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Cantor minimal systems

Let X be a Cantor set; compact, totally dis-

connected, metrizable, no isolated points.

Consider homeomorphisms, φ, whose domain

and range are both open subsets of X. Sup-

pose that F is collection of such functions such

that:

1. if φ, ψ are in F, so is φ ∩ ψ,

2. if φ, ψ are in F, so is φ ◦ ψ,

3. if φ is in F, so is φ−1,

4. the collection of open sets U in X such that

idU is in F generates the topology of X.
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It follows that

R = ∪F = {(x, φ(x)) | φ ∈ F , x ∈ Dom(φ)}

is an equivalence relation and F is a basis for

a topology of R. Such a topology is called

étale. We assume that this topology is second

countable and Hausdorff. As a consequence

the equivalence classes are countable.

We say that R is minimal there are no non-

trivial closed R-invariants sets, or equivalently,

if every R-equivalence class is dense in X.
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AF-relations

A Bratteli diagram is a vertex set V = V0∪V1∪
. . . and an edge set E = E1∪E2∪ . . . with initial
and terminal maps i : En → Vn−1, t : En → Vn.
Each Vn and En are finite with V0 = {v0}.
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Let X be the set of infinite paths from v0:

X = {(x1, x2, . . .) | xn ∈ En, t(xn) = i(xn+1)}

Relative topology from X ⊂ ΠnEn.

If p = (p1, p2, . . . , pN) is a finite path, we let

C(p) = {x ∈ X | xn = pn,1 ≤ n ≤ N},

which is clopen.

For paths p, q of length N , with t(pN) = t(qN),

define φ : C(p) → C(q) by

φ(p1, p2, . . . , pN , xN+1, xN+2, . . .)

= (q1, q2, . . . , qN , xN+1, xN+2, . . .).

The set of all such φ is F.

R is tail equivalence:

(x, y) ∈ R⇔ ∃N, xn = yn, n ≥ N.
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Definition 1. An étale equivalence relation R

on X is AF if X is totally disconnected and

R is the union of an increasing sequence of

compact, open subequivalence relations.

Theorem 2.Every AF-relation can be presented

by a Bratteli diagram.
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Group actions

Let G be a discrete, abelian group with a free

action ϕ on X: for s in G,

ϕs : X → X

is a homeomorphism,

ϕ0 = idX ,

ϕs ◦ ϕt = ϕs+t,

ϕs(x) = x, only if s = 0,

s, t in G.

The equivalence relation is:

Rϕ = {(x, ϕs(x)) | x ∈ X, s ∈ G}

and

F = {ϕs|U |, s ∈ G,U ⊂ X open }.
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2∞-odometer

Let X = {0,1}N and define ϕ to be addition of
(1,0,0, . . .), with carry over to the right. For
example:

ϕ(0,0,1,0,1,1, . . .) = (1,0,1,0,1,1, . . .)

ϕ(1,1,1,0,0,1, . . .) = (0,0,0,1,0,1, . . .)

ϕ(1,1,1,1,1,1, . . .) = (0,0,0,0,0,0, . . .)

Z action, ϕn is the nth iterate of ϕ, n ≥ 1, or
the −nth iterate of ϕ−1, n < 0.

X is also the ring of 2-adic integers and the
map is addition of 1.

Let R ⊂ Rϕ be the equivalence relation gen-
erated by {(x, ϕ(x)) | x 6= (1,1,1, . . .)}. Then
R is just tail equivalence on X; or rather the
Bratteli diagram with one vertex and two edges
(0 and 1) at every level.
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Theorem 3. Let ϕ be any minimal Z-action
on a Cantor set X. Choose y in X and let
R ⊂ Rϕ be the equivalence relation generated
by {(x, ϕ1(x)) | x 6= y}. Then R is a minimal
AF-relation and

Rϕ = R ∨ (y, ϕ1(y))

(∨ means the equivalence relation generated
by).

