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Abstract. We consider a pair of C*-algebras A’ C A. The K-theory
of the mapping cone for this inclusion can be regarded as a relative K-group.
We describe a situation where two such pairs have isomorphic relative groups.

§1. Introduction

This paper is concerned with a certain excision result for K-theory of C'*-algebras.

Let us begin by setting out some notation. Let A be any C*-algebra. We let A™ be
the C*-algebra obtained by adjoining a unit to A (even if A is already unital). Let M, (A)
denote the C*-algebra of n x n matrices with entries from A. For any a in A™ (respectively,
M, (A™)), let @ denote its image in C, the complex numbers, (respectively, M, (C)), under
the map moding out by A. We also regard C and M,,(C) implicitly as subalgebras of A™
and M,,(A™), respectively.

Suppose A’ is a C*-subalgebra of A. We regard A’ C A™ as the natural unital
inclusion. Recall [Sch, W-O, B1] that the mapping cone for the inclusion A" C A is

C(A;A) = {f :[0,1] — A | f is continuous,

f0)=0, f1)eat.
It is a C'*-algebra with pointwise operations and
If1] = sap {lF@I |0 <t <1}

for f in C(A’; A). There is a natural short exact sequence

0— Cp(0,1) @ A— C(A;A) — A" —0

ev
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where )
ev(f)=f(1),  feC(A}A)
i(g®@a)(t) =g(t)a, g€ Co(0,1), acA 0<t<L
Let b: K;(A) — K11 (Cp(0,1) ® A) denote the usual isomorphism [B1]. After using b

to replace the terms involving K, (Cy(0,1) ® A), the six-term exact squence for K-groups

associated with the sequence above becomes

ixb evy

Ki(A) ——— Ko(C(AA4) ——— Ko(A)

14 |
Ki(4) —— K (C(A54) ——— Ko(4)

evy )

where j : A’ — A denotes the inclusion map. We regard K, (C(A’;A)) as a “relative
group” for the C*-algebra inclusion A’ C A. Indeed, if A’ is actually an ideal in A, then

there is a natural isomorphism
K, (C(AA) 2 K. (A/A).

To see this, let
J={feCA A | ft)e A forall 0 <t <1},

which is an ideal in C'(A’; A). Moreover, J = Cy(0,1]® A" and so K. (J) = 0, since Cy(0, 1]
is contractible [W-O, B1]. We also have a short exact sequence

0—J—C(AA") — Cy(0,1)® (A/A") — 0.

Taking the six-term exact sequence for K-groups and noting K, (J) = 0 yields the result.
Thus, if A" is an ideal, K, (C(A’; A)) depends only on A/A’.
Our goal is to describe two pairs of inclusions A’ C A and B’ C B which are related in

a specific eay that we may conclude that there is an isomorphism
K. (C(A'; 4)) = K. (C(B'; B)).

which is natural in some sense. The roles of A and B here will not be symmetric. In some

sense, the inclusion A’ C A will be the more tractible. We suppose that A and B are both
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C*-algebras of operators acting on the Hilbert space H. We suppose that z is a self adjoint
unitary on ‘H and that the following conditions are satisfied. First, B should lie in the
multiplier algebra of A. We should have zAz = A and, for all bin B, zbz —b lies in A. One
interesting case where this occurs is when (H, z) is a Fredholm module for B [B1]. Let A
be the C*-algebra of compact operators on H. These conditions are satisfied. Returning to
the general situation, we let A’ and B’ be those operators in A and B, respectively, which
commute with z. We require three more technical assumptions on A, B and z (given as 4,

5, 6 in section 3). Under these hypotheses, we construct a homomorphism
a: K. (C(B's B)) — K. (C(A'; A))

and prove that it is an isomorphism.

The main applications of this result are in various situations arising from dynamical
systems where B, B’, A and A’ can all be described as groupoid C*-algebras. For example,
B = (C(X)xyZ and B' = Ay of [Putl], where ¢ is a minimal homeomorphism of a Cantor
set X, can be described in this way. Here, A is the compact operator on £2(Z) and A’ is
the direct sum of compact operators on two orthogonal subspaces. More applications can
be found in [Put2]. (Also, see [GPS].)

In Section 2, we provide a description of Ky (C(A’; A)) which will be useful. In Sec-

tion 3, we state and prove the main results (3.1 and 3.7).

