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C∗-algebras

A C∗-algebra is a set A:

(1) an algebra over C,

(2) an involution a → a∗ which is conjugate

linear, (ab)∗ = b∗a∗,
(3) a norm, ‖ · ‖, in which it is a Banach alge-

bra (i.e. is complete),

(4) ‖ a∗a ‖=‖ a ‖2, for all a in A.

Often, we will assume the algebra is unital.

Examples:

(1) C, the complex numbers,

(2) Mn(C), the n× n matrices over C,

(3) B(H), the bounded linear operators on a

Hilbert space H.
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Commutative C∗-algebras

Let X be a compact Hausdorff space. Then

C(X) = {f : X → C | f continuous },

with pointwise algebraic operations and supre-

mum norm is a commutative, unital C∗-algebra.

More generally, if X is locally compact, then

C0(X), the continuous functions vanishing at

infinity, is a commutative C∗-algebra.

Theorem 1 (Gelfand-Naimark). 1. Every com-

mutative C∗-algebra is isomorphic to C0(X),

for some locally compact Hausdorff space

X.

2. C0(X) and C0(Y ) are isomorphic if and

only if X and Y are homeomorphic.
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Gelfand-Naimark dictionary

X C0(X)
compact unital
closed subset closed ideal
Y ⊂ X I = {f | f |Y = 0}
point maximal ideal
x I = {f | f(x) = 0}
measure linear functional
µ φ(f) =

∫
fdµ

topological dimension stable rank
K-theory K-theory

The notions on the right may be generalized to

all C∗-algebras. For ideals, one or two-sided?

Generally, there are too many of the former

and perhaps none of the latter.
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K-theory

For a C∗-algebra, A (assume unital), there is
an abelian group, K0(A). It is based on pro-
jections, elements p such that

p2 = p = p∗.

One considers projections in Mn(A), n ≥ 1, the
n× n matrices over A, with a notion of equiv-
alence, ∼. If there is an invertible v such that
vpv−1 = q, then p ∼ q.

Equivalence classes form a semigroup: p ∈
Mn(A), q ∈Mm(A),

p⊕ q =

[
p 0
0 q

]
∈Mm+n(A)

with identity 0. The set of formal differences

K0(A) = {[p]− [q] | p, q projections },
is a group, with a positive cone,

K0(A)+ = {[p]− [0] | p a projection }
and a distinguished positive element [1].
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A trace τ : A → C is a linear functional which
is
1. positive: τ(a∗a) ≥ 0, a ∈ A,
2. trace property: τ(ab) = τ(ba) ( similarity
invariant)

It extends to Mn(A) with the same properties
(τ((ai j)) =

∑
i τ(ai i)) and induces a positive

group homomorphism

τ̂ : K0(A) → R, τ̂(K0(A)+) ⊂ [0,∞).

Example: C

Lemma 2. Two projections p and q in Mn(C)
are similar if and only if Trace(p) = rank(p) =
rank(q) = Trace(q).

Proposition 3. The map Tr : K0(C) → Z

Tr([p]− [q]) = Trace(p)− Trace(q)

is an isomorphism. Under this, K0(C)+ =
{0,1,2,3, . . .} = Z+.
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Construction of non-commutative

C∗-algebras from dynamics

Let X be a compact Hausdorff space. Consider

homeomorphisms, φ, whose domain and range

are both open subsets of X. Suppose that F
is collection of such functions such that:

1. if φ, ψ are in F, so is φ ∩ ψ,

2. if φ, ψ are in F, so is φ ◦ ψ,

3. if φ is in F, so is φ−1,

4. the collection of open sets U in X such that

idU is in F generates the topology of X.

It follows that

R = ∪F = {(x, φ(x)) | φ ∈ F , x ∈ Dom(φ)}

is an equivalence relation and F is a basis for

a topology of R. We assume that this topol-

ogy is second countable and Hausdorff. As a

consequence the equivalence classes are count-

able.
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Cc(R) is the linear space of continuous, com-
pactly supported functions on R. Endow it
with a product and involution:

(f · g)(x, y) =
∑

z∈[x]R

f(x, z)g(z, y)

f∗(x, y) = f(y, x), (x, y) ∈ R.
For x in X and f in Cc(R) consider the operator
πx(f) on l2[x]R:

πx(f)ξ(y) =
∑

z∈[x]R

f(y, z)ξ(z).

‖ f ‖= supx ‖ πx(f) ‖ is a norm.

The completion of Cc(R) is C∗(R).

Example: X = {1,2, . . . , N}, R = X ×X,
C∗(R) ∼= MN(C).

Example: X arbitrary, R = equality,
C∗(R) ∼= C(X).

There is an inclusion ∆ : C(X) → C∗(R) by
∆(f)(x, y) = f(x), if x = y and 0 otherwise.
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Theorem 4. 1. If Y ⊂ X is closed and F-

invariant, then

{f ∈ Cc(R) | f |Y × Y = 0}−

is a closed two-sided ideal in C∗(R).

2. If µ is a F-invariant measure, then

τ(f) =
∫
X
f(x, x)dµ(x)

is a trace.

The correspondences above are bijective.

Theorem 5. If the quotient space X/R is Haus-

dorff then C∗(R) is Morita equivalent to C(X/R).

