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Abstract. We consider a pair of C∗-algebras A′ ⊆ A. The K-theory
of the mapping cone for this inclusion can be regarded as a relative K-group.
We describe a situation where two such pairs have isomorphic relative groups.

§1. Introduction

This paper is concerned with a certain excision result for K-theory of C∗-algebras.

Let us begin by setting out some notation. Let A be any C∗-algebra. We let A∼ be

the C∗-algebra obtained by adjoining a unit to A (even if A is already unital). Let Mn(A)

denote the C∗-algebra of n×n matrices with entries from A. For any a in A∼ (respectively,

Mn(A∼)), let ȧ denote its image in C, the complex numbers, (respectively, Mn(C)), under

the map moding out by A. We also regard C and Mn(C) implicitly as subalgebras of A∼

and Mn(A∼), respectively.

Suppose A′ is a C∗-subalgebra of A. We regard A′∼ ⊆ A∼ as the natural unital

inclusion. Recall [Sch, W-O, B1] that the mapping cone for the inclusion A′ ⊆ A is

C(A′;A) =
{

f : [0, 1] −→ A | f is continuous,

f(0) = 0, f(1) ∈ A′
}

.

It is a C∗-algebra with pointwise operations and

‖f‖ = sup {‖f(t)‖ | 0 ≤ t ≤ 1}

for f in C(A′;A). There is a natural short exact sequence

0 −→ C0(0, 1)⊗A −→
i

C(A′; A) −→
ev

A′ −→ 0

1 Supported in part by an NSERC Operating Grant.
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where
ev(f) = f(1), f ∈ C(A′;A)

i(g ⊗ a)(t) = g(t)a, g ∈ C0(0, 1), a ∈ A, 0 ≤ t ≤ 1.

Let b : Ki(A) → Ki+1 (C0(0, 1)⊗A) denote the usual isomorphism [B1]. After using b

to replace the terms involving K∗ (C0(0, 1)⊗A), the six-term exact squence for K-groups

associated with the sequence above becomes

K1(A)
i∗b

−−−−−→ K0 (C(A′;A))
ev∗

−−−−−→ K0(A′)
x



 j∗





y j∗

K1(A′) ←−−−−−
ev∗

K1 (C(A′;A)) ←−−−−−
i∗b

K0(A)

where j : A′ → A denotes the inclusion map. We regard K∗ (C(A′; A)) as a “relative

group” for the C∗-algebra inclusion A′ ⊆ A. Indeed, if A′ is actually an ideal in A, then

there is a natural isomorphism

K∗ (C(A′; A)) ∼= K∗(A/A′).

To see this, let

J = {f ∈ C(A′;A) | f(t) ∈ A′ for all 0 ≤ t ≤ 1} ,

which is an ideal in C(A′; A). Moreover, J ∼= C0(0, 1]⊗A′ and so K∗(J) = 0, since C0(0, 1]

is contractible [W-O, B1]. We also have a short exact sequence

0 → J → C(A,A′) → C0(0, 1)⊗ (A/A′) → 0.

Taking the six-term exact sequence for K-groups and noting K∗(J) = 0 yields the result.

Thus, if A′ is an ideal, K∗ (C(A′;A)) depends only on A/A′.

Our goal is to describe two pairs of inclusions A′ ⊆ A and B′ ⊆ B which are related in

a specific eay that we may conclude that there is an isomorphism

K∗ (C(A′;A)) ∼= K∗ (C(B′; B)) ,

which is natural in some sense. The rôles of A and B here will not be symmetric. In some

sense, the inclusion A′ ⊆ A will be the more tractible. We suppose that A and B are both
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C∗-algebras of operators acting on the Hilbert space H. We suppose that z is a self adjoint

unitary on H and that the following conditions are satisfied. First, B should lie in the

multiplier algebra of A. We should have zAz = A and, for all b in B, zbz−b lies in A. One

interesting case where this occurs is when (H, z) is a Fredholm module for B [B1]. Let A

be the C∗-algebra of compact operators on H. These conditions are satisfied. Returning to

the general situation, we let A′ and B′ be those operators in A and B, respectively, which

commute with z. We require three more technical assumptions on A, B and z (given as 4,

5, 6 in section 3). Under these hypotheses, we construct a homomorphism

α : K∗ (C(B′; B)) −→ K∗ (C(A′; A))

and prove that it is an isomorphism.

The main applications of this result are in various situations arising from dynamical

systems where B, B′, A and A′ can all be described as groupoid C∗-algebras. For example,

B = C(X)×φZ and B′ = AY of [Put1], where φ is a minimal homeomorphism of a Cantor

set X, can be described in this way. Here, A is the compact operator on `2(Z) and A′ is

the direct sum of compact operators on two orthogonal subspaces. More applications can

be found in [Put2]. (Also, see [GPS].)

In Section 2, we provide a description of K0 (C(A′;A)) which will be useful. In Sec-

tion 3, we state and prove the main results (3.1 and 3.7).

§2. K-theory of Mapping Cones

Our aim in this section is to provide a natural description of K0 (C(A′, A)).

We begin, as in Section 1, with C∗-algebras A′ ⊆ A. For each n = 1, 2, 3, · · ·, we let

Vn(A′; A), or simply Vn, denote the set of elements v in Mn(A∼) such that

(i) v is a partial isometry.