§2. K-theory of Mapping Cones

Our aim in this section is to provide a natural description of Ky (C(A’, A)).
We begin, as in Section 1, with C*-algebras A’ C A. For each n = 1,2,3,---, we let
Vn(A’; A), or simply V,,, denote the set of elements v in M,,(A™) such that
(i) v is a partial isometry.
(ii) v*v is in M, (C).
(iii) vo* is in M, (A"™).
(In some ways, it would be more natural to required v*v to be in M, (A’™); our definition
will be more convenient, however.) We regard V,, C V,,;1 by identifying v and v & 0, for
all vin V,,. We let
V(A5 A) = V(45 A).



We will make use of the following two facts:

1. If h is a self-adjoint element of a C*-algebra and ||h — h?|| < § < 1, then the spectrum
of h is contained in (—24,26) U (1 — 2§, 1+ 24§). The proof is an easy application of the

spectral theorem.

2. If p; and py are projections in a C*-algebra with [[p; — p2f| < 0 < %, then there is a
unitary u in the C*-algebra such that up;u* = ps and ||u — 1| < 7. For a proof, see
4.3.2, 4.6.5 of [B1].

Lemma 2.1. Suppose 0 < ¢ < 10071 and v in M, (A~) satisfies (i) and (ii) above
and there exists q in M, (A"™) such that ||[vv* — q|| < €. Then there exists a unitary u in
M,,(A™) such that ||u — 1|| < 30e and wv is in V,(A’; A).

Proof. First replace ¢ by (¢ + ¢*)/2 so we may assume it is self-adjoint. Since v is a
partial isometry, vv* is a projection and so
lg* — ql| < 4e.
Then, using the first fact above, ¢; = X(1,00) (q) is a projection and ||¢1 — ¢|| < 8¢ hence
2 b

lg1 — vo*|| < 9e.

The second fact above then gives the desired u. ||

We define a map
k: V(A A) — Ko (C(A; A)).
Begin with v in V,,(A’; A). Consider

1 —ov*v v*

V1 = "
v 1—ov

in My, (A™). It is easily verified that vy is a self-adjoint unitary. We define a path of
self-adjoint unitaries in M, (A™) by

vat) = [01 + 1+ €™ (1 — b)) [r + 1+ €™ (1 —vy)],

for 0 <t < 1. Notice that vy satisfies

(i) wva(t) is unitary for all ¢,
(ii) g isin C[0,1] ® M, (A™),



(iii) 2(t) = 1, for all ¢,
(iv) v2(0) =1,
(v) va(1) = 97 toy.

Together, (ii), (iii) and (iv) imply that v, may be regarded as an element of
[Co(0,1] ® Ma,,]™ .

Finally, we define
pu(t) = v2(t) e11 va2(t)",
for 0 <t <1, where ey; denotes 1,, ® 0 in M, (A™). It is easy to verify that
(i) pu(0) =en
(i) pu(1) = (1, —v*v) & vv* € My, (A'™)
(iii) py(t) =eq1, for all 0 < ¢ < 1.
Thus, p, is in Ma, (C(A’; A)™) and [p,] —[e11] is in Ky (C(A’; A)). We denote this element
by k(v). We summarize the properties of &.
Lemma 2.2.
(i) Forv,w in V(A'; A),
k(v ®w) = k(v) + k(w).
(i) If v,w are in V,(A’; A) and |Jv — w|| < 2007, then k(v) = k(w).
(iii) For v in V,(A"; A), wy in U,(A'™) and we in U,(C), then wivws is in V,,(A’; A) and

k(wy) = kK(we) =0

k(wivws) = K(v).

~—

(iv) For any projection p in M,(C), xk(p) = 0.

(v) If v is a partial isometry in M, (A"™), then k(v) = 0.

Proof. Parts (i) and (iv) are verified by direct computations, which we omit.

In proving (ii), one notes that the construction of p, depends continuously on v. In fact,
v — w|| < 2007 implies ||p, — pw| < & (We omit the details), which implies [p,] = [pu]
and the conclusion. As a consequence of (ii), if v and w are homotopic in V,,(A’; A) then
k(v) = k(w).

