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Abstract. We associate different types of full groups to Cantor minimal systems. We
show how these various groups (as abstract groups) are complete invariants for orbit
equivalence, strong orbit equivalence and flip conjugacy, respectively. Furthermore, we
introduce a group homomorphism, the so-called mod map, from the normalizers of the
various full groups to the automorphism groups of the (ordered) K0-groups, which are
associated to the Cantor minimal systems. We show how this in turn is related to the
automorphisms of the associated C∗-crossed products. Our results are analogues in the
topological dynamical setting of results obtained by Dye, Connes-Krieger and Hamachi-
Osikawa in measurable dynamics.

0. Introduction

In his study of orbit equivalence of ergodic measure preserving transformations,
Henry Dye introduced the notion of full group of such a transformation. Recall that if
G is a countable group of non-singular transformations of a Lebesgue measure space
(X,µ), then the full group [G] of G is the set of all non-singular transformations γ of
X such that

γ(x) ∈ OrbitG(x) , for µ-a.e. x ∈ X .

Therefore, if G1 and G2 are two groups of non-singular transformations of (X, µ), they
have the same orbits if and only if G1 ⊂ [G2] and G2 ⊂ [G1].

In [D2], Henry Dye proved the following remarkable result: if G1 and G2 are
two countable groups of measure preserving transformations acting ergodically on a
Lebesgue space, then any group isomorphism between [G1] and [G2] is implemented
by an orbit equivalence of G1 and G2.

Let T1 and T2 be two non-singular transformations acting ergodically on a Lebesgue
space. In [K1], W. Krieger proved that T1 and T2 are orbit equivalent if and only if
their associated flows are conjugate. Note that this flow is the flow of weights of the
von Neumann factor W ∗(X, µ, T ) associated to the dynamical system (X, µ, T ).

Connes-Krieger ([CK]) in the measure preserving case, and Hamachi-Osikawa ([HO])
in the general case, have associated to any ergodic non-singular transformation of
(X, µ) normalizing [G] an automorphism of the associated flow. This correspondence,
the so-called mod map, is a group homomorphism.
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In [GPS], we obtained an analogue of Krieger’s theorem for Cantor minimal systems,
i.e. minimal homeomorphisms of a Cantor set X. If φ1 and φ2 are two minimal
homeomorphisms of a Cantor set X, we proved that

φ1 and φ2 are orbit equivalent (resp. strong orbit equivalent)

if and only if

there is an order isomorphism, preserving the order unit 1X , between the simple
dimension groups

K0(X, φ1)/Inf(K0(X, φ1)) and K0(X, φ2)/Inf(K0(X, φ2))

(resp. K0(X, φ1) and K0(X,φ2) ).

In this paper, we obtain an analogue of Dye’s result and we introduce the mod map
for Cantor minimal systems.

We define the full group [φ] of a Cantor minimal system (X, φ), namely a homeo-
morphism ψ of X belongs to [φ] if

ψ(x) = φ(x)n(x) , n(x) ∈ Z for all x ∈ X ,

The topological full group τ [φ] of (X, φ) is the subgroup of [φ] consisting of the home-
omorphisms whose associated orbit cocycle n(x) is continuous.

In [K2], W. Krieger studied so-called ample, locally finite countable groups of home-
omorphisms of a Cantor set X.

Recall ([R], Chap 3, §1) that if Γ is such a group, then the associated C∗-algebra
C∗(X, Γ) is an approximately finite dimensional (AF) C∗-algebra.

We call therefore such a system (X, Γ) an AF-system and denote the associated
C*-algebra by AF (X, Γ).

If (X,φ) is a Cantor minimal system and y ∈ X, let τ [φ]y denote the subgroup of
γ ∈ τ [φ] such that γ(Orb+

φ (y)) = Orb+
φ (y), where Orb+

φ (y) is the forward φ-orbit of y.
By [K2], Corollary 3.6, all τ [φ]y, y ∈ X, are isomorphic groups.

In Section 5 of [P], Ian Putnam showed that τ [φ]y is a minimal AF-system.

Let Γ be either (i) the full group, or (ii) the topological full group of a Cantor
minimal system, or (iii) a minimal AF-system.

Following Dye in [D2], we define for an open set O ∈ X the local subgroups ΓO of
Γ by

ΓO = {γ ∈ Γ ; γ(x) = x , for all x ∈ Oc } .

In Section 3, we characterize algebraically the local subgroups ΓU for U a clopen subset
of X.

In Section 4, the results of the preceeding section are used to show the following
result:
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Theorem. Let (X1, φ1) and (X2, φ2) be Cantor minimal systems.

(i) (X1, φ1) and (X2, φ2) are orbit equivalent if and only if [φ1] and [φ2] are isomor-
phic.

(ii) (X1, φ1) and (X2, φ2) are flip-conjugate if and only if τ [φ1] and τ [φ2] are iso-
morphic.

(iii) (X1, φ1) and (X2, φ2) are strong orbit equivalent if and only if τ [φ1]y1 and τ [φ2]y2

are isomorphic for any yi ∈ Xi , i = 1, 2.

We want to stress that the isomorphisms in (i), (ii) and (iii) are abstract isomorphisms.

If (X,φ) is a Cantor minimal system, we show in Section 5 that, up to normalization,
there exists only one non-trivial homomorphism from τ [φ] to Z. We will call this map
the index map.

If Cε(φ) denotes the subgroup of all γ ∈ Homeo(X) such that either γφγ−1 = φ or
γφγ−1 = φ−1, then we prove that the normalizer N(τ [φ]) of τ [φ] (in Homeo(X)) is
isomorphic to the semi-direct product of the kernel of the index map by Cε(φ).

Using a refinement of the methods used in Section 3, we show that the kernel of
the index map is a complete algebraic invariant of flip-conjugacy of a Cantor minimal
systems (X, φ).

Let HomeoMφ(X) denote the subgroup of all homeomorphisms of X preserving the
φ-invariant probability measures on X. In Section 1, we define a homomorphism

mod : HomeoMφ(X) → Aut(K0(X, φ)/Inf(K0(X, φ))) .

Considering on Homeo(X) the topology of pointwise norm convergence on C(X),
we then show:

i) ker (mod) is equal to the closure of [φ],
ii) the restriction of mod to the normalizer N([φ]) of [φ] is surjective,
iii) HomeoMφ(X) = N([φ]) .

Let C∗(X, φ) be the C∗-crossed product associated with (X, φ) and C(X) be the
C∗-algebra of continuous functions on X. Let us denote by AutC(X)(C∗(X, φ)) the
subgroup of automorphisms of C∗(X,φ) which fix C(X) globally, and the inner ones
by InnC(X)(C∗(X, φ)).

In Section 5 of [P], Ian Putnam considered the topological full group and showed
that if UN(C(X), C∗(X,φ)) denotes the subgroup of unitaries of C∗(X, φ) normalizing
C(X), then we have the short exact sequence:

1 → U(C(X)) → UN(C(X), C∗(X, φ)) → τ [φ] → 1 .

Using this, we prove in Section 2 that we have two short exact sequences:

1 → U(C(X)) −→ AutC(X)(C∗(X, φ)) −→ N(τ [φ]) → 1
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1 → Uφ −→ InnC(X)(C∗(X, φ)) −→ τ [φ] → 1

where Uφ = { f ∈ U(C(X)) ; ∃ g ∈ U(C(X)) with f = (g ◦ φ)g } .

Let
Bφ = {f − f ◦ φ−1 ; f ∈ C(X,Z) }

be the subgroup of coboundaries of C(X,Z). Recall that K0(X, φ) is order isomorphic
to C(X,Z)/Bφ (with the usual ordering).

If HomeoBφ(X) denotes the set of all homeomorphisms of X preserving Bφ, then
as in Section 1 we define a homomorphism mod from HomeoBφ(X) to Aut(K0(X, φ)).
We then show

i) ker (mod) is equal to the closure of both τ [φ] and of τ [φ]y, for any y ∈ X,
ii) the restriction of mod to the normalizer N(τ [φ]y) of τ [φ]y is surjective,
iii) HomeoBφ(X) = N(τ [φ]y) .

Notations:

If X is a metric compact space, we denote by
i) O(X) the collection of all open subsets of X,
ii) C(X) the collection of all closed subsets of X,
iii) CO(X) the Boolean algebra of all clopen subsets of X.
iv) Homeo(X) the group of all homeomorphisms of X. For γ ∈ Homeo(X) and

U ⊆ X, γ|U denotes the restriction of γ to U .
v) For A ⊆ X, A◦ (resp. A , Ac) denotes the interior (resp. closure, complement)

of A. Also, χA denotes the characteristic function of A.

We will use
∐

to denote a disjoint union.
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1. The Full Group of a Cantor minimal System.

Let (X, φ) be a dynamical system, where X is a compact Hausdorff space and φ is
a homeomorphism of X. For each x ∈ X, we denote the φ-orbit of x by Orbφ(x).

Definition 1.1.
a) The full group [φ] of (X,φ) is the subgroup of all homeomorphisms γ of X such that

γ(x) ∈ Orbφ(x) , for all x ∈ X .

b) We will denote by N [φ] the normalizer

{α ∈ Homeo(X) ; α[φ]α−1 = [φ] }

of [φ] in Homeo(X).