(ii) v∗v is in Mn(C).

(iii) vv∗ is in Mn(A′∼).

(In some ways, it would be more natural to required v∗v to be in Mn(A′∼); our definition

will be more convenient, however.) We regard Vn ⊆ Vn+1 by identifying v and v ⊕ 0, for

all v in Vn. We let

V (A′; A) =
⋃

n

Vn(A′; A).
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We will make use of the following two facts:

1. If h is a self-adjoint element of a C∗-algebra and ‖h− h2‖ < δ < 1
2 , then the spectrum

of h is contained in (−2δ, 2δ)∪ (1− 2δ, 1 + 2δ). The proof is an easy application of the

spectral theorem.

2. If p1 and p2 are projections in a C∗-algebra with ‖p1 − p2‖ < δ < 1
2 , then there is a

unitary u in the C∗-algebra such that up1u∗ = p2 and ‖u − 1‖ < πδ. For a proof, see

4.3.2, 4.6.5 of [B1].

Lemma 2.1. Suppose 0 < ε < 100−1 and v in Mn(A∼) satisfies (i) and (ii) above

and there exists q in Mn(A′∼) such that ‖vv∗ − q‖ < ε. Then there exists a unitary u in

Mn(A∼) such that ‖u− 1‖ < 30ε and uv is in Vn(A′;A).

Proof. First replace q by (q + q∗)/2 so we may assume it is self-adjoint. Since v is a

partial isometry, vv∗ is a projection and so

‖q2 − q‖ < 4ε.

Then, using the first fact above, q1 = χ( 1
2 ,∞)(q) is a projection and ‖q1 − q‖ < 8ε hence

‖q1 − vv∗‖ < 9ε.

The second fact above then gives the desired u.

We define a map

κ : V (A′; A) −→ K0 (C(A′; A)) .

Begin with v in Vn(A′;A). Consider

v1 =
[

1− v∗v v∗

v 1− vv∗

]

in M2n(A∼). It is easily verified that v1 is a self-adjoint unitary. We define a path of

self-adjoint unitaries in M2n(A∼) by

v2(t) =
[

v̇1 + 1 + eiπt(1− v̇1)
]−1 [

v1 + 1 + eiπt(1− v1)
]

,

for 0 ≤ t ≤ 1. Notice that v2 satisfies

(i) v2(t) is unitary for all t,

(ii) v2 is in C[0, 1]⊗M2n(A∼),
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(iii) v̇2(t) = 1, for all t,

(iv) v2(0) = 1,

(v) v2(1) = v̇−1
1 v1.

Together, (ii), (iii) and (iv) imply that v2 may be regarded as an element of

[C0(0, 1]⊗M2n]∼ .

Finally, we define

pv(t) = v2(t) e11 v2(t)∗,

for 0 ≤ t ≤ 1, where e11 denotes 1n ⊕ 0 in M2n(A∼). It is easy to verify that

(i) pv(0) = e11

(ii) pv(1) = (1n − v∗v)⊕ vv∗ ∈ M2n(A′∼)

(iii) ṗv(t) = e11, for all 0 ≤ t ≤ 1.

Thus, pv is in M2n (C(A′; A)∼) and [pv]− [e11] is in K0 (C(A′; A)). We denote this element

by κ(v). We summarize the properties of κ.

Lemma 2.2.

(i) For v, w in V (A′;A),

κ(v ⊕ w) = κ(v) + κ(w).

(ii) If v, w are in Vn(A′;A) and ‖v − w‖ < 200−1, then κ(v) = κ(w).

(iii) For v in Vn(A′;A), w1 in Un(A′∼) and w2 in Un(C), then w1vw2 is in Vn(A′;A) and

κ(w1) = κ(w2) = 0

κ(w1vw2) = κ(v).

(iv) For any projection p in Mn(C), κ(p) = 0.

(v) If v is a partial isometry in Mn(A′∼), then κ(v) = 0.

Proof. Parts (i) and (iv) are verified by direct computations, which we omit.

In proving (ii), one notes that the construction of pv depends continuously on v. In fact,

‖v − w‖ < 200−1 implies ‖pv − pw‖ < 1
2 (we omit the details), which implies [pv] = [pw]

and the conclusion. As a consequence of (ii), if v and w are homotopic in Vn(A′; A) then

κ(v) = κ(w).

In part (iii), we begin by considering v ⊕ 0, w1 ⊕ w∗1 and w2 ⊕ w∗2 . By standard

methods (see 4.2.9 of [W-O]), w1 ⊕w∗1 and w2 ⊕w∗2 are both homotopic to the identity in
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U2n(A′∼) and U2n(C) respectively. Thus, w1vw2 ⊕ 0 is homotopic to v ⊕ 0 in V2n(A′; A),

so κ(v) = κ(w1vw2) by (ii) and (i). Finally, κ(w1) = κ(w2) = 0 both following as special

cases (v = w2 = 1, w1 = v = 1) of (iii) and (iv). As for (v), writing

v ⊕ 0 =
[

v 1− vv∗

1− v∗v v∗

] [

p 0

0 0

]

the conclusion follows from (iii) and (iv).

We now want to see how this map κ relates to the six-term exact sequence (1.2).

Lemma 2.3.