Proof. Choose Y1 ⊃ Y2 ⊃ · · · , clopen sets with
intersection {y} and let RN be the equivalence
relation generated by {(x, ϕ1(x)) | x /∈ YN}.
Then

R1 ⊂ R2 ⊂ · · · ,∪NRN = R,

and each RN is compact and open.

Consequence: every minimal homeomorphism
of a Cantor can be presented as a map on a
Bratteli diagram. The edges are ordered and
the map is to take successor under a type of re-
verse lexicographic order. The Bratteli-Vershik
model.
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Orbit equivalence and isomorphism

Definition 4. For i = 1,2, let Ri be an equiva-

lence relation on the topological space Xi. R1

and R2 are orbit equivalent, written R1 ∼ R2

if there is a homeomorphism h : X1 → X2 such

that h × h(R1) = R2 or h[x]R1
= [h(x)]R2

for

all x in X1.

Definition 5. For i = 1,2, let Ri be an étale

equivalence relation on the topological space

Xi. R1 and R2 are isomorphic, written R1
∼= R2

if there is a homeomorphism h : X1 → X2 such

that h× h : R1 → R2 is a homeomorphism.

Remark 1. It follows from a result of Sierpinski

that for Ri, i = 1,2 arising from actions of dis-

crete groups on connected spaces Xi, i = 1,2,

orbit equivalence is equivalent to conjugacy of

the actions. Hence, we restrict to totally dis-

connected spaces.
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Invariants

X, Cantor set, R, an étale equivalence relation

with neighbourhood base F.

Definition 6. A probability measure µ on X is

R-invariant if

µ(U) = µ(φ(U)),

for all φ in F, U ⊂ Dom(φ). Let M(R) denote

the set of all such measures. R is uniquely er-

godic if there is a unique R-invariant measure.

C(X,Z) = {f : X → Z | f continuous }

Bm(X,R) = {f ∈ C(X,Z) |
∫
X
fdµ = 0,

for all µ ∈M(R)}
B(X,R) = < {χK − χφ(K) | φ ∈ F ,

K ⊂ Dom(φ) compact, open } >
B(X,R) ⊂ Bm(X,R) ⊂ C(X,Z).
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We define

D(R) = C(X,Z)/B(X,R)

Dm(R) = C(X,Z)/Bm(X,R)

Notice that Dm(R) is a quotient of D(R).

These are abelian groups and have an order :

D(R)+ = {[f ] | f ≥ 0}
Dm(R)+ = {[f ] | f ≥ 0}

and a distinguished positive element: [1].

Theorem 7. 1. (D(R), D(R)+, [1]) is an invari-
ant of isomorphism.

2. (Dm(R), Dm(R)+, [1]) is an invariant of or-
bit equivalence.

Theorem 8. If M(R) = {µ} (R is uniquely er-
godic), then

Dm(R) = {µ(E) | E ⊂ X clopen }+ Z ⊂ R.
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D(R) and Dm(X,R) for AF-relations R

Theorem 9. Let (V,E) be a Bratteli diagram

and (X,R) its AF-relation. (D(R), D(R)+, [1])

is isomorphic to the inductive limit

(ZV0,Z+V0)
γ1→ (ZV1,Z+V1)

γ2→ (ZV2,Z+V2)
γ3→

where

γn(v) =
∑

i(e)=v

t(e),

or

(Z,Z+)
A1→ (Zn1, (Z+)n1)

A2→ (Zn2, (Z+)n2)
A3→

where nk = #Vk and Ak is the adjacency ma-

trix of Ek. The element v0 is mapped to [1].
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The inductive limit of groups

G1
α1→ G2

α2→ · · ·

is

∪nGn/{g ∼ αn(g) | g ∈ Gn}.

Idea of proof: For a path p of length N ,

[χC(p)] ∈ D(R) → t(pN) ∈ ZVN .

Notice that if t(pN) = t(qN), then

φ : C(p) → C(q) and

χC(p) − χC(q) ∈ B(X,R).