Remark 1.2. To any γ ∈ [φ] is associated a map n : X → Z, defined by

γ(x) = φn(x)(x) , for x ∈ X .

If φ has no periodic points, then n is uniquely defined and the closed sets Xk = {x ∈
X ; γ(x) = φk(x) } = n−1({k}) form a partition of X, and

X =
∐

k∈Z

Xk =
∐

k∈Z

φk(Xk) .

Using the result of Sierpinski (see for example [Ku]) which says that there is no
non-trivial countable partition of a connected compact Hausdorff space into closed
sets, we have (see [BT] or [GPS] and [Kup]) the following:

Proposition 1.3. Let (X,φ) be a dynamical system as above.
If either X is connected and φ has no periodic points or if the complement of the

periodic points is path-connected and dense, then the full group [φ] is equal to {φn ; n ∈
Z}.

Proposition 1.4. If (X, φ) is a dynamical system, then

N [φ] = {α ∈ Homeo(X) ; α(Orbφ(x)) = Orbφ(α(x)) , for all x ∈ X } .

Proof. Let α ∈ N [φ] , x ∈ X and k ∈ Z. As αφkα−1 and α−1φkα belong to [φ], we
have:

α(φk(x)) = αφkα−1(α(x)) ∈ Orbφ(α(x))
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and
α−1(φk(α(x)) = α−1φkα(x) ∈ Orbφ(x) .

Hence N [φ] ⊆ {α ∈ Homeo(X) ; α(Orbφ(x)) = Orbφ(α(x)), for all x ∈ X } .

Conversely, let α ∈ Homeo(X) with α(Orbφ(x)) = Orbφ(α(x)) for all x ∈ X , and
γ ∈ [φ]. If x ∈ X, then there exist k, l ∈ Z such that

αγα−1(x) = αγ(α−1(x)) = α(φk(α−1(x))) = φl(x) .

Hence, αγα−1 ∈ [φ] , and so α ∈ N [φ]. �

Recall that if A is a separable C∗-algebra, then Aut(A) with the topology of point-
wise convergence on A is a complete metrizable group. Let (xn)n≥1 be a dense sequence
in the unit ball of A, and for α, β ∈ Aut(A), set

d(α, β) =
∑

n≥1

1
2n ||α(xn)− β(xn)|| .

Then d is a metric on Aut(A) whose induced topology on Aut(A) is the pointwise
convergence in norm on A. Therefore we get

Lemma 1.5. If X is a compact metric space, then with the topology of pointwise
convergence in norm on C(X), Homeo(X) is a complete metrizable group.

Remark 1.6.
a) This topology is equivalent to the following introduced in [GW1] and given by the

metric
d(α, β) = sup

x∈X
d(α(x), β(x)) + sup

x∈X
d(α−1(x), β−1(x)) .

b) If (αn)n≥1 is a sequence of of homeomorphisms converging to α in Homeo(X), then
for any U ∈ CO(X), there exists N such that αn(U) = α(U), for all n ≥ N .

Let us denote by M(X) the w∗-compact convex set of probability measures on X
and by Mφ the w∗-compact convex subset of M(X) of φ-invariant measures.

If γ ∈ Homeo(X) and µ ∈ M(X), we denote by γ∗(µ) the probability measure
µ ◦ γ−1. Notice that γ∗ defines an affine homeomorphism of M(X).

Definition 1.7. The subgroup HomeoMφ(X) will denote the set of all homeomor-
phisms γ ∈ Homeo(X) such that γ∗(µ) ∈ Mφ for all µ ∈ Mφ.

It is easily verified that N [φ] ⊂ HomeoMφ(X).
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Lemma 1.8. If (X,φ) is a Cantor minimal system, then the subgroup HomeoMφ(X)
is closed.

Proof. If (γn)n≥1 is a sequence in HomeoMφ(X) converging to γ, then by Remark 1.6,
for any U ∈ CO(X), γn(U) = γ(U) if n is large enough. Hence µ(γ−1(U)) = µ(U)
for all U ∈ CO(X) and all µ ∈ Mφ. By regularity of µ ∈ Mφ, the limit γ belongs to
HomeoMφ(X). �

Let (X, φ) be a Cantor minimal system. By [GPS], Theorem 2.2, the simple di-
mension group K0(X, φ)/Inf(K0(X, φ)), with order unit, is a complete invariant of
orbit equivalence of (X, φ). Following G.A. Elliott’s point of view, we will consider
K0(X, φ)/Inf(K0(X,φ)) as the associated flow of the minimal Cantor system (X, φ)
and define a mod map as in [CK], [CT] and [HO].

Let Zφ = {f ∈ C(X,Z) ; µ(f) = 0 , ∀µ ∈ Mφ } and (C(X,Z)/Zφ)+ be the positive
cone defined by

[f ] > 0 if and only if µ(f) > 0 , ∀µ ∈ Mφ ,

where [f ] denotes the equivalence class of f ∈ C(X,Z). Then C(X,Z)/Zφ is naturally
order-isomorphic to K0(X, φ)/Inf(K0(X, φ)) by [GPS], Theorem 1.13.

Hence, if γ ∈ HomeoMφ(X) and U ∈ CO(X), then

mod(γ)([χU ]) = [χγ(U)]

gives rise to an order automorphism of K0(X, φ)/Inf(K0(X, φ)) preserving the order
unit.

As mod(αβ) = mod(α)mod(β) for all α , β ∈ HomeoMφ(X), we have:

Definition 1.9. Let Aut(K0(X,φ)/Inf(K0(X,φ))) be the group of all order auto-
morphisms of K0(X, φ)/Inf(K0(X, φ)) preserving the order unit 1X .Then

mod : HomeoMφ(X) → Aut(K0(X, φ)/Inf(K0(X, φ)))

is the group homomorphism defined by γ 7→ mod(γ).

Lemma 1.10. Keeping the above notations, then ker(mod) = [φ] .

Proof. By definition of mod and Zφ, we must show that

[φ] = { γ ∈ HomeoMφ(X) ; γ∗(µ) = µ , ∀µ ∈ Mφ } .

If γ ∈ [φ], then µ ◦ γ−1 = µ, for all µ ∈ Mφ. Thus by Remark 1.6,

[φ] ⊆ { γ ∈ HomeoMφ(X) ; γ∗(µ) = µ , ∀µ ∈ Mφ } .

Conversely, let γ ∈ Homeo(X) such that γ∗(µ) = µ for all µ ∈ Mφ and let (Pn)n≥1 be
an increasing sequence of partitions of X (into clopen sets), whose union generates the
topology of X. By [GW], Proposition 2.6 (see Lemma 3.3 below), we can construct
for each n ≥ 1, γn ∈ [φ] such that γn(U) = γ(U) for each U ∈ Pn. Then (γn)n≥1 is a
sequence in [φ] whose limit is γ. �
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Proposition 1.11. The restriction of mod to N [φ] is surjective.

Proof. As K0(X, φ)/Inf(K0(X, φ)) is a simple dimension group, there exists by [P]
and [HPS] (see for example [GPS], Theorem 1.12), a simple ordered Bratteli diagram
(B,≥) such that if Ω denotes the path space of B and ψ the Vershik transformation
induced by (B,≥), we have

K0(X,φ)/Inf(K0(X,φ)) ∼= K0(Ω, ψ) .

Moreover, let C denotes the equivalence relation on Ω given by

ω1Cω2 if and only if ω1 and ω2 are cofinal,

and let ΓC be the minimal AF-system associated to C, ie. ΓC = τ [ψ]y where y is the
maximal path of Ω (see Definition 2.5). Then,

K0(Ω, ψ) ∼= K0(AF (Ω, ΓC)) .

By [GPS], Theorem 2.2, there exists an orbit equivalence g : X → Ω between φ and
ψ.

Recall that if η ∈ Homeo(Ω) preserves C, then it induces an isomorphism of
K0(AF (Ω, ΓC)) which we denote by K0(η). Let α ∈ Aut(K0(X,φ)/Inf(K0(X, φ))).
By [K2], Corollary 3.6, there exists η ∈ Homeo(Ω) which respects C with K0(η) = α.
Let a = g−1ηg ∈ Homeo(X). By construction, a(Orbφ(x)) = Orbφ(a(x)) for all x ∈ X
and mod(a) = K0(η) = α. By Proposition 1.4, a ∈ N [φ] . �

Proposition 1.12. The closure of N [φ] in Homeo(X) is HomeoMφ(X).

Proof. If γ ∈ HomeoMφ(X), then by Proposition 1.11, there is η ∈ N [φ] with

mod(γ) = mod(η) .

By Lemma 1.10, η−1γ ∈ [φ] and therefore γ ∈ N [φ].
As N [φ] ⊂ HomeoMφ(X) and HomeoMφ(X) is closed, Proposition 1.12 follows.

�

Remark 1.13. Mike Boyle constructs explicitly an element of HomeoMφ(X) rN [φ]
in [B2].

2. The Topological Full Group of a Cantor minimal System.

Let (X, φ) be a Cantor minimal system. As above, [φ] denotes the full group of
(X, φ).