(i) For v in Vn(A′;A),

ev∗ (κ(v)) = [vv∗]− [v∗v].

(ii) For v in Un(A∼)

i∗b[v] = κ(v).

Proof.

(i) We compute
ev∗ (κ(v)) = [pv(1)]− [e11]

= [(1n − v∗v)⊕ vv∗]− [e11]

= [vv∗]− [v∗v].

(ii) In the construction of κ(v), v2 is a path of unitaries in M2n(A∼) from 1 to v̇−1
1 v1. Let

v3(t) be any path of unitaries in M2n(C) from 1 to v̇ ⊕ v̇∗. Then v3(t)v2(t) is a path

from 1 to v ⊕ v∗. By the definition of b

b[v] = [v3v2e11v2v∗3 ]− [e11]

= [v3pvv∗3 ]− [e11]

= [pv]− [e11]

= κ(v),

since v3(t) is in M2n(C).

Lemma 2.4. κ : V (A′; A) → K0 (C(A′; A)) is onto.
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Proof. Let p, q be projections in Mm (C(A′; A)∼) with [ṗ] = [q̇] in K0(C); i.e. [p]− [q]

is in K0 (C(A′;A)). By exactness of (1.2), j∗ev∗ ([p]− [q]) = 0 in K0(A). This means

[p(1)] = [q(1)] in K0(A). So there exists positive integers k, n = 2m + k and a partial

isometry v in Mn(A∼) such that

v∗v = 1m ⊕ 0m ⊕ 1k

vv∗ = p(1)⊕ (1m − q(1))⊕ 1k.

Then v is in Vn(A′; A) and by (i) of 2.3, we have

ev∗ ([p]− [q]) = ev∗ (κ(v)) .

Hence, κ(v)− [p] + [q] is in the kernel of ev∗ which is the image of i∗. For some unitary w

in M`(A′∼), i∗(w) = κ(v)− [p] + [q]. Using (ii) of 2.3, we have

κ(v ⊕ w∗) = κ(v) + κ(w∗)

= κ(v)− i∗(w)

= [p]− [q].

Lemma 2.5. Let ≈ denote the equivalence relation on V (A′; A) generated by

(i) v ≈ v ⊕ p, v ∈ V (A′; A), p a projection in Mn(C).

(ii) If v(t) is a continuous path in Vn(A′;A), then v(0) ≈ v(1).

Then κ : V (A′; A)/ ≈−→ K0 (C(A′;A)) is a well-defined bijection.

Proof. It follows from 2.2 (i), (ii) and (iv) that κ is well-defined. From 2.4, we see

that κ is onto. It remains to show that if v1, v2 are in Vn(A′;A) and κ(v1) = κ(v2), then

v1 ≈ v2.

First, note that if v, w1 and w2 are as in 2.2(iii), then

w1vw2 = w1vw2 ⊕ 0

= (w1 ⊕ w∗1)(v ⊕ 0)(w2 ⊕ w∗2).

By homotoping the first and third terms of the right hand side, we see that w1vw2 ≈ v.

Returning to v1 and v2 with κ(v1) = κ(v2), we may first assume that by taking direct

sums with (different) scalar projections that the ranks of v∗1v2 and v∗2v2 are equal. We can
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then right multiply v1 by a scalar unitary — without changing its ≈-equivalence class —

to obtain v∗1v1 = v∗2v2.

From κ(v1) = κ(v2), we apply ev∗ to both sides, use 2.3(i) and v∗1v1 = v∗2v2 to conclude

that [v1v∗1 ] = [v2v∗2 ] in K0(A′∼). Again we may take direct sum with a scalar projection

and reduce to the case v1v∗1 and v2v∗2 are unitarily equivalent. By left multiplying v1

be a unitary in Mn(A′∼), we obtain v1v∗1 = v2v∗2 , v∗1v1 = v∗2v2, without changing the

≈-equivalence class of v1 or v2.

Let

Rn(t) =

[

t −
√

1− t2
√

1− t2 t

]

, 0 ≤ t ≤ 1

be in M2n(C) and define the path in M2n(A∼)

v(t) = Rn(t) [v1 ⊕ v∗1v1] Rn(t)−1 [(v∗1v2 + 1− v∗1v1)⊕ 1]

for 0 ≤ t ≤ 1. Observe that for all t, v(t) is in V2n(A′;A), v(0) = v∗1v2 ⊕ v1 and v(1) =

v2 ⊕ v∗1v1. We have v∗1v2 is in Vn(A′;A) and

κ (v∗1v2) = κ (v(0))− κ(v1)

= κ (v(1))− κ(v1)

= κ(v2)− κ(v1)

= 0.

Now, consider the unitary v = v∗1v2 + (1− v∗1v1) in Mn(A∼). We have

i∗b[v] = κ(v) = κ(v∗1v2) = 0,

which implies [v] is in the image of j∗. That is, v is homotopic (after direct summing with

the identity) to a unitary in Mn(A′∼). Let v′(t) be any path of unitaries in Mn(A∼) with

v′(0) = v and v′(1) ∈ Mn(A′∼).