Quote 6 (Connes).Morita equivalence is more

natural than isomorphism.
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Group actions

Let X be a compact, Hausdorff space, G a

countable discrete group, φ an free action of

G on X by homeomorphisms:

φs : X → X s ∈ G, (1)

φe = idX (2)

φst = φs ◦ φt s, t ∈ G. (3)

φs(x) = x ⇒ s = e. (4)

Let

F = {φs|U | s ∈ G,U ⊂ X open }.

and

Rφ = {(x, φs(x)) | x ∈ X, s ∈ G}.

Equivalence classes are the orbits.
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C∗(Rφ) is generated by:

∆(C(X)), us, s ∈ G

such that

ust = usut, s, t ∈ G
u∗sus = usu∗s = 1, s ∈ G

us∆(f)u∗s = ∆(f ◦ ϕs), f ∈ C(X).

That is, the automorphisms f → f ◦ϕs of C(X)

are inner.

(Henceforth, we drop ∆.)
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Example 1: Irrational rotation on the circle

X = S1, G = Z, φn(z) = e2πinθz, where θ is
irrational. (S1/Rφ disaster!!)

Aθ = C(S1) ×φ Z is simple (no closed two-
sided ideals) and has unique trace τ . Rieffel:

-
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p = u∗1g+ f + gu1,

p = p2 = p∗,

τ(p) =
∫
f = θ.

Theorem 7 (Powers-Rieffel-Pimsner-Voiculescu).

τ̂ : K0(Aθ)
∼=→ Z + θZ ⊂ R.

Theorem 8. If φ : S1 → S1 has no periodic
points, then there is an irrational θ such that

K0(C(S1)×φ Z) ∼= Z + θZ ⊂ R.
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AF-relations

A Bratteli diagram is a vertex set V = V0∪V1∪
. . . and an edge set E = E1∪E2∪ . . . with initial
and terminal maps i : En → Vn−1, t : En → Vn.
Each Vn and En are finite with V0 = {v0}.
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Let X be the set of infinite paths from v0:

X = {(x1, x2, . . .) | xn ∈ En, t(xn) = i(xn+1)}

Relative topology from X ⊂ ΠnEn.

If p = (p1, p2, . . . , pN) is a finite path, we let

C(p) = {x ∈ X | xn = pn,1 ≤ n ≤ N},

which is clopen.

For paths p, q of length N , with t(pN) = t(qN),

define φ : C(p) → C(q) by

φ(p1, p2, . . . , pN , xN+1, xN+2, . . .)

= (q1, q2, . . . , qN , xN+1, xN+2, . . .).

The set of all such φ is F.

R is tail equivalence:

(x, y) ∈ R⇔ ∃N, xn = yn, n ≥ N.
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Lemma 9. Let eNp,q be its characteristic func-

tion of φ : C(p) → C(q).

eNp,qe
N
p′,q′ = eNp,q′, if q = p′,

eNp,qe
N
p′,q′ = 0, if q 6= p′

(eNp,q)
∗ = eNq,p.

and, for fixed N ,

AN = span{eNp,q} ∼= ⊕v∈VNMk(v)(C),

where k(v) is the number of paths to v.

Theorem 10.

A1 ⊂ A2 ⊂ · · · ,
(∪NAN)− = C∗(R)

K0(C
∗(R)) ∼= lim

N
⊕V1

Z → ⊕V2
Z → · · ·

C∗(R) is an AF-algebra (approximately finite

dimensional).
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Theorem 11 (Elliott-Krieger).Let (V i, Ei), i =

1,2 be two Bratteli diagrams with associated

AF-relations, (Xi, Ri), i = 1,2. TFAE:

1. (X1, R1)
∼= (X2, R2)

2. C∗(R1)
∼= C∗(R2)

3. (K0(C
∗(R1)),K0(C

∗(R1))
+, [1])

∼= (K0(C
∗(R2)),K0(C

∗(R2))
+, [1])

4 the two diagrams may be “intertwined”:
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Chaotic (hyperbolic) systems

Suppose that f : T2 = R2/Z2 → T2 is induced

by the matrix

[
1 1
1 0

]
. Its eigenvalues are γ =

1+
√

5
2 > 1 and −1 < −γ−1 < 0.

The two crucial features are:

1. the periodic points are dense in T2

2. the tangent space splits into contracting

and expanding directions for the derivative. (Along

the eigenvectors of the matrix.)

Let X be the expanding eigenspace projected

into T2 (topologically it is a line). R is stable

equivalence;

(x, y) ∈ R⇔ lim
n→+∞

d(fn(x), fn(y)).

i.e. the points lie on the same contracting

eigenspace.
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Smale’s Axiom A systems

M a Riemannian manifold, f a diffeomorphism.
The non-wandering set, NW (f) is the set of
all points x such that for any neighbourhood
U of x, there is n ≥ 1 such that fn(U)∩U 6= ∅.
It is closed and contains all periodic points.

Axiom A:
1. NW (f) is the closure of the periodic points,
2. the tangent space restricted to NW (f) has
a contractive/expansive splitting.

In the last example, NW (f) = T2. Typically,
NW (f) is a fractal. In the horseshoe, M =
S2 and NW (f) consists of one attracting fix-
point, one repelling fix-point and a Cantor set
where the dynamics is:

{0,1}Z, f = left shift

Stable equivalence is tail equivalence on {0,1}N

and C∗(R) is the AF-algebra from the Bratteli
diagram with one vertex and two edges at each
level.
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