Invariant measure µ arises from

f : ∪NVN → [0,1] such that

f(v0) = 1, f(v) =
∑

i(e)=v

f(t(e))

via

µ(C(p)) = f(t(pN)).
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Example 1

y y y y

Z 2−→ Z 2−→ Z 2−→ · · ·

D(R) = Dm(R) = {p2−k | p ∈ Z, k ∈ Z+}.

Example 2
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Z (1,1)−→ Z2

[
1 1
1 0

]
−→ Z2

[
1 1
1 0

]
−→ · · ·

D(R) = Dm(R) = {m+

(
1 +

√
5

2

)
n | m,n ∈ Z}
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Theorem 10 (Elliott-Krieger).Let (V i, Ei), i =

1,2 be two Bratteli diagrams with associated

AF-relations, (Xi, Ri), i = 1,2. TFAE:

1. (X1, R1)
∼= (X2, R2)

2. (D(R1), D(R1)
+, [1]) ∼= (D(R2), D(R2)

+, [1])

3. the two diagrams may be “intertwined”:
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Theorem 11 (Absorption Theorem).Let (X,R)

be a minimal AF-relation. Suppose that Y ⊂ X

and Q is an AF-relation on Y satisfying:

1. Y is closed and µ(Y ) = 0, for all µ in M(R),

2. R ∩ Y × Y is an étale relation on Y ,

Then the equivalence relation generated by R

and Q, R̃ = R ∨Q is orbit equivalent to R:

R ∨Q ∼ R.

(Warning: the statement has been simplified!)
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Absorption Thm: Application 1

Consider the AF-equivalence relation for fol-
lowing Bratteli diagram
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X = {1,3} × {1,2,3}N = path space of

y y y y (X, R̃)

18



1. D(R̃) = Dm(R̃) = 1
2Z[1/3],

2. R ⊂ R̃,

3. R̃ = R ∨ ((1,2,2,2 . . .), (3,2,2, . . .)).

Apply the absorption theorem with

Y = {(1,2,2,2 . . .), (3,2,2, . . .)}, Q = Y × Y to

conclude that

R ∼ R̃.
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Theorem 12. Let (X,R) be a minimal AF-

relation. There exists an AF-relation R ⊂ R̃

such that

R̃ = R ∨Q (A.T. ⇒ R̃ ∼ R),

(D(R̃), D(R̃)+, [1]) ∼= (Dm(R̃), Dm(R̃)+, [1])
∼= (Dm(R), Dm(R)+, [1]).

Corollary 13.For minimal AF-relations (X,R),

(Dm(R), Dm(R)+, [1]) is a complete invariant

for orbit equivalence.

Proof. i = 1,2, (Xi, Ri) minimal AF. Let R̃i, i =

1,2 be as above. If Dm(R1)
∼= Dm(R2), then

D(R̃1)
∼= Dm(R1)

∼= Dm(R2)
∼= D(R̃2).

Elliott-Krieger implies

R1 ∼ R̃1
∼= R̃2 ∼ R2.
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Absorption Thm: Application 2

ϕ, a minimal Z-action, R ⊂ Rϕ, minimal AF
with Rϕ = R ∨ (y, ϕ1(y)).

Y = {y, ϕ1(y)}, Q = Y × Y , A.T. implies Rϕ ∼
R.

Theorem 14 (Giordano-P-Skau, 1991). For
minimal AF-relations and minimal Z-actions,
(X,R), (Dm(R), Dm(R)+, [1]) is a complete in-
variant for orbit equivalence.

Theorem 15 (Giordano-Matui-P-Skau, 2005).
For minimal AF-relations, minimal Z-actions
and minimal Z2-actions, (X,R),
(Dm(R), Dm(R)+, [1]) is a complete invariant
for orbit equivalence.

Theorem 16 (Giordano-Matui-P-Skau, 2008).
For minimal AF-relations and minimal Zd-actions,
d ≥ 1, (X,R), (Dm(R), Dm(R)+, [1]) is a com-
plete invariant for orbit equivalence.
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