Now define a path in M4n(A∼)

w(t) =













v′(t)v1 v′(t)(1− v1v∗1) 0 0

0 0 0 0

1− v∗1v1 0 0 0

0 v1v∗1 0 0













.
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It is straightforward to verify that, for all 0 ≤ t ≤ 1,

w(t)∗w(t) = 1n ⊕ 1n ⊕ 0n ⊕ 0n

w(t)w(t)∗ = 1n ⊕ 0⊕ (1− v∗1v1)⊕ v1v∗1

and so w(t) is a path in V4n(A′;A). Evaluating at t = 0, we see

w(0) =













v2 1− v1v∗1 0 0

0 0 0 0

1− v∗1v1 0 0 0

0 v1v∗1 0 0













=













v1v∗1 1− v1v∗1 0 0

0 0 0 1

0 0 1 0

1− v1v∗1 v1v∗1 0 0













·













v2 0 0 0

0 1 0 0

0 0 1− v∗2v2 0

0 0 0 0













·













v∗2v2 0 1− v∗2v2 0

0 1 0 0

1− v∗2v2 0 v∗2v2 0

0 0 0 1













.

The first matrix in this product is a unitary in M4n(A′∼), the last in M4n(C) and so

w(0) ≈ v2 ⊕ 1⊕ (1− v∗2v2)⊕ 0 ≈ v2.

A similar calculation shows w(1) ≈ v1 and we are done.

Regarding the relation ≈, it is clear that if v0 and v1 are homotopic, then for any scalar

projection p, v0 ⊕ p and v1 ⊕ p are homotopic. Therefore, if v0 ≈ v1 then there are scalar

projections p0 and p1 such that v0 ⊕ p0 and v1 ⊕ p1 are homotopic.

A few other remarks are in order. Following exactly as in the beginning of the proof

(before κ(v1) = κ(v2) was used), given any v1 and v2 in V (A′;A) we may direct sum scalar
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projections and right multiply by one by a scalar unitary to get v∗1v1 = v∗2v2. Finally, if

v(r) is a path in Vn(A′;A), we may right multiply by a path of scalar unitaries so that

v(r)∗v(r) = v(0)∗v(0), for all r.

For each 0 < ε < 400−1, we let V ε
n(A′; A) denote the set of v in Mn(A∼) such that

(i) v is a partial isometry,

(ii) v∗v is in Mn(C),

(iii) ‖vv∗ − q‖ < ε, for some q in Mn(A′∼).

We let V ε(A′; A) denote the union of the V ε
n(A′; A), with the usual inclusion of V ε

n

in V ε
n+1. For any a in V ε(A′;A), let v be as in 2.1. We define κ(a) = κ(v). This is

independent of the choice of v by 2.2(ii). It is also easy to see that 2.2 is valid if we replace

V (A′;A) by V ε(A′; A). We extend the definition of ≈ to V ε(A′, A) in the obvious way.

Lemma 2.6. Suppose A has a countable approximate unit {en}∞1 contained in A′.

Then for every v in Vn(A′; A) and 0 < ε < 400−1, v ≈ w, for some w in V ε
2n(A′; A) such

that

w =

[

w0 0

(p− w∗0w0)
1
2 0

]

,

where w0 is in Mn(A), p is a projection in Mn(C) and 0 ≤ w∗0w0 ≤ p. Moreover if

w =

[

w0 0

(p− w∗0w0)
1
2 0

]

w′ =

[

w′0 0

(p− w′∗0 w′0)
1
2 0

]

are homotopic in V ε
2n(A′; A) then there is a path

w(t) =

[

w0(t) 0

(p− w0(t)∗w0(t))
1
2 0

]

joining them.

(The point here is that w0 lies in Mn(A) and not just Mn(A∼).)

Proof. Notice that v ≈ v̇∗v — see the proof of 2.5 — and (v̇∗v)· = v̇∗v̇ = p is a

projection in Mn(C). Thus, we may assume v̇ = p. Using em to denote 1n⊗ em in Mn(A),

notice that

e′m =

[

em −(1− e2
m)

1
2

(1− e2
m)

1
2 em

]
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is a unitary in M2n(A′∼) so

v ≈ e′m (v ⊕ 0) =

[

emv 0

(1− e2
m)

1
2 v 0

]

.

We will let w0 = emv, for some sufficiently large m, which is in Mn(A). It is clear that

w∗0w0 ≤ p. Consider

∥

∥

∥

(

1− e2
m

) 1
2 v − (p− w∗0w0)

1
2

∥

∥

∥

≤
∥

∥

∥

(

1− e2
m

) 1
2 (v − p)

∥

∥

∥

+
∥

∥

∥

(

1− e2
m

) 1
2 p− (p− w∗0w0)

1
2

∥

∥

∥ .

The first term tends to zero since v − p is in Mn(A) and em is an approximate unit. As

for the second, since (1− e2
m) and p commute, their product is positive and

∥

∥

∥

(

1− e2
m

) 1
2 p− (p− w∗0w0)

1
2

∥

∥

∥

≤
∥

∥

(

1− e2
m

)

p− (p− w∗0w0)
∥

∥

1
2

=
∥

∥(p− v)∗
(

1− e2
m

)

(p− v)
∥

∥

1
2

which tends to zero as m goes to infinity. Therefore, we may choose m so that e′m(v ⊕ 0)

and
[

w0 0

(p− w∗0w0)
1
2 0

]

are sufficiently close so that the latter is in V ε
2n(A′; A) and is ≈-equivalent to the former.