In part (iii), we begin by considering v & 0, wy ® wi and wy @ wi. By standard

methods (see 4.2.9 of [W-O]), w; & w} and ws & wi are both homotopic to the identity in
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Usn (A™™) and Us, (C) respectively. Thus, wivws @ 0 is homotopic to v @ 0 in Vs, (A"; A),
so k(v) = k(wyvws) by (ii) and (i). Finally, k(w1) = k(w2) = 0 both following as special

cases (v =wy =1, w; =v = 1) of (iii) and (iv). As for (v), writing

v l—vv*} [p 0}
v 0=
1—v*v v* 0 0

the conclusion follows from (iii) and (iv). |
We now want to see how this map r relates to the six-term exact sequence (1.2).

Lemma 2.3.
(i) Forwv in V,(A"; A),

evy (k(v)) = [vv*] — [v™].
(ii) For v in U,(A™)
ixb[v] = K(v).

Proof.
(i) We compute

evy ((v)) = [po(1)] — [enn]
= [(1, —v"v) ® vv*] — [e11]
= [vv*] = [v™V].
(ii) In the construction of x(v), vo is a path of unitaries in My, (A™) from 1 to ©; 'v;. Let

v3(t) be any path of unitaries in M, (C) from 1 to v @ ©*. Then vs3(t)va(t) is a path
from 1 to v @ v*. By the definition of b

blv] = [vzveer1vavs] — [e11]
= [vspyv3] — [e11]
= [po] — len]
= r(v),
since v3(t) is in Moy, (C). |l

Lemma 2.4. x: V(A'; A) — Ky (C(A'; A)) is onto.
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Proof. Let p, q be projections in M, (C(A’; A)~) with [p] = [¢] in K¢(C); i.e. [p] — [q]
is in Ko (C(A’; A)). By exactness of (1.2), j.evs ([p] —[g]) = 0 in Ky(A). This means
[p(1)] = [¢(1)] in Ko(A). So there exists positive integers k, n = 2m + k and a partial
isometry v in M, (A™) such that

v =1, ®0, ® 1
vo* =p(1) & (1, —q(1)) & 1.

Then v is in V,,(A’; A) and by (i) of 2.3, we have

ev« ([p] — [a]) = evs (k(v)).-

Hence, k(v) — [p] + [g] is in the kernel of ev, which is the image of i,. For some unitary w

in My(A'™), i.(w) = k(v) — [p] + [¢]. Using (ii) of 2.3, we have

k(v ®w") = k(v) + k(w")

Lemma 2.5. Let ~ denote the equivalence relation on V(A'; A) generated by
(i) vev@dp,ve V(A A), p a projection in M, (C).
(ii) If v(t) is a continuous path in V, (A’; A), then v(0) ~ v(1).

Then k : V(A'; A)) ~— Ky (C(A’; A)) is a well-defined bijection.

Proof. 1t follows from 2.2 (i), (ii) and (iv) that s is well-defined. From 2.4, we see
that x is onto. It remains to show that if vy, vy are in V,,(A’; A) and k(v1) = K(v2), then
V1 = V2.

First, note that if v, wy and ws are as in 2.2(iii), then
wW1VWe = wivwsy P 0
— (w1 ® w}) (v ® 0) (s © w}).

By homotoping the first and third terms of the right hand side, we see that wjvw, ~ v.
Returning to v; and ve with k(v1) = k(v2), we may first assume that by taking direct

sums with (different) scalar projections that the ranks of vjve and vjvs are equal. We can
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then right multiply v; by a scalar unitary — without changing its ~-equivalence class —
to obtain vjv; = vivs.

From x(v1) = k(v2), we apply ev, to both sides, use 2.3(i) and vjv; = vivy to conclude
that [v1v]] = [v2v3] in Ko(A'™). Again we may take direct sum with a scalar projection
and reduce to the case v;v] and vov are unitarily equivalent. By left multiplying v;
be a unitary in M, (A™), we obtain v1v] = wvav}, vjv; = vjve, without changing the
~-equivalence class of v; or wvs.

Let

t —V1-¢2
R,(t) = ., 0<t<1

V1 —t2 t
be in My, (C) and define the path in My, (A™)

v(t) = Ru(t) [v1 & viva] Ru(t)™" [(vve + 1 = vjvy) & 1]

for 0 < ¢ < 1. Observe that for all ¢, v(t) is in Va,(A’; A), v(0) = vive @ v1 and v(1) =

vo @ vivy. We have vjvg is in V,,(A’; A) and
r (viv2) = & (0(0)) — K(v1)
= 1 (0(1)) — (v1)
= k(v2) — k(v1)
=0.
Now, consider the unitary v = vjvy + (1 — vjv1) in M, (A~). We have
i.b[v] = k(v) = K(vive) = 0,

which implies [v] is in the image of j.. That is, v is homotopic (after direct summing with
the identity) to a unitary in M, (A’™). Let v'(t) be any path of unitaries in M,,(A™) with
v'(0) = v and V(1) € M, (A"™).