Recall (Remark 1.2) that if γ ∈ [φ], then there exists a unique map n : X → Z such
that γ(x) = φn(x)(x) , for all x ∈ X.
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Definition 2.1. If (X, φ) is a Cantor minimal system, then

a) the topological full group τ [φ] of φ is the subgroup of all homeomorphisms γ ∈ [φ],
whose associated map n : X → Z is continuous,

b) N(τ [φ]) denotes the normalizer of τ [φ] in Homeo(X).

Let γ ∈ τ [φ] and for each k ∈ Z,

Xk = {x ∈ X ; γ(x) = φk(x) } = n−1({k}) .

Then, (Xk)k∈Z is a finite partition of X into clopen sets, such that

X =
∐

k∈Z

Xk =
∐

k∈Z

φk(Xk) .

Therefore, τ [φ] is a countable group.

Definition 2.2. Let H be a subgroup of Homeo(X).
To any finite family (Xk, ηk)k=1,··· ,n where Xk ∈ CO(X), ηk ∈ H and

X =
∐

k∈Z

Xk =
∐

k∈Z

ηk(Xk) ,

we associate the homeomorphism γ of X defined by

γ(x) = ηk(x) , for all x ∈ Xk.

The subgroup τ [H] of all such homeomorphisms is the topological full group of H.

Definition 2.3. Let (X,φ) be a Cantor minimal system and C∗(X, φ) be the associ-
ated C∗-crossed product. We denote by

a) AutC(X)(C∗(X,φ)) = {α ∈ Aut(C∗(X, φ)) ; α(C(X)) = C(X) } ,

b) InnC(X)(C∗(X,φ)) = AutC(X)(C∗(X, φ)) ∩ Inn(C∗(X, φ)) ,

c) Uφ = { f ∈ U(C(X)) ; ∃ g ∈ U(C(X)) with f = (g ◦ φ)g } .

The C∗-crossed product C∗(X, φ) is generated by C(X) and a unitary u such that

ufu∗ = f ◦ φ−1 for all f ∈ C(X) .

C(X) is a maximal abelian subalgebra (masa) of C∗(X, φ).
Let us recall the C∗-algebra construction of the topological full group given in

Section 5 of [P]:

Let UN(C(X), C∗(X, φ)) = {v ∈ U(C∗(X,φ)) ; vC(X)v∗ = C(X) }. By [P],
Lemma 5.1, if v ∈ UN(C(X), C∗(X, φ)), then v = f

∑

n∈Z unpn , where f ∈ UC(X)
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and (pn)n∈Z is a finite partition of C(X) into orthogonal projections such that I =
∑

n∈Z pn =
∑

n∈Z φn(pn). Moreover this decomposition is unique.
To such v ∈ UN(C(X), C∗(X, φ)), we associate the element Φ(v) of the topological

full group given by
Φ(v)(x) = φn(x) if x ∈ pn .

Observe that Adv(g) = g ◦ Φ(v)−1, where g ∈ C(X) and Adv denotes the inner
automorphism v · v∗ of C∗(X, φ).

Then we get the following short exact sequence:

(*) 1 → U(C(X)) → UN(C(X), C∗(X, φ)) Φ−→ τ [φ] → 1 .

This short exact sequence splits. Indeed, if γ ∈ τ [φ] and (Xk)k∈Z is the associated
finite partition of X, then vγ =

∑

ukχXk ∈ UN(C(X), C∗(X, φ)) and Φ(vγ) = γ .

If α ∈ AutC(X)(C∗(X,φ)), then α defines an automorphism of C(X) and therefore
a homeomorphism π(α) of X such that

α(f) = f ◦ π(α)−1 , ∀f ∈ C(X) .

Let ι : U(C(X)) → AutC(X)(C∗(X, φ) denote the homomorphism defined for g ∈
U(C(X)) by

ι(g)f = f , ∀ f ∈ C(X) and ι(g)u = u g .

Then we have

Proposition 2.4. Let (X,φ) be a Cantor minimal system. We have the two following
short exact sequences:

(2.4.1) 1 → U(C(X)) ι−→ AutC(X)(C∗(X, φ)) π−→ N(τ [φ]) → 1 ,

(2.4.2) 1 → Uφ
ι−→ InnC(X)(C∗(X, φ)) π−→ τ [φ] → 1 .

These short exact sequences split.

Proof. Let π, ι and Φ be as above and let α ∈ AutC(X)(C∗(X,φ)). Then we have for
f ∈ C(X),

α(ufu∗) = α(u)f ◦ π(α)−1α(u)∗ ∈ C(X) .

Hence, α(u) ∈ UN(C(X), C∗(X,φ)). Thus, there is η ∈ τ [φ] and fα ∈ U(C(X)) with
α(u) = fαvη, according to (*).

If γ ∈ τ [φ] and g ∈ C(X), then

g ◦ (π(α)γπ(α)−1)−1 =g ◦ (π(α)γ−1π(α)−1)

=α(g ◦ π(α) ◦ γ−1) = α ◦Advγ(g ◦ π(α)) = Adα(vγ)(g) .
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Therefore, π(α)γπ(α)−1 ∈ τ [φ] and π(α) ∈ N(τ [φ]) .

The homomorphism ι is clearly injective. If α ∈ kerπ , then for f ∈ C(X), we have

α(u)fα(u∗) = α(ufu∗) = α(f ◦ φ−1) = f ◦ φ−1 = ufu∗ .

Hence u∗α(u) = gα ∈ U(C(X)) and ι(gα) = α.

If γ ∈ N(τ [φ]), then γφγ−1 ∈ τ [φ]. Let vγφγ−1 ∈ UN(C(X), C∗(X, φ)) such that

Φ(vγφγ−1) = γφγ−1 .

Let us denote by s(γ) ∈ AutC(X)(C∗(X,φ)) the automorphism given by

s(γ)(f) = f ◦ γ−1 , ∀ f ∈ C(X) and s(γ)(u) = vγφγ−1 .

The map s : N(τ [φ]) → AutC(X)(C∗(X, φ)) is a homomorphism and by construction
π(s(γ)) = γ. Therefore the short exact sequence (2.4.1) splits.

For the proof of (2.4.2), notice that if Adv ∈ InnC(X)(C∗(X, φ)), then

v ∈ UN(C(X), C∗(X, φ)) .

Hence π(Adv) = Φ(v) ∈ τ [φ], and π|InnC(X)(C∗(X,φ)) is surjective according to (*).

If Adv ∈ kerπ , then as C(X) is a masa in C∗(X,φ), the unitary v is equal to
g ∈ U(C(X)). As u∗Adv(u) = u∗gug = (g ◦ φ)g, the short exact sequence (2.4.2) is
checked.

By construction, if γ ∈ τ [φ], then s(γ) = Advγ . �

In [P], Ian Putnam has shown that if y ∈ X, the C∗-subalgebra A{y} of C∗(X,φ)
generated by C(X) and uC0(Xr{y}) is an AF (i.e. approximately finite dimensional)
C∗-algebra. Let UN(C(X), A{y}) denote the normalizer of C(X) in U(A{y}).

For all y ∈ X, let
Orb+

φ (y) = {φk(y) ; k ≥ 1 }

denote the forward φ-orbit of y, and let τ [φ]y denote the subgroup of τ [φ] characterized
by

γ ∈ τ [φ]y if γ(Orb+
φ (y)) = Orb+

φ (y) .

By [P], Theorems 5.1 and 5.4, we then have that for any y ∈ X, the group τ [φ]y
is isomorphic to UN(C(X), A{y})/U(C(X)). It is a fact that for any y ∈ X, τ [φ]y
is a countable, locally finite ample group that acts minimally on X, ie. a minimal
AF-system according to the following definition.
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Definition 2.5. Let X be a Cantor set. A minimal AF-system Γ is a locally finite,
countable group of homeomorphisms of X, so that the action is minimal and ample.
By ample action of Γ we mean the following (see [K2]): whenever

X =
k

∐

i=1

Ai =
k

∐

i=1

γi(Ai)

are two clopen partitions of X with γi ∈ Γ, then γ ∈ Γ, where for i = 1, · · · , k, γ |Ai =
γi |Ai. We also require that the fixed point set of each element of Γ is clopen.

It can be shown that any minimal AF-system arises as some τ [ψ]y as described
above (cf. [K2] and [SV]). As in [SV], Chap 1.1, the groupoid C∗-algebra A(X, Γ)
associated to a minimal AF-system Γ of a Cantor set X is an approximately finite
dimensional C∗-algebra, whose C(X) is a Cartan subalgebra ([R], Definition 4.13).
The following definition is analogous to Definition 2.3.

Definition 2.6. Let (X, Γ) be a minimal AF-system and A(X, Γ) be the associated
groupoid C∗-algebra. We denote by

a) AutC(X)(A(X, Γ)) = {α ∈ Aut(A(X, Γ)) ; α(C(X)) = C(X) } ,

b) InnC(X)(A(X, Γ)) = AutC(X)(A(X, Γ)) ∩ Inn(A(X, Γ)) ,

c) Z1(Γ, U(C(X))) = {w : Γ → U(C(X)) ; (wγ ◦ η)wη = wγη for all γ, η ∈ Γ }; the
group of one-cocycles,

d) B1(Γ, U(C(X))) = {w ∈ Z1(Γ, U(C(X))) ; ∃ v ∈ U(C(X)) such that wγ =
(v ◦ γ)v∗ for all γ ∈ Γ }; the group of one-coboundaries.

