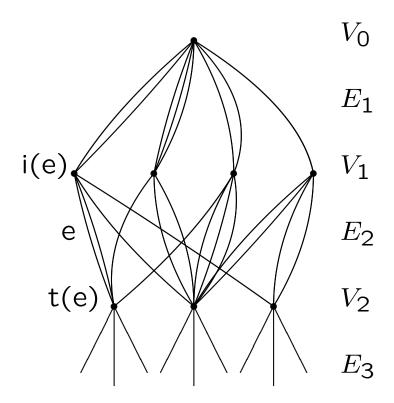
$$\widehat{\tau}: K_0(A_\theta) \stackrel{\cong}{\to} \mathbb{Z} + \theta \mathbb{Z} \subset \mathbb{R}.$$

Theorem 8. If $\phi: S^1 \to S^1$ has no periodic points, then there is an irrational θ such that

$$K_0(C(S^1) \times_{\phi} \mathbb{Z}) \cong \mathbb{Z} + \theta \mathbb{Z} \subset \mathbb{R}.$$

AF-relations

A Bratteli diagram is a vertex set $V = V_0 \cup V_1 \cup \ldots$ and an edge set $E = E_1 \cup E_2 \cup \ldots$ with initial and terminal maps $i : E_n \to V_{n-1}, t : E_n \to V_n$. Each V_n and E_n are finite with $V_0 = \{v_0\}$.



Let X be the set of infinite paths from v_0 :

$$X = \{(x_1, x_2, \ldots) \mid x_n \in E_n, t(x_n) = i(x_{n+1})\}$$

Relative topology from $X \subset \Pi_n E_n$.

If $p = (p_1, p_2, \dots, p_N)$ is a finite path, we let

$$C(p) = \{x \in X \mid x_n = p_n, 1 \le n \le N\},\$$

which is clopen.

For paths p,q of length N, with $t(p_N)=t(q_N)$, define $\phi:C(p)\to C(q)$ by

$$\phi(p_1, p_2, \dots, p_N, x_{N+1}, x_{N+2}, \dots)$$
= $(q_1, q_2, \dots, q_N, x_{N+1}, x_{N+2}, \dots).$

The set of all such ϕ is \mathcal{F} .

R is tail equivalence:

$$(x,y) \in R \Leftrightarrow \exists N, x_n = y_n, n \ge N.$$

Lemma 9. Let $e_{p,q}^N$ be its characteristic function of $\phi: C(p) \to C(q)$.

$$e_{p,q}^N e_{p',q'}^N = e_{p,q'}^N, \text{ if } q = p',$$
 $e_{p,q}^N e_{p',q'}^N = 0, \text{ if } q \neq p'$
 $(e_{p,q}^N)^* = e_{q,p}^N.$

and, for fixed N,

$$A_N = span\{e_{p,q}^N\} \cong \bigoplus_{v \in V_N} M_{k(v)}(\mathbb{C}),$$
 where $k(v)$ is the number of paths to v .

Theorem 10.

$$A_{1} \subset A_{2} \subset \cdots,$$

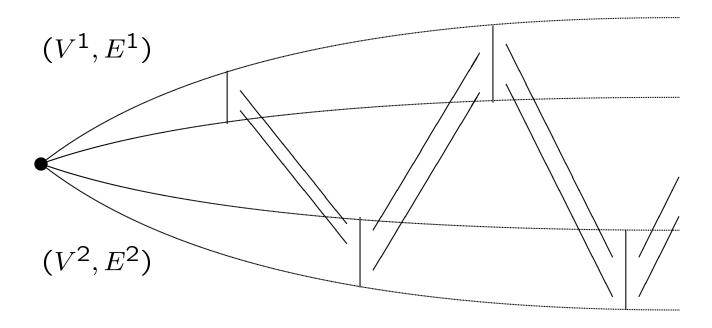
$$(\cup_{N} A_{N})^{-} = C^{*}(R)$$

$$K_{0}(C^{*}(R)) \cong \lim_{N} \oplus_{V_{1}} \mathbb{Z} \to \oplus_{V_{2}} \mathbb{Z} \to \cdots$$

 $C^*(R)$ is an AF-algebra (approximately finite dimensional).

Theorem 11 (Elliott-Krieger). Let (V^i, E^i) , i = 1, 2 be two Bratteli diagrams with associated AF-relations, (X_i, R_i) , i = 1, 2. TFAE:

- 1. $(X_1, R_1) \cong (X_2, R_2)$
- 2. $C^*(R_1) \cong C^*(R_2)$
- 3. $(K_0(C^*(R_1)), K_0(C^*(R_1))^+, [1])$ $\cong (K_0(C^*(R_2)), K_0(C^*(R_2))^+, [1])$
- 4 the two diagrams may be "intertwined":



Chaotic (hyperbolic) systems

Suppose that $f:\mathbb{T}^2=\mathbb{R}^2/\mathbb{Z}^2\to\mathbb{T}^2$ is induced by the matrix $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. Its eigenvalues are $\gamma=\frac{1+\sqrt{5}}{2}>1$ and $-1<-\gamma^{-1}<0$.

The two crucial features are:

- 1. the periodic points are dense in \mathbb{T}^2
- 2. the tangent space splits into contracting and expanding directions for the derivative. (Along the eigenvectors of the matrix.)

Let X be the expanding eigenspace projected into \mathbb{T}^2 (topologically it is a line). R is *stable* equivalence;

$$(x,y) \in R \Leftrightarrow \lim_{n \to +\infty} d(f^n(x), f^n(y)).$$

i.e. the points lie on the same contracting eigenspace.

Smale's Axiom A systems

M a Riemannian manifold, f a diffeomorphism. The non-wandering set, NW(f) is the set of all points x such that for any neighbourhood U of x, there is $n \geq 1$ such that $f^n(U) \cap U \neq \emptyset$. It is closed and contains all periodic points.

Axiom A:

- 1. NW(f) is the closure of the periodic points,
- 2. the tangent space restricted to NW(f) has a contractive/expansive splitting.

In the last example, $NW(f)=\mathbb{T}^2$. Typically, NW(f) is a fractal. In the horseshoe, $M=S^2$ and NW(f) consists of one attracting fixpoint, one repelling fix-point and a Cantor set where the dynamics is:

$$\{0,1\}^{\mathbb{Z}}, f = \text{left shift}$$

Stable equivalence is tail equivalence on $\{0,1\}^{\mathbb{N}}$ and $C^*(R)$ is the AF-algebra from the Bratteli diagram with one vertex and two edges at each level.