For the final part, consider the C∗-algebra C[0, 1]⊗A. We omit the details.

§3. The Excision Theorem

Here, we state and prove our main results (Theorems 3.1-3.7). We describe the hy-

potheses. We suppose that A and B are C∗-algebras acting on the Hilbert space H. We

also suppose that z is a self-adjoint unitary operator on H. Note that we regard Mn(A)

and Mn(B) as acting on H ⊕ · · · ⊕ H, the n-fold direct sum. We also let z denote the

operator z ⊕ · · · ⊕ z on H⊕ · · · ⊕ H. We let [a, b] = ab− ba for any operators a, b on H.
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We will assume conditions 1-6 hold.

1. For all a in A, b in B, ab is in A; i.e. B acts as multipliers of A.

2. zAz = A.

3. For all b in B, zbz − b is in A.

4. There is a continuous path {et | t ≥ 0} in A such that

(i) 0 ≤ et ≤ es ≤ 1, for t ≤ s,

(ii) eset = et for s ≥ t + 2,

(iii) for all a in A,

lim
t→∞

‖eta− a‖ = 0 = lim
t→∞

‖aet − a‖.

(iv) [et, z] = 0, for all t.

We define C∗-subalgebras

A′ = {a ∈ A | [a, z] = 0}

B′ = {b ∈ B | [b, z] = 0} .

5. For all b in B, there exists b′ in B′ such that

‖b− b′‖ ≤ 2‖[b, z]‖.

(In the terminology of M.-D. Choi, almost commuting with z implies nearly commuting

with z.)

6. There is a dense ∗-subalgebra A ⊆ A such that for a in A, there is t0 ≥ 1 such that

(i) aet = eta = a, for all t ≥ t0,

and, for any such t0 as above, there is b in B such that

(ii) bet = etb = a, t0 ≤ t ≤ t0 + 2.

(iii) [b, z] = [a, z].

(iv) ‖b‖ ≤ ‖a‖.

(The choice of b will depend on t0 as well as a.)

Note that the condition on A analogous to 5 is valid; let a′ = (a + zaz)/2.

Many examples are found in the theory of C∗-algebras associated to dynamical systems

via the crossed product or groupoid C∗-algebra constructions. Let us mention one explicit

example.
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Fix an irrational number θ, 0 < θ < 1. Let H = `2(Z) and let u and v denote the

unitary operators
(uξ)(n) = ξ(n− 1)

(vξ)(n) = exp(2πiθ)ξ(n),

for ξ in `2(Z), n in Z. Then u and v satisfy the relation uv = exp(2πiθ) vu and generate a

C∗-algebra, B, isomorphic to the irrational rotation C∗-algebra, Aθ. We let A = K( H),

the compact operators, and

(zξ)(n) =
{ ξ(n) n ≥ 1

− ξ(n) n ≤ 0.

It is easy to verify 1, 2 and 3. It is also easy to see that

A′ = K
(

`2{n | n ≤ 0}
)

⊕K
(

`2{n | n ≥ 1}
)

.

The proofs that 4, 5 and 6 hold can be found in [Put2]. Also the techniques of [Put2]

show that B′ is the C∗-subalgebra of B generated by v and u(v − 1). (See example 2.6 of

[Put2].)

Theorem 3.1. Let A, B, z satisfy 1-6 as above. Then there is an isomorphism

α : K0 (C(B′;B)) → K0 (C(A′, A))

which is natural in a sense to be described.

Let us take a moment to try to justify our description of 3.1 as an “excision” theorem.

Section 2 describes the K-theory of the mapping cone C(A′;A) as partial isometries in A

with initial and final projection in A′. The extent to which an element a lies in A′ can be

measured by zaz− a = z[a, z]. A similar remark applies to B′ and B. Conditions 2, 3 and

6(iii) essentially mean that the sets

{zaz − a | a ∈ A}

{zbz − b | b ∈ B}

“agree”. The conclusion is then that the corresponding “relative K-groups” are isomorphic.

We begin by describing the map α. We use et to also denote the element 1n ⊗ et in

Mn(A), for any n = 1, 2, 3, · · · . We will use the description of K0 (C(B′;B)) provided by
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Lemma 2.5 and the discussion following it. Let v be in V ε
n(B′; B). For all t ≥ 1, we define

α(v)t by

α(v)t =

[

vet 0

(v∗v − etv∗vet))
1
2 0

]

Since B acts as multipliers of A, vet is in Mn(A). Also, v∗v is a projection in Mn(C) and

it follows that α(v)t lies in M2n(A∼). It is also worth noting that et and v∗v commute so

that

(v∗v − etv∗vet)
1
2 = v∗v

(

1− e2
t

) 1
2 .

It is easy to check that

α(v)∗t α(v)t = v∗v ⊕ 0,

which is in M2n(C) and is a projection.

Lemma 3.2. For v in V ε
n(B′;B) and 0 < ε < 400−1, there is t ≥ 1 such that α(v)s is

in V ε
2n(A′; A) for all s ≥ t.

Proof. We claim that

lim sup
t→∞

‖[α(v)t α(v)∗t , z]‖ ≤ ε.