Now define a path in My, (A™)

v (t)vy v'(t)(1 — vyv7) 0 0
0 0 0 0
w(t) =
1 —viv 0 0 0
0 V1V 0 0



It is straightforward to verify that, for all 0 <¢ <1,
w(t) w(t)=1,®1, ®0, B0,
wt)w(t) =1, 08 (1 —vivy) & viv]

and so w(t) is a path in Vy,(A’; A). Evaluating at ¢t = 0, we see

T vg 1 —wvv] 0 07
w(0) = 0 0 0 0
1—viv 0 0 0
L 0 vV} 0 0.
V1V 1 —wvv] 0 07
0 0 0 1
B 0 0 1 0
L1 —viv] V1V 0 0
[ U2 0 0 0
0 1 0 0
0 0 1 —v5v9 0
L 0 0 0 0
[ V502 0 1 —v3v9 0
0 1 0 0
1 —wv3vy 0 Va U2 0
L0 0 0 1

The first matrix in this product is a unitary in My, (A’™), the last in My, (C) and so
w(0) ve & 1d (1 —vyv2) B0 = vs.

A similar calculation shows w(1) ~ v, and we are done. ||

Regarding the relation ~, it is clear that if vg and v; are homotopic, then for any scalar
projection p, vg @ p and vy @ p are homotopic. Therefore, if vy = v; then there are scalar
projections pg and p; such that vy ® pg and vy @ p; are homotopic.

A few other remarks are in order. Following exactly as in the beginning of the proof

(before k(v1) = k(v2) was used), given any vy and vy in V(A’; A) we may direct sum scalar
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projections and right multiply by one by a scalar unitary to get vjv; = vive. Finally, if
v(r) is a path in V,,(A’; A), we may right multiply by a path of scalar unitaries so that
v(r)*v(r) = v(0)*v(0), for all r.
For each 0 < € < 400~ we let V,¢(A’; A) denote the set of v in M,,(A™) such that
(i) v is a partial isometry,
(ii) v*v is in M, (C),
(iii) [vv* — q|| < €, for some ¢ in M, (A"™).
We let V¢(A’; A) denote the union of the V,S(A’; A), with the usual inclusion of V¢
in Vi,,. For any a in V<(A’; A), let v be as in 2.1. We define x(a) = s(v). This is

independent of the choice of v by 2.2(ii). It is also easy to see that 2.2 is valid if we replace
V(A"; A) by Ve(A'; A). We extend the definition of ~ to V¢(A’, A) in the obvious way.

Lemma 2.6. Suppose A has a countable approximate unit {e,}° contained in A’.
Then for every v in V(A3 A) and 0 < € < 40071, v &~ w, for some w in Vg, (A’; A) such
that

wo 0
w = L ,
(p — wgwo)? 0

where wq is in M, (A), p is a projection in M, (C) and 0 < wiwy < p. Moreover if

w =

wo 0 wy, 0
/
1 w = 1
(p—wgwo)2 0 (p —wgwp)2 0
are homotopic in Vi, (A’; A) then there is a path

wo (t) 0
w(t) = [ ]
(p — wo(t)*wo(t))

N
S

joining them.
(The point here is that wq lies in M,,(A) and not just M, (A~).)

Proof. Notice that v ~ 9*v — see the proof of 2.5 — and (v*v) = "0 = p is a
projection in M, (C). Thus, we may assume v = p. Using e,, to denote 1,, ® e,,, in M,,(A),
notice that )

em —(1—¢€2)2

(1 _€$n>% €m
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is a unitary in M, (A’™) so

x 0) em 0
vre, (vdl) = .
(1—e2)2v 0

We will let wy = e,,v, for some sufficiently large m, which is in M, (A). It is clear that

wgwo < p. Consider

1
2

[N

v — (p — wywo)

(=)

<o -e

N[

(v-p)|
i 1
+]l0 =) p— - wiwo)t|.

