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C*-algebras
A C*-algebra is a set A:

(1) an algebra over C,

(2) an involution a — a* which is conjugate
linear, (ab)* = b*a™,

(3) a norm, || - ||, in which it is a Banach alge-
bra (i.e. is complete),

(4) || a*a ||=|| a ||2, for all a in A.

Often, we will assume the algebra is unital.
Examples:

(1) C, the complex numbers,

(2) Mp(C), the n x n matrices over C,

(3) B(H), the bounded linear operators on a
Hilbert space H.



Commutative C*-algebras

Let X be a compact Hausdorff space. Then

C(X)={f: X —C| f continuous },

with pointwise algebraic operations and supre-
mum norm is a commutative, unital C*-algebra.
More generally, if X is locally compact, then
Co(X), the continuous functions vanishing at
infinity, is a commutative C*-algebra.

Theorem 1 (Gelfand-Naimark). 1. Every com-
mutative C*-algebra is isomorphic to Cpo(X),

for some locally compact Hausdorff space
X.

2. Cop(X) and Cu(Y) are isomorphic if and
only if X and Y are homeomorphic.



Gelfand-Naimark dictionary

X Co(X)

compact unital

closed subset closed ideal
YCXx I={f]fly =0}
point maximal ideal

T I={f]|f(z) =0}
measure linear functional
p o(f) = [ fdu
topological dimension | stable rank
K-theory K-theory

The notions on the right may be generalized to
all C*-algebras. For ideals, one or two-sided?
Generally, there are too many of the former
and perhaps none of the latter.



K-theory

For a C*-algebra, A (assume unital), there is
an abelian group, Kg(A). It is based on pro-
jections, elements p such that

p° =p=rp"

One considers projections in M,(A),n > 1, the
n X n matrices over A, with a notion of equiv-
alence, ~. If there is an invertible v such that
vpv_l = q, then p ~ gq.

Equivalence classes form a semigroup: p €
Mn(A),q € Mm(A),

O
pdq= [g q] € My, 4 (A)

with identity 0. The set of formal differences

Ko(A) = {[p] — 4] | p, q projections },
IS a group, with a positive cone,

Ko(A)T = {[p] — [O] | p @ projection }
and a distinguished positive element [1].



A trace 7 : A — C is a linear functional which
IS

1. positive: 7(a*a) > 0, a € A,

2. trace property: 7(ab) = 7(ba) ( similarity
invariant)

It extends to M, (A) with the same properties
(r((a;)) = >;7(a;;)) and induces a positive
group homomorphism

7 Ko(A) = R, 7(Ko(A)T) C [0, 0).
Example: C

Lemma 2. Two projections p and q in My (C)
are similar if and only if Trace(p) = rank(p) =
rank(q) = Trace(q).

Proposition 3. The map Tr : Kg(C) — Z

Tr(lpl — lg]) = Trace(p) — Trace(q)

is an isomorphism. Under this, Kqo(C)T =
{0,1,2,3,..}=7Z7T.



Construction of non-commutative
C*-algebras from dynamics

Let X be a compact Hausdorff space. Consider
homeomorphisms, ¢, whose domain and range
are both open subsets of X. Suppose that F
is collection of such functions such that:

1. if ¢,¢p are in F, so is ¢ N,

2. if ¢,y are in F, sO is ¢ o,

3. if ¢ isin F, sois ¢~ 1,

4. the collection of open sets U in X such that
udyy is in F generates the topology of X.

It follows that

R=UF = {(z,9(x)) | ¢ € F,z € Dom(s)}

IS an equivalence relation and F is a basis for
a topology of R. We assume that this topol-
ogy is second countable and Hausdorff. As a
consequence the equivalence classes are count-
able.



C.(R) is the linear space of continuous, com-
pactly supported functions on R. Endow it
with a product and involution:

(f-)(z,y) = Y [f(z,2)9(zy)

z€[z]Rr
[ (x,y) = f(y,z),(x,y) € R.
For z in X and f in C.(R) consider the operator
ro(f) on 12[x] g

(F)EW) = Y fly,2)E(2).

ZE[CB]R
| f I|= supz || 72(f) || is @ norm.

The completion of C.(R) is C*(R).

Example: X ={1,2,...,N}, R= X x X,
C*(R) & My (C).

Example: X arbitrary, R = equality,
C*(R) & C(X).

There is an inclusion A : C(X) — C*(R) by
A(f)(x,y) = f(x), if z =y and 0 otherwise.
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Theorem 4.1. If'Y C X is closed and F-
invariant, then

{feCc(R) | fIY xY =0}"

is a closed two-sided ideal in C*(R).
2. If u is a F-invariant measure, then

() = [_f@.2)du(z)

is a trace.
T he correspondences above are bijective.

Theorem 5. If the quotient space X/R is Haus-
dorff then C*(R) is Morita equivalent to C(X/R).

Quote 6 (Connes). Morita equivalence is more
natural than isomorphism.