To see this,

α(v)t α(v)∗t =





ve2
t v
∗ vet

(

1− e2
t

) 1
2

(

1− e2
t

) 1
2 etv∗ v∗v

(

1− e2
t

)





and we will check the commutators of the four entries with z separately. The lower right

entry actually commutes with z since et does and v∗v is in Mn(C). As for the upper right

(or lower left)

lim
t→∞

[

vet
(

1− e2
t

) 1
2 , z

]

= lim
t→∞

[v, z] et
(

1− e2
t

) 1
2

= 0

since z[v, z] is in Mn(A) and et is an approximate unit for A. For the upper left entry, we

have
lim sup

t→∞

∥

∥

[

ve2
t v
∗, z

]∥

∥

= lim sup
t→∞

∥

∥[v, z] e2
t v
∗ + ve2

t [v
∗, z]

∥

∥ .

Since z[v, z] and z[v∗, z] are both in A, et will asymptotically commute both, so this equals

lim sup
t→∞

∥

∥e2
t [v, z] v∗ + v[v∗, z] e2

t

∥

∥ .
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Applying the same argument and noting [v, z] v∗ is in Mn(A) since v∗ is in the multiplier

algebra of Mn(A), this equals

lim sup
t→∞

∥

∥([v, z] v∗ + v[v∗, z]) e2
t

∥

∥

= lim sup
t→∞

∥

∥[vv∗, z] e2
t

∥

∥

≤ ε

since vv∗ is within ε of an element of in Mn(A′∼). The claim is established.

To see the conclusion, let

q =
z α(v)t α(v)∗t z + α(v)t α(v)∗t

2
.

Now, (iii) follows from the claim and it is clear that q is in M2n(A′∼).

Notice that

α(v ⊕ w)t = α(v)t ⊕ α(w)t

(at least after a change of basis which we will suppress). It follows from 3.2 that letting

α (κ(v)) = κ (α(v)s), )

for any sufficiently large s defines an element in K0 (C(A′; A)). To see that α is well-defined

it suffices to apply Lemma 2.5 and observe the following. If p is a projection in Mn(C)

then

α(p)t = e′t(p⊕ 0),

where e′t is as in 2.6. So then κ (α(pt)t) = 0 by 2.2(ii), (iii).

Also observe that if v(r), 0 ≤ r ≤ 1 is a path in V ε
n(B′; B) then the limit in 3.2 can be

made uniform over r, and, hence, for s large α (v(r))s will be a homotopy in V 2ε
2n(A′;A).

The proof of 3.1 will require several technical Lemmas.

Lemma 3.3. Let w0 be in Mn(A) and p be a projection in Mn(C) such that p ≥ w∗0w0.

Then there is t0 ≥ 1 and v0 in Mn(B) with v∗0v0 ≤ p such that

(i) w0es = esw0 = w0, for s ≥ t0

(ii) v0es = esv0 = w0, for t0 + 2 ≥ s ≥ t0

(iii) [v0, z] = [w0, z]
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(iv) [v∗0v0, z] = [w∗0w0, z]

(v) [v0v∗0 , z] = [w0w∗0 , z]

(vi)
[

(p− v∗0v0)
1
2 , z

]

=
[

(p− w∗0w0)
1
2 , z

]

.

Proof. Choose any t0 and b as in hypothesis 6 for a = w0. Then let

v0 = bp so v∗0v0 = p b∗b p ≤ p‖b‖2 p ≤ p.

Conditions (i), (ii) and (iii) follow at once from hypothesis 6.

We have

[v∗0v0, z] = [v∗0 , z] v0 + v∗0 [v0, z]

= [w∗0 , z] v0 + v∗0 [w0, z]

= [w∗0et, z] v0 + v∗0 [etw0, z], for t0 ≤ t ≤ t0 + 2

= [w∗0 , z] etv0 + v∗0et[w0, z]

= [w∗0 , z] w0 + w∗0 [w0, z] by (ii)

= [w∗0w0, z]

and so (iv) holds. A similar argument establishes (v). As for (vi), it follows from (iv) that

[f(p− v∗0v0), z] = [f(p− w∗0w0), z]

for any polynomial f . By standard approximation arguments, the same holds for

f(t) = t
1
2 .

Lemma 3.4. Let w0, p, t0, v0 be as in 3.3. Define w in M2n(A∼) and v in M2n(B∼)

by

w =

[

w0 0

(p− w∗0w0)
1
2 0

]

v =

[

v0 0

(p− v∗0v0)
1
2 0

]

.

Then

(i) w∗w = v∗v = p⊕ 0,

(ii) es[v, z] = [v, z] es = [v, z] = [w, z] for s ≥ t0,
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(iii) [ww∗, z] = [vv∗, z].

The proof is an easy consequence of 3.3; we omit the details.

Lemma 3.5. Let w0 be in Mn(A∼), p a projection in Mn(C) with p ≥ w∗0w0. Let t0,

v0 be as in 3.3, w, v as in 3.4 and assume w is in V ε
2n(A′;A) for some 0 < ε < 400−1.

Then

(i) v is in V 4ε
2n(B′; B),

(ii) α(v)s is in V 4ε
4n(A′; A), for all s ≥ t0,

(iii) κ (α(v)s) = κ(w), for t0 ≤ s ≤ t0 + 2.

Proof.