The first term tends to zero since v — p is in M,,(A) and e,, is an approximate unit. As

for the second, since (1 — €2,) and p commute, their product is positive and

which tends to zero as m goes to infinity. Therefore, we may choose m so that e/, (v @ 0)

(p - wf)kwo)E 0

are sufficiently close so that the latter is in Vi, (A’; A) and is ~-equivalent to the former.

For the final part, consider the C*-algebra C0,1] ® A. We omit the details. |

and

§3. The Excision Theorem

Here, we state and prove our main results (Theorems 3.1-3.7). We describe the hy-
potheses. We suppose that A and B are C*-algebras acting on the Hilbert space H. We
also suppose that z is a self-adjoint unitary operator on H. Note that we regard M,,(A)
and M, (B) as acting on H & --- & H, the n-fold direct sum. We also let z denote the
operator z@ - ®zon HD---HH. We let [a,b] = ab — ba for any operators a,b on H.
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We will assume conditions 1-6 hold.
1. For all ain A, b in B, ab is in A; i.e. B acts as multipliers of A.
zAz = A.
For all b in B, zbz — b is in A.

= W N

There is a continuous path {e; | t > 0} in A such that
(i) 0<e <es <1, fort<s,
(ii) eser = e; for s >t + 2,
(iii) for all @ in A,
i Jleva —afl = 0 = Jim fae: — al|.
(iv) [et, 2] = 0, for all ¢.
We define C'*-subalgebras

A'={ae A|la,z] =0}

B'={be B|[bz]=0}.
5. For all b in B, there exists b’ in B’ such that
15— < 2][b, 2]]].

(In the terminology of M.-D. Choi, almost commuting with z implies nearly commuting

with z.)

6. There is a dense x-subalgebra A C A such that for a in A, there is ty > 1 such that

(i) aer = era = a, for all t > t,

and, for any such ty as above, there is b in B such that
(ii) ber =etb=a, to<t<ty+2.
(iii) [b, 2] = [a, 2]
(iv) ol < flaf-

(The choice of b will depend on ¢y as well as a.)

Note that the condition on A analogous to 5 is valid; let a’ = (a + zaz)/2.
Many examples are found in the theory of C*-algebras associated to dynamical systems
via the crossed product or groupoid C'*-algebra constructions. Let us mention one explicit

example.
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Fix an irrational number 6, 0 < § < 1. Let H = ¢*(Z) and let u and v denote the

unitary operators

(ug)(n) = &(n—1)
(v€)(n) = exp(2mif)¢(n),
for £ in ¢?(Z), n in Z. Then u and v satisfy the relation uv = exp(27if) vu and generate a

C*-algebra, B, isomorphic to the irrational rotation C*-algebra, Ag. We let A = K( H),

the compact operators, and

{ En) n>1
—&(n) n<O0.

(2§)(n) =
It is easy to verify 1, 2 and 3. It is also easy to see that
A=K (P{n|n<0})aK ({n|n>1}).

The proofs that 4, 5 and 6 hold can be found in [Put2]. Also the techniques of [Put2]
show that B’ is the C*-subalgebra of B generated by v and u(v — 1). (See example 2.6 of
[Put2].)

Theorem 3.1. Let A, B, z satisfy 1-6 as above. Then there is an isomorphism
a: Ky (C(B';B)) — Ko (C(4', A))

which s natural in a sense to be described.

Let us take a moment to try to justify our description of 3.1 as an “excision” theorem.
Section 2 describes the K-theory of the mapping cone C'(A’; A) as partial isometries in A
with initial and final projection in A’. The extent to which an element a lies in A’ can be
measured by zaz —a = z[a, z]. A similar remark applies to B’ and B. Conditions 2, 3 and

6(iii) essentially mean that the sets
{zaz —a | a € A}

{zbz—b|be B}

“agree”. The conclusion is then that the corresponding “relative K-groups” are isomorphic.
We begin by describing the map a. We use e; to also denote the element 1,, ® e; in
M, (A), for any n = 1,2,3,---. We will use the description of K, (C(B’; B)) provided by



14

Lemma 2.5 and the discussion following it. Let v be in V,¢(B’; B). For all t > 1, we define

a(v): by .
vet

a<v>t = 1

(v*v — ev*vey))? 0

Since B acts as multipliers of A, ve; is in M, (A). Also, v*v is a projection in M, (C) and
it follows that a(v); lies in My, (A™). It is also worth noting that e; and v*v commute so

that

N|=

1
(v'v — e;v*ve)? = v*v (1—e€f)? .