If α ∈ AutC(X)(A(X, Γ)), then α defines an automorphism of C(X) and therefore
a homeomorphism π(α) of X such that

α(f) = f ◦ π(α)−1 , ∀f ∈ C(X) .

If u : Γ → U((A(X, Γ))) is the unitary representation of Γ which implements the
action of Γ on C(X), then let us denote by ι : Z1(Γ, U(C(X))) → AutC(X)(A(X, Γ))
the homomorphism defined for w ∈ Z1(Γ, U(C(X))) by

ι(w)f = f , ∀ f ∈ C(X) and ι(w)uγ = uγ wγ .

Recall (Definition 2.2) that if H is a subgroup of Homeo (X), τ [H] denotes the topo-
logical full group of H. Then as in 2.4, we have



13

Proposition 2.7. Let (X, Γ) be a minimal AF-system. We have the two following
short exact sequences:

1 → Z1(Γ, U(C(X))) ι−→ AutC(X)(A(X, Γ)) π−→ N(Γ) → 1 ,

1 → B1(Γ, U(C(X))) ι−→ InnC(X)(A(X, Γ)) π−→ Γ → 1 .

These short exact sequences split.

Before defining a mod map as in the full group case, let us recall the construction
of the K-groups that we need.

If φ is a minimal homeomorphism of the Cantor set X (resp. Γ is a minimal AF-
system), then we denote by

Bφ = {f − f ◦φ−1 ; f ∈ C(X,Z) } (resp. BΓ = {f − f ◦ γ−1 ; f ∈ C(X,Z) , γ ∈ Γ })

the coboundary subgroup of C(X,Z). Now K0(X, φ) (resp. K0(X, Γ)) is defined as
C(X,Z)/Bφ (resp. C(X,Z)/BΓ) with the induced ordering.

Then K0(X, φ) and K0(X, Γ) are simple dimension groups with distinguished order
unit 1X = [χX ], where we let [f ] denote the equivalence class of f ∈ C(X,Z). If
f = χO, where O is clopen, we will sometimes write [O] to denote [χO]. Moreover if
y ∈ X, then K0(X, φ) and K0(X, τ [φ]y) are order isomorphic (see [P] for a C*-algebra
proof or [GW], Theorem 1.1 for a purely dynamical proof).

Definition 2.8. The subgroup HomeoBφ(X) will denote the set of all homeomor-
phisms γ ∈ Homeo(X) such that w ◦ γ−1 ∈ Bφ for all w ∈ Bφ.

For any y ∈ X, we have the following inclusions

τ [φ] ⊂ N(τ [φ]) ⊂ HomeoBφ(X) and τ [φ]y ⊂ N(τ [φ]y) ⊂ HomeoBφ(X) .

As in Section 1, we consider on Homeo(X), the topology of pointwise convergence
in norm on C(X). Then we have

Lemma 2.9. If X is a Cantor set, the subgroup HomeoBφ(X) is closed.

Definition 2.10. Let mod : HomeoBφ(X) → Aut(K0(X, φ)) be the group homomor-
phism defined for α ∈ HomeoBφ(X), by

mod(α)([f ]) = [f ◦ α−1] , f ∈ C(X,Z) .

where Aut(K0(X, φ)) is the group of all order automorphisms of K0(X,φ) preserving
the order unit 1X .

Neither τ [φ] nor τ [φ]y are closed subgroups. We have
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Proposition 2.11. For any y ∈ X, we have ker(mod) = τ [φ] = τ [φ]y .

Proof. By Lemma 3.3, which is proved in Section 3, τ [φ] ⊆ ker(mod) .
Let y ∈ X be fixed. If α = lim αn , αn ∈ τ [φ]y and U ∈ CO(X), then there exists

N such that αn(U) = α(U), for n ≥ N . Hence [α(U)] = [U ]. Clearly the same holds
true for f ∈ C(X,Z). Therefore, τ [φ]y ⊆ ker(mod) .

Conversely, let α ∈ ker(mod) and let (Pn)n≥1 be an increasing (i.e. Pn < Pn+1)
sequence of partitions of X (into clopen sets), whose union generates the topology of
X. By Lemma 3.3, for each n ≥ 1, there exists αn ∈ τ [φ]y such that αn(U) = α(U)
for each U ∈ Pn. Hence, α ∈ τ [φ]y. �

As K0(X,φ) ∼= K0(X, τ [φ]y), we get by [K2], Corollary 3.6,

Proposition 2.12. The restriction of mod to N(τ [φ]y) is surjective.

As in 1.12, we then have:

Proposition 2.13. N(τ [φ]y) is dense in HomeoBφ(X).

3. Algebraic Characterization of the Local Subgroups of the Full Groups.

Let X be a Cantor set. In this section, we will say that a group is of class F if it is
one of the following subgroups of Homeo(X) :

- the topological full group τ [φ] of a minimal homeomorphism φ of X,
- the full group [φ] of a minimal homeomorphism φ of X,
- a minimal AF-system Γ, i.e. Γ is a locally finite, countable group of homeomor-

phisms of X, so that the action is minimal and ample, (cf. Definition 2.5).

Remark 3.1. The three cases are different by observing the following:

a) A minimal AF-system is a countable group, where each element has finite order,

b) τ [φ] is also countable, but has elements of infinite order since φ ∈ τ [φ],

c) The full group [φ] is uncountable.

We will use the following notation of Hopf-equivalence (see for example [R]):
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Definition 3.2. Let X be a Cantor set and Γ be a group of class F.
a) Two clopen sets U and V of X are Γ-equivalent (denoted by U ∼Γ V ) if there exists

γ ∈ Γ with γ(U) = V .

b) If U is Γ-equivalent to a proper clopen set of V , we will write U ≺ V .

Let us denote by K0(X, Γ) the simple dimension group:

- K0(X, φ) if Γ = τ [φ],
- K0(X, φ)/Inf(K0(X, φ)) if Γ = [φ],
- K0(X, Γ) if Γ is a minimal AF-system.

If Γ is a group of class F, we remark that according to [K2] or [R], p. 130-131,
K0(X, Γ) is the simple dimension group associated to the dimension range D(Γ) =
CO(X)/ ∼Γ.

Let us recall now some technical lemmas which will be used frequently in this
section.

Lemma 3.3. Let Γ be a group of class F and let U and V be two clopen subsets of
X. Then the following are equivalent:

a) [χU ] = [χV ] in K0(X, Γ).
b) U ∼Γ V .
c) There exists γ ∈ Γ , γ2 = 1 such that γ(U) = V and γ|(U∪V )c = 1.

Proof:. As (c) ⇒ (b) ⇒ (a) is clear, we only have to check (a) ⇒ (c).
If Γ = [φ], this follows from [GW], Proposition 2.6. If Γ = τ [φ] (resp. Γ a minimal

AF-system), then it is a consequence of the Bratteli-Vershik model for (X, φ) (cf.[HPS],
Theorem 4.7, and [J], Theorem 4.12 for the details). �

By the minimal action of Γ, we get as a consequence of this result the following:

Lemma 3.4. Let Γ be a group of class F. For any U ∈ CO(X) and every x ∈ U ,
there is γ ∈ Γ such that γ(x) 6= x and γ|Uc = 1 , γ2 = 1 .

The next lemma is proved in [GW], Lemma 2.5, if Γ = [φ]; it follows from [HPS],
Theorem 4.7 (for details see [J], Theorem 4.11), if Γ = τ [φ] or a minimal AF-system.

Lemma 3.5. Let Γ be a group of class F and U ∈ CO(X) . If 0 ≤ a ≤ [U ] in
K0(X, Γ), then there exists A ∈ CO(X) with A ⊆ U and [A] = a in K0(X, Γ).

Let us fix for the rest of this section a group Γ of class F.
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Definition 3.6.
1) If O ∈ O(X), then ΓO will denote the set of all γ ∈ Γ such that

γ(x) = x , for all x ∈ Oc .

2) A subgroup of Γ of the form ΓU , U ∈ CO(X), will be called a local subgroup of Γ.

The aim of this section is to characterize algebraically the local subgroups of Γ, by
introducing several conditions on pairs of subgroups of Γ. The conditions (D1), (D2)
(of Definition 3.10) and (D4) (of Definition 3.25) follow from Dye’s original paper,
while conditions (D3) (of Definition 3.22) and (D5) (of Definition 3.25) are new.

Definition 3.7. For any subset H of Γ, the commutant of H in Γ will be denoted by
H⊥.

Note that if H = H−1 , then H⊥ is a subgroup of Γ. Keeping the standard notation
(cf. [H]), we will use the following:

Definition 3.8.
1) If O ∈ O(X), then O⊥ denotes the open set (O)c = (Oc)◦ .

2) If F ∈ C(X), then F⊥ denotes the closed set (F c) = (F ◦)c.

3) An open set O is regular if O⊥⊥ = O (i.e. (O)◦ = O).

4) A closed set C is regular if C⊥⊥ = C (i.e. C◦ = C) .