(i) From 3.4(i), v∗v = p ⊕ 0 and we must check only that vv∗ is close to an element of

M2n(B′∼). From 3.4(iii)

‖[vv∗, z]‖ = ‖[ww∗, z]‖ ≤ 2ε

since w is in V ε
2n(A′; A). Apply hypothesis 5 to find q in M2n(B′∼) so that ‖q−vv∗‖ ≤ 4ε,

and (i) is complete.

(ii) As before, we must compute

‖[α(v)s α(v)∗s, z]‖ .

Now, for s ≥ t0,

α(v)s α(v)∗s =





ve2
sv
∗ vet

(

1− e2
t

) 1
2 v∗v

v∗v
(

1− e2
t

) 1
2 etv∗ v∗v

(

1− e2
t

)





and commutators with z for each of the entries is done separately. The off-diagonal

entries commute with z because v∗v = p and by condition (ii) of 3.4, so (1−et)[v, z] = 0.

The lower right entry also commutes with z while

[

ve2
sv
∗, z

]

= [ww∗, z] for s ≥ t0.

This completes the proof of (ii).
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(iii) By direct computation

α(v)s =















v0es 0 0 0

(p− v∗0v0)
1
2 es 0 0 0

p(1− e2
2)

1
2 0 0 0

0 0 0 0















=















1 0 0 0

0 es −
(

1− e2
s

) 1
2 0

0
(

1− e2
s

) 1
2 es 0

0 0 0 1















·













w0 0 0 0

(p− w∗0w0)
1
2 0 0 0

0 0 0 0

0 0 0 0













for t0 ≤ s ≤ t0 + 2, using Lemma 3.2. The first matrix above is in M4n (A′∼) and so

the result follows from 2.2(iii).

Lemma 3.6 Suppose v is in Vn(B′; B) and ‖[v, z]‖ ≤ ε ≤ 10−6. Then κ(v) = 0.

Proof. By hypothesis 5, there is a v′ in Mn(B′∼) such that ‖v′‖ ≤ 1 and ‖v− v′‖ ≤ 2ε.

Let

w =

[

v′p 0

(p− pv′∗v′p)
1
2 0

]

,

where p = v∗v, so w is in V2n(B′; B) and in M2n(B′∼) and

‖v ⊕ 0− w‖ ≤ 4ε
1
2 .

Moreover, κ(w) = 0 by 2.2(v) and κ(v) = κ(w) by 2.2(ii).

Let us describe the naturality of the isomorphism described in 3.1. Suppose
(

A1, B1, z1, {e(1)
t }

)

and
(

A2, B2, z2, {e(2)
t }

)

are two systems satisfying 1-6. Also suppose

σ :A1 −→ A2

π :B1 −→ B2
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a ∗-homomorphisms such that

σ(ab) = σ(a)π(b), a ∈ A1, b ∈ B1

σ(z1az1) = z2 σ(a) z2, a ∈ A1

π(z1bz1) = z2 π(b) z2, b ∈ B1

σ(z1bz1 − b) = z2 π(b) z2 − π(b), b ∈ B1

σ
(

e(1)
t

)

= e(2)
t , for all t.

It is easy to see that σ and π induce ∗-homomorphisms

σ̃ : C (A′1; A1) −→ C (A′2; A2)

π̃ : C (B′
1; B1) −→ C (B′

2; B2) .

The map α is natural in the sense that the following diagram commutes:

K0 (C(B′
1; B1))

α
−−−−−→ K0 (C(A′1; A1))





y π̃∗





y σ̃∗

K0 (C(B′
2; B2))

α
−−−−−→ K0 (C(A′2; A2))

The proof of this is immediate. We omit the details.

As an application, suppose (A,B, z, et) satisfies 1-6 and suppose X is a compact second

countable Hausdorff space. Fix some regular Borel measure µ on X with full support. Then

we can regard A⊗C(X), B ⊗C(X) and z ⊗ 1 as operators on H⊗L2(X, µ). Hypotheses

1-3 are easily checked and et ⊗ 1 satisfies 4. We also have

(A⊗ C(X))′ = A′ ⊗ C(X)

(B ⊗ C(X))′ = B′ ⊗ C(X)

and 5 follows. The algebraic tensor produce of A and C(X) can be seen to satisfy 6.

Proof of 3.1. First of all, it is fairly clear that α is additive. The surjectivity of α

follows at once from Lemmas 2.6 and 3.5.
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Suppose v is in Vn(B′; B) and α (κ(v)) = 0 in K0 (C(A′; A)). Let p = v∗v which is a

projection in Mn(C). Fix ε = 10−7. Choose t1 ≥ 1 such that

(1) ‖[v, z] et − [v, z]‖ ≤ ε

‖[v, z]− [v, z] et‖ ≤ ε, t ≥ t1

and such that

(2) α(v)t ∈ V ε
2n(A′; A), t ≥ t1.