It is easy to check that

a(v)f a(v)y =v"v @0,
which is in My, (C) and is a projection.

Lemma 3.2. For v in VS(B'; B) and 0 < € < 4007, there is t > 1 such that a(v) is
in Vs, (A’; A) for all s > t.

Proof. We claim that

lim sup |[la(v); av)z, 2|l <.

To see this,
1
. veZv* vey (1—€f)?
a(v) a(v); = .
(1 — ef) e v (1 — ef)
and we will check the commutators of the four entries with z separately. The lower right
entry actually commutes with z since e; does and v*v is in M,,(C). As for the upper right

(or lower left)
%

[N

lim [vet (1 — ef)

t—o0

: z] = 1tlirrolo [v, 2] e (1 —€})

=0
since z[v, z] is in M,,(A) and e; is an approximate unit for A. For the upper left entry, we
have

lim sup H [Uefv*, z] H
t—oo

= limsup |[|[v, 2] efv* + vei[v*, 2]||.
t—o0

Since z[v, z] and z[v*, 2] are both in A, e; will asymptotically commute both, so this equals

limsup ||e7[v, 2] v* +v[v*, 2] €| -
t—o00
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Applying the same argument and noting [v, z] v* is in M, (A) since v* is in the multiplier
algebra of M,,(A), this equals

lim sup H([U,z] v* +ofv*, 2]) 6?”
t—o0

= limsup ||[vv*, 2] ef”
t—o00

<e€

since vv* is within € of an element of in M, (A’™). The claim is established.

To see the conclusion, let

za(v)ra(v)iz + a(v) a(v)] '
2

q:

Now, (iii) follows from the claim and it is clear that ¢ is in Ms,(A"™). 1

Notice that
alv@w) = a(v); ® a(w),

(at least after a change of basis which we will suppress). It follows from 3.2 that letting

a(k(v)) = K (a(v)s),)

for any sufficiently large s defines an element in K (C'(A’; A)). To see that « is well-defined
it suffices to apply Lemma 2.5 and observe the following. If p is a projection in M,,(C)
then

a(p)t = €i(p ©0),
where €} is as in 2.6. So then « (a(p:):) = 0 by 2.2(ii), (iii).
Also observe that if v(r), 0 <r <1 is a path in V,¢(B’; B) then the limit in 3.2 can be

made uniform over r, and, hence, for s large « (v(r)), will be a homotopy in V2¢(A’; A).

The proof of 3.1 will require several technical Lemmas.

Lemma 3.3. Let wq be in M, (A) and p be a projection in M, (C) such that p > wiwy.
Then there is to > 1 and vy in M, (B) with vivy < p such that
(i) woes = eswg = wy, for s > tg
(il) voes = esvg = woq, fortg+2 > s >ty

(iii) [vo, 2] = [wo, 2]
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(iv) [v§vo, 2] = [wiwo, 2]
(v) [voug, 2] = [wows, 2]
(vi) [(p — vgvo)?, Z} = [(P — wywo) 2, Z]
Proof. Choose any tg and b as in hypothesis 6 for a = wgy. Then let

vo = bp so vivg = pb*bp < p||b||2p <np.

Conditions (i), (ii) and (iii) follow at once from hypothesis 6.
We have

[vgvo, 2] = [vg, 2] vo + v§[vo, 2]
= [wg, 2] vo + vglwo, 2]
= [wger, z] vy + vgylerwo, 2], for tog <t <tp+ 2
= [wg, 2] ervg + vyer|wo, Z]
= [wg, 2] wo + wi[wo, 2] by (ii)
= [wgwo, 2]
and so (iv) holds. A similar argument establishes (v). As for (vi), it follows from (iv) that
[f(p = vgvo), 2] = [f(p — wiwo), 2]

for any polynomial f. By standard approximation arguments, the same holds for
f&y =t 1
Lemma 3.4. Let wo, p, to, vo be as in 3.3. Define w in Ms,(A™) and v in Ma, (B™)

by )
wo 0
w = L
| (p —wgwo)? 0
[ Vo 0
V= i
(p—v5v0)? O
Then

(i) w*w =v*v=p®0,

(i) es[v, 2] =[v,2]es = [v,2] = [w, 2] for s > to,
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(iii) [ww*, z] = [vv*, z].
The proof is an easy consequence of 3.3; we omit the details.