We will denote by RO(X) the collection of all regular open subsets of X. Note that
O ∈ RO(X) if and only if Oc is a regular closed set.

Lemma 3.9. If O, O1 and O2 are open sets of X, then
a) O1 ⊆ O2 ⇐⇒ ΓO1 ⊆ ΓO2 .
b) ΓO ∩ ΓO⊥ = {1} .
c) (ΓO)⊥ = ΓO⊥ and ΓO ⊆ Γ⊥⊥O .
d) If O ∈ RO(X), then ΓO = Γ⊥⊥O .

Proof. (b) follows directly from the definitions.

For (a): If O1 ⊆ O2, then by definition ΓO1 ⊆ ΓO2 . Conversely if x ∈ O1, let
V ⊂ O1 be a clopen set containing x. By Lemma 3.4, there exists η ∈ ΓV such that
η(x) 6= x . As η ∈ ΓV ⊆ ΓO1 ⊆ ΓO2 and η(x) 6= x, we have x /∈ Oc

2 .

For (c): As ΓO⊥ = {γ ∈ Γ ; γ(x) = x, ∀x ∈ O}, we have ΓO⊥ ⊂ (ΓO)⊥ . We prove
the opposite inclusion by contraposition. If γ /∈ Γ⊥O, then there exists x ∈ O such
that γ(x) 6= x. Let V ⊂ O be a clopen set containing x such that V ∩ γ(V ) = ∅. By
Lemma 3.4, there exists η ∈ ΓV ⊆ ΓO such that η(x) 6= x. Then η(γ(x)) = γ(x) and
γ(η(x)) 6= γ(x) ; hence γ /∈ Γ⊥O .

Finally, the definition of a regular open set and (c) give (d). �
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Definition 3.10. Let H and K be two subgroups of Γ. Then
a) (H, K) is a commuting pair if

(D1) H⊥ = K , K⊥ = H and H ∩K = {1} .

b) (H, K) is a strong commuting pair if it is a commuting pair satisfying the following
extra condition:

(D2)
if N is a non-trivial normal subgroup of H (resp.K),

then N⊥ = K (resp. N⊥ = H).

The following two lemmas will be used in the proof of Proposition 3.13.

Lemma 3.11. Let O be a non-empty open set of X and η ∈ ΓO, η 6= 1. If U is a
non-empty clopen set of O, then there exists γ ∈ ΓO such that

γ−1ηγ|U 6= 1 .

Proof. Let Y ∈ CO(X), Y ⊂ O be such that η(Y ) ∩ Y = ∅. Let U = U1
∐

U2 be a
non-trivial partition of U into clopen sets. By Lemma 3.3, there exist a non-empty
clopen set U ′

1 ⊂ U1 and an element α ∈ Γ such that

α(U ′
1) ⊂ Y , α2 = 1 and α|(U ′1∪α(U ′1))c = 1 .

There exist a non-empty clopen set U ′
2 ⊂ U2 and β ∈ Γ such that

β(U ′
2) ⊂ ηα(U ′

1) , β2 = 1 and β|(U ′2∪β(U ′2))c = 1 .

Then γ ∈ Γ defined by

γ =











α on U ′
1 ∪ α(U ′

1)

β on U ′
2 ∪ β(U ′

2)

1 elsewhere

.

is in ΓO. As αη−1β(U ′
2) ⊂ U ′

1 and γ−1ηγ(αη−1β(U ′
2)) ⊂ U ′

2, the lemma is proved. �

Lemma 3.12. Let O be a non-empty open set of X and η ∈ ΓO, η 6= 1 . Let γ ∈ Γ
and let U be a non-empty clopen set of O such that γ(U) ⊂ O and U ∩ γ(U) = ∅ .
Then there exist a non-empty clopen set U1 ⊂ U and an element ψ ∈ ΓO such that

γ(ψ−1ηψ)(U1) ∩ ψ−1ηψ(γ(U1)) = ∅ .

Proof. Taking a subset of U and conjugating η by an element of ΓO if necessary, we
may assume that there exists Y ∈ CO(X) such that Y and η(Y ) are disjoint and both
contained in O r (U ∪ γ(U)). Let Y = Y1

∐

Y2 be a non-trivial partition of Y into
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clopen sets. Let U ′ , U ′′ and U ′′′ be three disjoint, Γ-equivalent non-empty clopen sets
such that U ′∐U ′′∐ U ′′′ ⊂ U .

By Lemma 3.3, there exist a clopen set U1 ⊂ U ′ and two involutions α, β ∈ Γ such
that

α(U1) ⊂ Y1 , α(γ(U1)) ⊂ Y2 and β(ηα(U1)) ⊂ U ′′ , β(ηαγ(U1)) ⊂ γ(U ′′′)

and moreover

α|(U1∪α(U1)∪γ(U1)∪α(γ(U1)))c = 1 and β|(ηα(U1)∪βηα(U1)∪ηαγ(U1)∪β(ηαγ(U1)))c = 1 .

Then let ψ ∈ ΓO be defined by

ψ =











α on U1 ∪ α(U1) ∪ γ(U1) ∪ α(γ(U1))

β on ηα(U1) ∪ βηα(U1) ∪ ηαγ(U1) ∪ β(ηαγ(U1))

1 elsewhere

.

Then ψ−1ηψ(U1) ⊂ U ′′ and ψ−1ηψ(γ(U1)) ⊂ γ(U ′′′) . �

Proposition 3.13. If O is a regular open set, then (ΓO,ΓO⊥) is a strong commuting
pair.

Proof. By Lemma 3.9, it is enough to prove that the condition (D2) of Definition 3.10
is satisfied.

Let N be a non-trivial normal subgroup of ΓO. As ΓO⊥ ⊂ N⊥ , we only have to
show that if γ /∈ Γ⊥O , then γ /∈ N⊥ . If γ /∈ Γ⊥O (= ΓO⊥), then there exists a non-empty
clopen set U , U ⊂ O, such that γ(U) ∩ U = ∅.

If γ(U) ∩O 6= ∅, we can assume by taking a smaller clopen set that γ(U) ⊂ O. By
Lemma 3.12, there exist η ∈ N and U1 ⊂ U such that

γη(U1) ∩ ηγ(U1) = ∅ .

If γ(U) ∩O = ∅, then γ(U) ⊂ Oc. By Lemma 3.11, there exist η ∈ N and x ∈ U such
that η(x) 6= x. Then γη(x) 6= γ(x) and ηγ(x) = γ(x). In both cases, γη 6= ηγ .

If N is a non-trivial normal subgroup of ΓO⊥ , the proof is similar. �

Definition 3.14.
1) If γ ∈ Homeo(X), then Xγ = {x ∈ X ; γ(x) = x} denotes the fixed point set of γ

and Pγ = (Xγ)c the support of γ . Observe that Pγ is a regular closed set of X.

2) If H ⊂ Homeo(X), then the support PH of H will be ∪η∈HP ◦η .

Remark 3.15.
1) If H ⊂ Homeo(X), then PH is a regular closed set. Both PH and P ◦H are H⊥-

invariant.
2) If γ is an element of the topological full group of a minimal Cantor system or of a

minimal AF-system, then Pγ is clopen.
3) Let H ⊂ Homeo(X) and U ∈ RO(X) . If H ⊂ ΓU , then PH ⊂ U .
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Lemma 3.16. If O is an open set, then PΓO = O .

Proof. If η ∈ ΓO, then Pη ⊂ O and therefore PΓO ⊂ O. If x ∈ O, then by Lemma 3.4,
there exists a clopen set V containing x and γ ∈ ΓO, γ2 = 1, such that

γ(V ) ∩ V = ∅ and γ|(V ∪γ(V ))c = 1 .

Hence V ⊂ Pγ ∈ CO(X) and so O ⊂ PΓO . As PΓO is closed, the lemma is proved. �

Lemma 3.17. Let (H, K) be a strong commuting pair of Γ.
If A is a non-empty H and K invariant clopen subset contained in PH (resp. in
PK), then A = PH (resp. A = PK).

Proof. Assume that A ⊂ PH and set

N = {γ ∈ Γ ; γ(x) = x , x ∈ Ac and ∃ η ∈ H such that γ(x) = η(x), x ∈ A }

and

M = {γ ∈ Γ ; γ(x) = x , x ∈ A and ∃ η ∈ H such that γ(x) = η(x), x ∈ Ac } .

As A is H and K-invariant, N and M are normal subgroups of K⊥ = H. Moreover,
M ⊂ N⊥. As A is non empty, N is non trivial and N⊥ = K. Since M ⊂ H ∩N⊥ =
H ∩K, then M = {1}.

Therefore, ΓAc ⊂ N⊥ = K and H ⊂ (ΓAc)⊥ = Γ(Ac)⊥ = ΓA. Hence, A = PH . �

If H1 , H2 , H3 are subsets of Γ, we will denote by < H1, H2, H3 > the subgroup
of Γ generated by the elements of H1 , H2 and H3.

Lemma 3.18. Let O be a non empty clopen set of X and η ∈ Γr ΓOΓO⊥ .
If U ⊆ O and V ⊆ Oc are Γ-equivalent non empty clopen sets, then there exists

χ ∈< ΓO, ΓO⊥ , η >

such that χ2 = 1 , χ(U) = V and χ|(U∪V )c = 1 .