Since κ (α(v)) = 0, we may direct sum α(v) t1 with a scalar projection q so that the result

is homotopic to a scalar projection in V ε(A′; A). By replacing v by v ⊕ q, we may assume

simply that α(v)t1 is homotopic to
[

0 0
p 0

]

, which is homotopic to p⊕0. We apply Lemma

2.6 to obtain a path as described there. We may then approximate the “w0” part of this

path by a path in Mn(A). We right multiply this path by p and we obtain a path a(s),

0 ≤ s ≤ 1, such that a is in the algebraic tensor product of C[0, 1] and Mn(A),

w(s) =

[

a(s) 0

(p− a(s)∗a(s))
1
2 0

]

, 0 ≤ s ≤ 1,(3)

∈ V 2ε
2n(A′;A)

a(1) = 0(4)

‖w(0)− α(v)t1‖ ≤ 2ε,

hence,

‖a(0)− vet1‖ ≤ 2ε,
∥

∥

∥(p− a(0)∗a(0))
1
2 − p

(

1− e2
t1

) 1
2

∥

∥

∥ ≤ 2ε.

We may apply the sequence of Lemmas 3.3, 3.4 and 3.5 to the element a in Mn (C[0, 1]�A)

(algebraic tensor product) and p in Mn(C) to obtain a path b(s), 0 ≤ s ≤ 1

v1(s) =

[

b(s) 0

(p− b(s)∗b(s))
1
2 0

]
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0 ≤ s ≤ 1 and t2 ≥ t1 + 2 such that

(6) [b(s), z] = [a(s), z],

(7) b(s) et = et b(s), t2 ≤ t ≤ t2 + 2,

(8) a(s) et = et a(s) = a(s), t ≥ t2,

(9) [b(s)∗b(s), z] = [a(s)∗a(s), z]

(10) [b(s)b(s)∗, z] = [b(s)b(s)∗, z]

[

(p− b(s)∗b(s))
1
2 , z

]

=
[

(p− a(s)∗a(s))
1
2 , z

]

,(11)

v1(s) is in V 4ε
2n(B′; B)

α (v1(s))t is in V 4ε
4n(A′; A), t ≥ t2.

Let us evaluate v1 at s = 1. Making use of (4), (6) and (9), we see that

(12) [v1(1), z] = 0

and so v1(1) is in Mn(B′∼). Next, we claim that

(13) ‖[v b(0)∗, z]‖ ≤ 3ε,

(14)
∥

∥

∥

[

v (p− b(0)∗b(0))
1
2 , z

]∥

∥

∥ ≤ 3ε.

To see the first, we have

‖[v b(0)∗, z]‖ = ‖[v, z] b(0)∗ + v [b(0)∗, z]‖

≤ ‖[v, z] et1 b(0)∗ + v [a(0)∗, z]‖+ ε

by (1) and (6),

≤ ‖[v, z] et1et2 b(0)∗ + v [et1 v∗, z]‖+ ε
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by hypothesis 4(ii) and (5),

= ‖[v, z] et1 a(0)∗ + vet1 [v
∗, z]‖+ ε

by (7)

≤
∥

∥[v, z] e2
t1 v∗ + ve2

t1 [v
∗, z]

∥

∥ + 2ε

by (5) and (1)
=

∥

∥

[

ve2
t1 v∗, z

]∥

∥ + 2ε

≤ 3ε

because of (2). To see the second, there is a similar computation which we omit.

Now consider

v2(s) = (v ⊕ 0) v1(s)∗, 0 ≤ s ≤ 1.

This is a path of partial isometries in M2n(B∼). For each s, its range projection is the

range projection of v which is in M2n(B′∼). Its initial projection is the range projection

of v1(s) which is in M2n(B′∼), for all s. As noted in (12), when s = 1, this projection is

actually Murray-von Neumann equivalent to p⊕ 0 in M2n(B′∼). So we may find a path of

unitaries u(s), 0 ≤ s ≤ 1 in M2n(B′∼) (actually, it may be necessary to pass to M4n(B′∼))

such that

v1(1)∗ u(1) = p⊕ 0

v1(s)∗ u(s) has initial projection p⊕ 0,

0 ≤ s ≤ 1.

Now, consider the path

v3(s) = (v ⊕ 0) v1(s)∗ u(s), 0 ≤ s ≤ 1.

It is a path in V2n(B′; B). Moreover, for s = 1,

v3(1) = v ⊕ 0

while for s = 0,

v3(0) =

[

v b(0)∗ v (p− b(0)∗ b(0))
1
2

0 0

]

u(0)
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which commutes with z, to within 3ε, by (13) and (14). By Lemma 2.2(v) and the homo-

topy invariance of κ,

κ(v) = κ (v3(1)) = κ (v3(0)) = 0.

This proves that α is injective and we are done.

Theorem 3.7. Let A, B, z satisfy 1-6 as before. Then there are isomorphisms

α : Ki (C(B′; B)) −→ Ki (C(A′; A)) ,

which are natural, for i = 0, 1.

Proof. The case i = 0 is done. For the other case, let B1 = C(S1)⊗B, A1 = C(S1)⊗A,

z1 = 1⊗ z and σ : A1 → A, π : B1 → B be given by evaluation at some fixed point of the

circle, S1. There is a split exact sequence

0 → C0(0, 1)⊗ C(B′;B) → C(B′
1; B1)

π−→ C(B′; B) → 0

and a corresponding one for A and A1. Using the naturality of α on K0 and the usual

isomorphism

K1 (C(B′; B)) ∼= K0 (C0(0, 1)⊗ C(B′;B))

and the usual techniques, one obtains the result for K1 groups as well.
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