Group actions

Let X be a compact, Hausdorff space, G a
countable discrete group, ¢ an free action of
G on X by homeomorphisms:

¢3 X — X seQG, (1)
¢° = idx (2)
ot = @S0t s,teG. (3)
P’(x) =2 = s=e. (4)
Let
F={¢°|U|seGUCX open }.
and

Ry = {(z,¢°(x)) |z € X,s € G}.

Equivalence classes are the orbits.
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C*(Ry) is generated by:

A(C(X)),’U,S,S € G
such that

Ust = UsUy¢, s,t € G
usus =usur =1, s€GqG

usA(flus = A(fog?), feC(X).

That is, the automorphisms f — fop® of C(X)
are innetr.

(Henceforth, we drop A.)
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Example 1: Irrational rotation on the circle

X =581 G =17 ¢(z) = 2™, where 0 is
irrational. (S!/R, disaster!!)

Ag = C(S1) x4 Z is simple (no closed two-
sided ideals) and has unique trace 7. Rieffel:

1 1
J Ag
6 201 6 201
p = u19+f+g’M1,
p = p%=7p"
r(p) = /f—9

Theorem 7 (Powers-Rieffel-Pimsner-Voiculescu).

7 Ko(Ag) > 7+ 0Z C R.

Theorem 8.If ¢ : S — S has no periodic
points, then there is an irrational 6 such that

Ko(C(SY) x4 Z) 2 Z + 0Z C R.
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AF-relations

A Bratteli diagram is a vertex set V = \VpuV71 U
...and an edge set £E = F{UE>U... with initial
and terminal maps ¢ : Fn — V,,_1,t . Ep — V.
Each V,, and E, are finite with Vi = {vg}.

Vo

En

i(e) 1
e E-
t(e) V2
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Let X be the set of infinite paths from wvg:

X = {(z1,22,...) | n € En,t(zn) = i(xp11)}

Relative topology from X C Ny Ey,.
If p= (p1,p2,...,pyN) IS A finite path, we let

C(p) ={z € X |xn =pn,1 <n <N},

which is clopen.

For paths p,q of length N, with t(py) = t(gn),
define ¢ : C(p) — C(q) by

¢(P1,D02s- -, PN TN41s TNA2, - - -)
— (q17QQ7'"7QN7$N—|—17$N—|—27”')°

The set of all such ¢ is F.

R is tail equivalence:

(z,y) € R< dN,zpn = yn,n > N.
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Lemma 9. Let ezj}fq be its characteristic func-
tion of ¢ : C(p) — C(q).

N N _ N e
epaCply = Cpg» TI=D,
N N _ . /
€p’q€p/’q/ = O, If.q#p

N \x N
(epg)™ = egp

and, for fixed N,

Ay = span{ey ,} = @pevy Mi(y)(C),

where k(v) is the number of paths to v.

Theorem 10.

Al C A2 (@R ,
(UNAN)™ C*(R)
Ko(C*(R)) & limoyZ — G2 — -

C*(R) is an AF-algebra (approximately finite
dimensional).
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Theorem 11 (Elliott-Krieger). Let (V*, EY), i =
1,2 be two Bratteli diagrams with associated
AF-relations, (X;,R;),i=1,2. TFAE:

1. (X1,R1) = (X2, Rp)
2. C*(Ry) = C*(Ry)
3. (Ko(C*(R1)), Ko(C*(R1)) T, [1])
= (Ko(C*(Rp)), Ko(C*(R2)) T, [1])
4 the two diagrams may be “intertwined” :

(Vi E1)
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Chaotic (hyperbolic) systems

Suppose that f : T2 = R2/Z2 — T2 is induced

by the matrix [ 1 (1) ] Its eigenvalues are v =

14v5 5 1 and —1 < —y~1 < 0.

The two crucial features are:

1. the periodic points are dense in T2

2. the tangent space splits into contracting
and expanding directions for the derivative. (Along
the eigenvectors of the matrix.)

Let X be the expanding eigenspace projected
into T2 (topologically it is a line). R is stable
equivalence,
(z,y) € R Iim d(f"(x), f"(y)).
n—-+oo
l.e. the points lie on the same contracting
eigenspace.
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Smale’s Axiom A systems

M a Riemannian manifold, f a diffeomorphism.
The non-wandering set, NW(f) is the set of
all points x such that for any neighbourhood
U of z, there is n > 1 such that fA(U)NU # 0.
It is closed and contains all periodic points.

Axiom A:

1. NW(f) is the closure of the periodic points,
2. the tangent space restricted to NW (f) has
a contractive/expansive splitting.

In the last example, NW(f) = T2. Typically,
NW(f) is a fractal. In the horseshoe, M =
S2 and NW(f) consists of one attracting fix-
point, one repelling fix-point and a Cantor set
where the dynamics is:

{0,1}4, f = left shift

Stable equivalence is tail equivalence on {0, 1}N
and C*(R) is the AF-algebra from the Bratteli
diagram with one vertex and two edges at each
level.
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