Lemma 3.5. Let wy be in M, (A™), p a projection in M, (C) with p > wiwy. Let to,
vo be as in 3.8, w, v as in 8.4 and assume w is in V5, (A'; A) for some 0 < e < 40071.
Then

(i) v is in Vo<(B'; B),
(i) a(v)s is in V(A A), for all s > to,
(iii) k(a(v)s) = k(w), fortyg < s <ty + 2.
Proof.

(i) From 3.4(i), v*v = p @& 0 and we must check only that vv* is close to an element of
Mo, (B'™). From 3.4(iii)

Ifov”, 2| = [[lww”, || < 2€

since w is in Vi, (A’; A). Apply hypothesis 5 to find g in My, (B'™) so that ||[g—vv*|| < 4e,

and (i) is complete.

(ii) As before, we must compute

Now, for s > tg,

NI

v*v (1 — e%) erv™ v*v (1 — ef)
and commutators with z for each of the entries is done separately. The off-diagonal
entries commute with z because v*v = p and by condition (ii) of 3.4, so (1—e)[v, 2] = 0.
The lower right entry also commutes with z while

[ve2v*, 2] = [ww*, 2] for s> t,.

This completes the proof of (ii).
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(iii) By direct computation

V€s 0 0 O
(p—vivg)zes 0 0 0
a(v)s = )
pl—edE 0 0 0
I 0 00 0]
M1 0 0 07
0 e —(1-¢)? 0
o (1-e)? . 0
L0 0 0 1]
Wy 0 0 0
(p—w{)“wo)% 0 00
0 0 0 O
0 0 0 O

for to < s < tg + 2, using Lemma 3.2. The first matrix above is in My, (A’™) and so
the result follows from 2.2(iii). |

Lemma 3.6 Suppose v is in V,,(B'; B) and ||[v,2]]| <€ < 107°%. Then x(v) = 0.

Proof. By hypothesis 5, there is a v’ in M,,(B’™) such that ||v/|| < 1 and ||v — || < 2e.
Let

v'p 0
w = 1 )
where p = v*v, so w is in V5, (B’; B) and in My, (B’™) and
v 0 — w|| < 4e?.
Moreover, k(w) = 0 by 2.2(v) and k(v) = k(w) by 2.2(ii). |
Let us describe the naturality of the isomorphism described in 3.1. Suppose

<A1, By, 21, {egl)}) and <A2, Bo, 29, {e,gQ)}) are two systems satisfying 1-6. Also suppose

g ZA1 —>A2

m:B1 — By
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a *x-homomorphisms such that
o(ab) = o(a)m(b), a€ A, be B
o(z1a21) = 23 0(a) 22, ac A
m(21b21) = 2o m(b) 22, be By
o(z1bz1 — b) = zo w(b) 29 — 7(b), be By
o <e§1)> = e§2), for all ¢.
It is easy to see that o and 7 induce *-homomorphisms
g:C(A}; A)) — C(Ay; Ag)
7:C(By; By) — C (Bb; Bo).

The map « is natural in the sense that the following diagram commutes:

«

Ko (C(By; Br)) ——— Ko (C(47; Ay))

|- o

Ko (C(By; By)) ——— Ko (C(Ab; Ay))

The proof of this is immediate. We omit the details.

As an application, suppose (A, B, z, ;) satisfies 1-6 and suppose X is a compact second
countable Hausdorff space. Fix some regular Borel measure p on X with full support. Then
we can regard A ® C(X), B® C(X) and z ® 1 as operators on H ® L?(X, u). Hypotheses
1-3 are easily checked and e; ® 1 satisfies 4. We also have

(A C(X)) = A @ C(X)
(B® C(X))' =B ®C(X)
and 5 follows. The algebraic tensor produce of A and C(X) can be seen to satisfy 6.

Proof of 3.1. First of all, it is fairly clear that « is additive. The surjectivity of «

follows at once from Lemmas 2.6 and 3.5.
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Suppose v is in V,,(B’; B) and «a (k(v)) = 0 in Ky (C(A’; A)). Let p = v*v which is a
projection in M, (C). Fix e = 10~7. Choose t; > 1 such that

(1) v, 2 e — [o, 2]l < e

H['U,Z]—[’U,Z] etH SG, t >t

and such that
(2) Oé(U)t - ‘/éen(A/; A), t>1.