Proof. Let W ⊆ O be a non-empty clopen set such that η(W ) ⊂ O⊥ = Oc. As [W ]
is an order unit in K0(X, Γ), there exists n such that [U ] ≤ n[W ] . Hence there exist
a1, a2, · · · , an ∈ K0(X, Γ)+ with ai ≤ [W ] and [U ] = a1 + a2 + · · ·+ an .

By Lemma 3.3 and 3.5, we can assume that U =
∐n

i=1 Ai , Ai clopen, with [Ai] =
ai and that for 1 ≤ i ≤ n, there exists αi ∈ ΓO , α2

i = 1 , αi(Ai) ⊂ W and
αi|(Ai∪αi(Ai))c = 1 .

For 1 ≤ i ≤ n , set Bi = η(αi(Ai)) ⊂ η(V ) . Similarly, we can assume that V =
∐n

i=1 Ci , where Ci clopen and [Ci] = ai. By Lemma 3.3, for 1 ≤ i ≤ n, there exist
βi ∈ ΓO , β2

i = 1 , βi(Bi) = Ci and βi|(Bi∪Ci)c = 1 .
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Denote by χi the element of < ΓO, ΓO⊥ , η > given by

χi(x) =











x if x /∈ Ai ∪ Ci

βiηαi(x) if x ∈ Ai

αiη−1βi(x) if x ∈ Ci

.

Then χ =
∏n

i=1 χi satisfies the conditions of the lemma. �

Lemma 3.19. Let O be a non empty clopen set of X and η ∈ Γr ΓOΓO⊥ .
Then the subgroup < ΓO, ΓO⊥ , η > is equal to Γ.

Proof. Let ψ ∈ Γ and set O1 = O ∩ ψ−1(O) and O2 = O ∩ ψ−1(Oc).
By Lemma 3.3, there exists an element χ1 ∈ ΓO such that

χ2
1 = 1 , χ1(ψ(O1)) = O1 and χ1|(ψ(O1)∪O1)c = 1 .

Therefore χ1ψ(O1) = O1 and χ1ψ(O2) = ψ(O2).
By Lemma 3.18, there exists an element χ2 ∈< ΓO, ΓO⊥ , η > such that

χ2
2 = 1 , χ2(ψ(O2)) = O2 and χ2|(O2∪ψ(O2))c = 1 .

As O1 ⊂ (O2 ∪ ψ(O2))c, we have:

χ2χ1ψ(O1) = O1 and χ2χ1ψ(O2) = χ2(ψ(O2)) = O2 .

Hence, χ2χ1ψ(O) = O and χ2χ1ψ ∈ ΓOΓO⊥ . Therefore ψ ∈< ΓO, ΓO⊥ , η > . �

Lemma 3.20. Let O be a regular open set of X. Then the following conditions are
equivalent:

(a) O is clopen,
(b) For all U ∈ RO(X), with O $ U, we have O ⊆ U.

Proof. If O ∈ RO(X) and O 6= O , then O 6= X . Furthermore, let V be a non-empty
clopen set in X r O. Then U = O ∪ V is a regular open set, which does not contain
O. Hence (b) implies (a). The converse is trivial. �

Lemma 3.21. Let O be a regular open set of X. Then the following conditions are
equivalent:

(a) O is clopen,
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(b) for any strong commuting pair (H,K) of subgroups of Γ such that ΓO $ H , the
subgroup < H , ΓO⊥ > generated by H and ΓO⊥ is equal to Γ.

Proof. Let (H,K) be a strong commuting pair of subgroups of Γ, with ΓO $ H and
assume that O is clopen. First of all, notice that

(3.21.1) there exists η ∈ H such that η(O) ∩Oc 6= ∅ (hence η ∈ Γr ΓOΓO⊥).

Indeed, if for all η ∈ H , η(O) = O , then ΓO is a normal subgroup of H. Hence
Γ⊥O = K and H = ΓO , which contradicts the assumption. As H is a group, (3.21.1)
follows. By Lemma 3.19, we then get that

< H , ΓO⊥ >⊇< ΓO , ΓO⊥ , η >= Γ .

So (a) implies (b).

Conversely, by Lemma 3.20, we must show that if U ∈ RO(X) , with O $ U then
O ⊂ U . Consider the pair (ΓU , ΓU⊥) of subgroups of Γ. By Proposition 3.13, it is a
strong commuting pair of subgroups of Γ and by Lemma 3.9 (a), ΓO ⊂ ΓU , ΓO 6= ΓU .
The closed set O∩U c is (pointwise) fixed by the the group generated by ΓO⊥ and ΓU .
Therefore O ∩ U c is fixed by Γ and by minimality of the action of Γ, O ∩ U c = ∅ . �

Definition 3.22. A commuting pair (H,K) of subgroups of Γ satisfies condition (D3)
if

(D3) For any strong commuting pair (H ′,K ′) of subgroups of Γ such that H ⊂ H ′ , H 6=
H ′ (resp. H ′ ⊂ H , H ′ 6= H), the subgroup < H ′ , K > (resp. < H , K ′ > ) of
Γ generated by H ′ and K (resp. by H and K ′) is equal to Γ.

Lemma 3.23. Let (H, K) be a strong commuting pair of subgroups of Γ, satisfying
condition (D3). Then PH and PK are clopen.

Proof. As PH is a regular closed set, O = (PH)◦ ∈ RO(X). Then (ΓO , ΓO⊥) is a
strong commuting pair of subgroups of Γ such that H ⊂ ΓO.

If H = ΓO, then (H, K) = (ΓO , ΓO⊥) and by (D3) and Lemma 3.21, O is clopen.
As PH = O, then PH is clopen. Notice that in this case, PK = O⊥ is also clopen.

If H ( ΓO, then by (D3), the subgroup < ΓO , K > is equal to Γ. The closed
set ∂PH = PH r O is K-invariant, ΓO-fixed and by minimality of the action of Γ,
∂PH = ∅. Therefore, PH is clopen.

Using U = (PK)◦ and the strong commuting pair (ΓU⊥ , ΓU ), we also get that PK

is clopen. �

In the proof of the next lemma, we will use the following notation, borrowed from
Dye’s paper [D2]:
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If α , β ∈ Homeo(X), then F (α, β) denotes the closed set {x ∈ X ; α(x) = β(x) } .

Recall (Definition 2.2) that if H is a subgroup of Homeo(X), τ [H] denotes the topo-
logical full group of H.

Lemma 3.24. Let (H, K) be a strong commuting pair of subgroups of Γ, such that
PH = PK = X and with the following property:

(3.24.1) if O is a H- orK-invariant, non-empty open set of X , then O = X .

Then, τ [H] ∩ τ [K] = {1}.

Proof. If τ [H] ∩ τ [K] 6= {1}, then there exist ηo ∈ H and κo ∈ K such that

(3.24.2) ∅ 6= F (ηo, κo)◦ ⊆ F (ηo, κo) 6= X .

If η1 , η2 ∈ H, with F (η1, η2)◦ 6= ∅, then, since F (η1, η2)◦ is K-invariant, we get by
(3.24.1) that F (η1, η2)◦ = X and therefore η1 = η2.

Let C(ηo) be the conjugacy class of ηo in H. If α and β are two distinct elements
of C(ηo) and η ∈ H, we have:

i) F (α, κo)◦ ∩ F (β, κo)◦ ⊆ F (α, β)◦ = ∅.
ii) η(F (α, κo)◦) = F (ηαη−1, κo)◦ .

Let λ be a Γ-invariant probability measure on X (which always exists). By mini-
mality of the action of Γ, we have by (ii) and (3.24.2)

λ(F (α, κo)◦) = λ(F (ηo, κo)◦) > o , for all α ∈ C(ηo) .

Therefore, B = {F (α, κo)◦ ; α ∈ C(ηo) } is a finite family of disjoint, non-empty open
sets. Moreover the action of H on B is faithful. Indeed if η ∈ H is such that

η(F (α, κo)◦) = F (α, κo)◦ for all α ∈ C(ηo) ,

then F (α, κo)◦ = F (ηαη−1, κo)◦ ⊆ F (ηαη−1, α)◦ . Therefore ηαη−1 = α for all
α ∈ C(ηo); hence η commutes with the normal subgroup of H generated by ηo. As
(H, K) is a strong commuting pair, then η ∈ K and therefore η = 1.

As B is finite, then H is finite, but this contradicts (3.24.1). �

Definition 3.25. A pair (H, K) of subgroups of Γ is a Dye pair if it is a strong
commuting pair satisfying condition (D3) of Definition 3.22 and the following extra
conditions:

(D4) For all α ∈ Γ rHK , there exists η ∈ H r {1} (resp. κ ∈ K r {1}) such that
αηα−1 ∈ K (resp. ακα−1 ∈ H ).

(D5) If N 6= {1} is a subgroup of Γ such that ηNη−1 = N for all η ∈ H and N * K,
(resp. κNκ−1 = N for all κ ∈ K and N * H), then N ∩ H 6= {1} (resp.
N ∩K 6= {1}).
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Lemma 3.26. If O is a clopen set, then (ΓO, ΓO⊥) is a Dye pair.

Proof. The pair (ΓO, ΓO⊥) is a strong commuting pair of subgroups of Γ by Lemma
3.13 and it satisfies (D3) by Lemma 3.21 applied to O and Oc.

As O is clopen, if α ∈ Γ r ΓOΓO⊥ , then there exists V ∈ CO(X) , V ⊂ O such
that α(V ) ⊂ Oc. Then (D4) is verified by taking either η 6= 1 , η ∈ ΓV ⊂ ΓO, or
κ 6= 1 , κ ∈ Γη(V ) ⊂ ΓO⊥ .

To verify (D5), let N be a non trivial subgroup of Γ with ηNη−1 = N for all η ∈ ΓO

and N * ΓO⊥ . Let us first show that

(3.26.1) ∃ η ∈ ΓO , η 6= 1 , κ ∈ ΓO⊥ such that ηκ ∈ N .

As N * ΓO⊥ , (3.26.1) is clear if N ⊂ ΓOΓO⊥ . If α ∈ N rΓOΓO⊥ , then by (D4), there
exists η 6= 1 , η ∈ ΓO such that αηα−1 ∈ ΓO⊥ . Hence, η−1αηα−1 ∈ ΓOΓO⊥ ∩ N ,
because η−1αη and α−1 belong to N .

¿From (3.26.1), we can assume that β = ηκ ∈ N , with η 6= 1 , η ∈ ΓO and
κ 6= 1 , κ ∈ ΓO⊥ . Let γ ∈ ΓO with γηγ−1 6= η. Then (γβγ−1)β−1 ∈ N and
(γβγ−1)β−1 = γηγ−1η−1 ∈ Γ0 r {1}.

The second part of the condition (D5) follows in the same way. �

Lemma 3.27. Let (H, K) be a strong commuting pair of subgroups of Γ satisfying the
conditions (D4) and (D5) and such that PH = PK = X.

If O is either a H- or a K-invariant non-empty open set, then O = X. �

Proof. Let us assume that O is H-invariant. First of all, let us prove that

(3.27.1) ΓO ∩HK * K .

If there exists α ∈ ΓOrHK, then by (D4), there is η ∈ Hr{1} such that αηα−1 ∈
K. As O is H-invariant, η−1ΓOη = ΓO for all η ∈ H. Therefore η−1αηα−1 ∈ ΓO∩HK
and η−1αηα−1 /∈ K, which proves (3.27.1) in this case. We can therefore assume that
ΓO ⊂ HK. If ΓO ⊆ K, we have H ⊆ Γ⊥O = ΓO⊥ . But this contradicts the assumption
that O is non-empty. So (3.27.1) holds.

As η(ΓO ∩HK)η−1 = ΓO ∩HK, for all η ∈ H , we get by (D5) and (3.27.1) that
N = (ΓO ∩HK) ∩H = ΓO ∩H 6= {1}. As N is a normal subgroup of H, we have by
(D2) that N⊥ = K.

Since N ⊂ ΓO, we have ΓO⊥ ⊂ K and H ⊂ ΓO⊥⊥ . By assumption, PH = X and
therefore O⊥⊥ = X. Hence O = X. �

Lemma 3.26 together with the next proposition give an algebraic characterization
of local subgroups (Definition 3.6), and hence of clopen sets.
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Proposition 3.28. If (H, K) is a Dye pair of subgroups of Γ, then

(H, K) = (ΓPH , ΓP⊥H
) .

Proof. By Lemma 3.23, PH and PK are clopen. To prove the proposition, it is enough
to show that PH ∩ PK = ∅. Indeed, in this case ΓPH ⊂ K⊥ = H ⊂ ΓPH ; hence
ΓPH = H.

If PH ∩ PK 6= ∅, then it is a H and K invariant clopen set, and by Lemma 3.17,
PH ∩ PK = PH = PK . As ΓP c

H
⊂ H⊥ = K ⊂ ΓPK = ΓPH , we have P c

H = ∅. Hence
PH = PK = X. By Lemma 3.24 and 3.27, we get

(3.28.1) τ [H] ∩ τ [K] = {1} .

Since PH = PK = X, there exists α ∈ τ [H] such that its fixed point set is not
K-invariant. Therefore α /∈ H and by (3.28.1), α /∈ HK. By (D4), there exists
η ∈ H r {1}, with αηα−1 ∈ K, which contradicts (3.28.1). Hence, PH ∩ PK = ∅ and
the proposition is proved. �
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4. Orbit Equivalence and Full Groups.

In this section we will use the algebraic characterization of local subgroups of groups
of class F , obtained in Section 3, to generalize in the context of groups of homeomor-
phisms on a Cantor set Proposition 5.2 of Dye ([D2]).

Recall that a group of class F is either (i) the topological full group τ [φ] or (ii) the
full group [φ] of a minimal homeomorphism φ of a Cantor set X, or (iii) a minimal
AF-system Γ, i.e. Γ is a locally finite, countable group of homeomorphisms of X, so
that the action is minimal and ample.

Following Krieger ([K2]), we define

Definition 4.1. For i = 1, 2, let Xi be a topological space and Γi be a subgroup of
Homeo(Xi). An isomorphism α : Γ1 → Γ2 will be called spatial if it is implemented
by a homeomorphism a : X1 → X2 (i.e. for all γ ∈ Γ1 , α(γ) = aγa−1 ).

Observe that a(Γ1x) = Γ2(ax) for all x ∈ X1. Then we have:

Theorem 4.2. For i = 1, 2, let Xi be a Cantor set and Γi be a subgroup of Homeo(Xi)
of class F .

Any group isomorphism α : Γ1 → Γ2 is spatial.

Proof. Let us recall first of all that if X1 and X2 are Cantor sets, then there is a
bijective correspondence between the homeomorphisms from X1 to X2 and the Boolean
isomorphisms from CO(X1) to CO(X2) (see for example [H]). Therefore it is enough
to construct a Boolean isomorphism a : CO(X1) → CO(X2) such that

(4.2.1) α(σ)a = aσ , for all σ ∈ Γ1 .

By Propositions 3.26 and 3.28, if U ∈ CO(X1), then α(Γ1
U ) is a local subgroup of

Γ2,associated to a clopen set a(U). Remark that by Lemma 3.9 two clopen sets U
and V of Xi are equal if and only if Γi

U = Γi
V . Therefore we get a bijective map

a : CO(X1) → CO(X2). Furthermore, a preserves the intersection of clopen sets.
Indeed, if U, V ∈ CO(X1),

Γ2
a(U∩V ) = α(Γ1

U∩V ) = α(Γ1
U ∩ Γ1

V ) = α(Γ1
U ) ∩ α(Γ1

V ) = Γ2
a(U) ∩ Γ2

a(V ) = Γ2
a(U)∩a(V ) .

Moreover

Γ2
a(U⊥) = α(Γ1

U⊥) = α((Γ1
U )⊥) = (α(Γ1

U ))⊥ = (Γ2
a(U))

⊥ = Γ2
a(U)⊥ .

Therefore, a is a Boolean isomorphism.
For σ ∈ Γi and U ∈ CO(Xi), we have Γi

σ(U) = σΓi
Uσ−1. Thus for all U ∈ CO(X1), we

get:
Γ2

aσ(U) = α(Γ1
σ(U)) = α(σΓ1

Uσ−1) = α(σ)Γ2
a(U)α(σ−1) = Γ2

α(σ)a(U) ,

which proves (4.2.1). �

We will draw several corollaries from Theorem 4.2. Recall that
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Definition 4.3. The dynamical systems (X1, φ1) and (X2, φ2) are flip conjugate if
(X1, φ1) is conjugate either to (X2, φ2) or to (X2, φ−1

2 ).

Recall that C∗(X, φ) denotes the C∗-algebra associated to the dynamical system
(X,φ). Combining Theorem 4.2 with [GPS], Theorem 2.4, we get:

Corollary 4.4. For i = 1, 2, let (Xi, φi) be two Cantor minimal systems. Then the
following are equivalent:

(i) (X1, φ1) and (X2, φ2) are flip conjugate,

(ii) τ [φ1] and τ [φ2] are isomorphic as abstract groups,

(iii) There exists an isomorphism θ : C∗(X1, φ1) → C∗(X2, φ2) so that θ maps C(X1)
onto C(X2).

Definition 4.5. If (X1, φ1) and (X2, φ2) are two dynamical systems, they are (topo-
logically) orbit equivalent if there exists a homeomorphism F : X1 → X2 so that

F (Orbφ1(x)) = Orbφ2(F (x)) for all x ∈ X1 .

We call such a map an orbit map.

Combining Theorem 4.2 with [GPS], Theorem 2.2, we get:

Corollary 4.6. For i = 1, 2, let (Xi, φi) be two Cantor minimal systems. Then the
following are equivalent:

(i) (X1, φ1) and (X2, φ2) are orbit equivalent,

(ii) [φ1] and [φ2] are isomorphic as abstract groups,

(iii) The dimension groups K0(Xi, φi)/Inf(K0(Xi, φi)), i = 1,2, are order isomor-
phic by a map preserving the distinguished order units.