Since k (a(v)) = 0, we may direct sum «(v)¢, with a scalar projection ¢ so that the result

is homotopic to a scalar projection in V¢(A’; A). By replacing v by v @ ¢, we may assume

simply that a(v), is homotopic to [2 which is homotopic to p@® 0. We apply Lemma

O )
2.6 to obtain a path as described there. We may then approximate the “wg” part of this
path by a path in M, (A). We right multiply this path by p and we obtain a path a(s),

0 < s <1, such that a is in the algebraic tensor product of C|0,1] and M, (A),
a(s) 0

(b - a(s)"a(s)* o] |
€ Vo (A’ A)

0<s<1

— J— )

(3) w(s) = [

hence,

NI

|0 —ara)? —p(1-e2)*| <2

We may apply the sequence of Lemmas 3.3, 3.4 and 3.5 to the element a in M,, (C[0,1] © A)
(algebraic tensor product) and p in M, (C) to obtain a path b(s), 0 < s <1

“ [ b(s) o]
Y Lo —be)bs)?t o

[N



0 <s<1andty>t; + 2 such that

(6) b(5), 2) = la(s), 2],

(7) b(s)er = e b(s), to<t<ts+2

) als)er = evals) = als), 21,

) b(3)°b(s), 2] = la(s)"a(s), 2]

(10) B()b(s)", 2] = [o(s)b(5)", 2]

(11) (= b(s)b(s)* 2] = [0 —als)als)?, 2]

v1(s) is in Vo¢(B’; B)
a(vi(s)), isin ViS(A; A), ¢ > ta.

n

Let us evaluate v at s = 1. Making use of (4), (6) and (9), we see that
(12) [v1(1), 2] =0
and so v1(1) is in M,,(B’™). Next, we claim that

(13) 1w b(0)%, 2]l < 3e,

(14) H [v (p — b(0)*b(0))? , z} H < 3e.
To see the first, we have
[[vb(0)*, 2]|| = [|[v, 2] 6(0)* + v [b(0)", Z]|
< v, 2] e, b(0)" + v [a(0)", 2| + €

by (1) and (6),
< ||[’U, Z] €t €ty b<0>* +v [6751 U*, Z]H +e€

21
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by hypothesis 4(ii) and (5),

= [[[v; 2] €1, a(0)" + ves, [v*, 2]|| + €

< ||[v, 2] €, v* + veg, [v*, 2] || + 2¢

= |[[ved, ", 2] || + 2¢

< 3¢

because of (2). To see the second, there is a similar computation which we omit.
Now consider

va(s) = (v @B 0)vi(s)", 0<s<l.

This is a path of partial isometries in My, (B"~). For each s, its range projection is the
range projection of v which is in My, (B’™). Its initial projection is the range projection
of v1(s) which is in My, (B’™), for all s. As noted in (12), when s = 1, this projection is
actually Murray-von Neumann equivalent to p@® 0 in My, (B’™). So we may find a path of
unitaries u(s), 0 < s < 1in My, (B’™) (actually, it may be necessary to pass to My, (B'™))
such that

vi(1)"u(l) =p&0
v1(s)* u(s) has initial projection p & 0,
0<s<1.

Now, consider the path
vs(s) = (VB 0)vi(s) u(s), 0<s<1
It is a path in V5, (B’; B). Moreover, for s = 1,
v3(l) =v &0

while for s =0,
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which commutes with z, to within 3¢, by (13) and (14). By Lemma 2.2(v) and the homo-

topy invariance of k,
k(v) =k (vs(1)) = £ (v3(0)) = 0.
This proves that « is injective and we are done. |
Theorem 3.7. Let A, B, z satisfy 1-6 as before. Then there are isomorphisms
a: K; (C(B';B)) — K; (C(A; 4)),
which are natural, for i =0, 1.

Proof. The case i = 0 is done. For the other case, let By = C(SY)®@ B, A = C(SY)® A,
z1=1®zand o: Ay — A, m: By — B be given by evaluation at some fixed point of the

circle, S'. There is a split exact sequence
0 — Cy(0,1)® C(B';B) — C(B};B,) — C(B';B) — 0
and a corresponding one for A and A;. Using the naturality of o on Ky and the usual
isomorphism
K1 (C(B'; B)) = Ko (Co(0,1) ® C(B'; B))

and the usual techniques, one obtains the result for K; groups as well. ||
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