Remark 4.7. If X is connected (or under the more general conditions of Propo-
sition 1.3), the equivalence between (i) and (ii) fails. Indeed, in these cases, orbit
equivalence is the same thing as flip conjugacy, while (ii) is always true, the two full
groups being isomorphic to Z.

For minimal AF-systems Γ we get by combining Theorem 4.2 with [K2], Corollary
3.6:
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Corollary 4.8. Let (X1, Γ1) , (X2, Γ2) be two minimal AF-systems, where X1 and
X2 are two Cantor sets.

Then Γ1 and Γ2 are isomorphic as abstract groups if and only if K0(X1, Γ1) and
K0(X2, Γ2) are order isomorphic by a map preserving the order units.

We will relate Corollary 4.8 with the notion of strong orbit equivalence. Let us first
recall the following definition

Definition 4.9. Let (X1, φ1) and (X2, φ2) be minimal systems that are (topologically)
orbit equivalent. We say that (X1, φ1) and (X2, φ2) are strong orbit equivalent if
there exists an orbit map F : X1 → X2 so that the associated orbit cocycles have at
most one point of discontinuity, each.

Let (X,φ) be a Cantor minimal system. For all x ∈ X, let

Orb+
φ (x) = {φk(x) ; k ≥ 1 } .

denote the forward orbit of x.

Definition 4.10. If (X,φ) is a Cantor minimal system and y ∈ X, we denote by
τ [φ]y the subgroup of τ [φ] consisting of those γ such that γ(Orb+

φ (y)) = Orb+
φ (y) .

Recall (Definition 2.5 and the paragraph preceeding it) that for any y ∈ X, τ [φ]y is a
countable, locally finite group whose action on X is minimal and ample (ie. (X, τ [φ]y)
is a minimal AF-system).

By [K2], Corollary 3.6, all τ [φ]y are isomorphic.

Combining Theorem 4.2 with [P], Theorem 4.1, [GPS], Theorem 2.1, Corollary 4.4
and [K2], Corollary 3.6, we therefore get:

Corollary 4.11. For i = 1, 2, let (Xi, φi) be two Cantor minimal systems. Then the
following are equivalent:

(i) (X1, φ1) and (X2, φ2) are strong orbit equivalent,

(ii) For any yi ∈ Xi, i = 1, 2, τ [φ1]y1 and τ [φ2]y2 are isomorphic as abstract groups,

(iii) The dimension groups K0(Xi, φi), i = 1,2, are order isomorphic by a map pre-
serving the distinguished order units,

(iv) The C∗-algebras C∗(X1, φ1) and C∗(X2, φ2) are isomorphic.
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5. The Index Map from τ [φ] and its kernel.

Let (X,φ) be a Cantor minimal system. As in Section 2 and 4, we will denote
by Orb+

φ (x) (resp. Orb−φ (x)) the forward orbit {φn(x) ; n > 0} (resp. backward orbit
{φn(x) ; n ≤ 0}) of x ∈ X.

To simplify the notation, we will let Γ denote the topological full group of (X, φ),
and for y ∈ X, we will denote by Γ{y} the locally finite ample group τ [φ]y , i.e.

Γ{y} = { γ ∈ Γ ; γ(Orb+
φ (y)) = Orb+

φ (y) } .

In the first part of this section, we show that up to normalization there exists only
one non-trivial homomorphism from Γ to Z, which we call the index map from Γ to
Z. We denote the kernel of the index map by Γ0 and prove that its topological full
group is equal to Γ.

In the second part of this section, we show using the same techniques as in Section
3, that any group isomorphism between Γ0-groups is spatial. In Proposition 5.8, we
then prove that Γ0 is a complete invariant for flip-conjugacy of (X,φ).

First of all, let us fix y ∈ X and give the following description of Γ that we will
need later.

Definition 5.1. For γ ∈ Γ, let κ(γ) be the cardinality of

Orb−φ (y) ∩ γ−1(Orb+
φ (y)) .

Hence, κ(γ) is the number of points of Orb−φ (y) sent by γ to Orb+
φ (y).

Similarly, λ(γ) will denote the cardinality of Orb+
φ (y) ∩ γ−1(Orb−φ (y)).

Remark that as γ ∈ Γ, both κ(γ) and λ(γ) are finite.

Definition 5.2. For any k ∈ N, l ∈ Z, let Vk,l be a clopen subset of X such that:
1) for 1 ≤ n ≤ k , φ|l|+n(y) ∈ Vk,l ,
2) for −|l|+ 1 ≤ m ≤ |l| , φm(y) /∈ Vk,l .
3) Vk,l ∩ φ−(2|l|+k)(Vk,l) = ∅.

Then σk,l ∈ Γ is defined by

σk,l =















φ−k−2|l| on Vk,l

φk+2|l| on φ−k−2|l|(Vk,l)

1 elsewhere

.

Keeping the above notations, we then get:
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Lemma 5.3. The topological full group Γ can be written as the disjoint union:

Γ =
∐

k,l

Γ{y}φlσk,lΓ{y} .

Proof. Let β : Γ → N×N be the map defined by β(γ) = (κ(γ), λ(γ)) where κ(γ) and
λ(γ) are as in Definition 5.1. As

β(φlσk,l) =

{

(k + l, k) if l ≥ 0

(k, k − l) if l < 0

we get that β is surjective. Moreover one checks easily that if p ≥ q, then

β−1(p, q) = { γ1φp−qσq,p−qγ2 ; γi ∈ Γ{y} }

and if p < q, then

β−1(p, q) = { γ1φp−qσp,q−pγ2 ; γi ∈ Γ{y} } .

Therefore, Γ =
∐

p,q∈N β−1(p, q) , which proves the lemma. �

Let us now define the index map from Γ to Z.

For γ ∈ Γ and k ∈ Z, let Xγ
k be the clopen set {x ∈ X ; γ(x) = φk(x)}. Recall

(Definition 2.1) that the function nγ : X → Z defined by

nγ =
∑

k

kχXγ
k

is continuous. If α, β ∈ Γ, then we have nα◦β = nα ◦ β + nβ . Therefore we get

Proposition 5.4. If µ is a φ-invariant probability measure on X, then the map Iµ :
Γ → R given by Iµ(γ) =

∫

X nγdµ is a homomorphism such that Iµ(φ) = 1.

As every element of Γ{y} is of finite order, as are all the σk,l, then Iµ(Γ) ⊂ Z by
Lemma 5.3, and any homomorphism from Γ to Z is determined by the image of φ, and
so is independent of the φ-invariant probability measure µ. Therefore by Lemma 5.3
and Proposition 5.4, we get

Proposition 5.5. If Γ is the topological full group of a Cantor minimal system, then
Hom(Γ,Z) is equal to Z.

We give some motivation for our definition of Iµ coming from C∗-algebra theory.
We adopt the notation of [P] (used in Section 2) for the elements of C∗(X, φ). First
of all, we obtain from the measure µ a trace τ on C∗(X, φ) by

τ

(

N
∑

−N

fkuk

)

=
∫

f0dµ ,
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for fk ∈ C(X), −N ≤ k ≤ N. Secondly, there is a derivation δ defined on some dense
subalgebra of C∗(X,φ). Its domain of definition includes C(X) and u and we have

δ

(

N
∑

−N

fkuk

)

=
N

∑

−N

kfkuk .

(in fact, δ is the infinitesimal generator of the dual action of S1 on C∗(X,φ)).
¿From this we may define a cyclic one-cocycle ω. We will not be precise about its

domain but
ω(a0, a1) = τ(a0δ(a1))

for appropriate a0, a1. As described in Proposition 15 of the second chapter of [C],
such a cocycle gives a map from K1(C∗(X,φ)) ∼= Z to C by mapping a unitary w in
C∗(X, φ) to ω(w∗ − 1, w − 1). Now given γ ∈ Γ, let vγ be the unitary in C∗(X,φ)
described in Section 2. Then it is easily verified that our map above sends [vγ ] in
K1(C∗(X,φ)) to ω(v∗γ − 1, vγ − 1) = Iµ(γ).

We will denote by I the homomorphism defined in Proposition 5.4, and for γ ∈ Γ,
call I(γ) the index of γ.

Remark 5.6. If γ ∈ Γ, then with the notation of Definition 5.1, I(γ) is also equal to
κ(γ) − λ(γ), thus independent of which y we chose at the outset. Indeed, the map
γ ∈ Γ 7→ κ(γ)− λ(γ) ∈ Z is a group homomorphism sending φ to 1.

We give an outline of a proof of this, using C∗-algebra techniques. Let H be the
Hilbert space l2(Z). Define a representation ρ of C∗(X,φ) on H by the covariant pair:

(ρ(f)ξ)(n) = f(φ−n(y))ξ(n) and (ρ(u)ξ)(n) = ξ(n− 1) ,

for f ∈ C(X) , ξ ∈ l2(Z) , n ∈ Z . Let P denote the projection

(Pξ)(n) =

{

ξ(n) for n ≤ 0

0 for n > 0 .

It is easy to verify that P commutes with ρ(C(X)) and that [P, ρ(u)] is compact. It
follows that [P, ρ(a)] is compact for every a ∈ C∗(X, φ) ; i.e. (H, ρ, P ) is a Fredholm
module for C∗(X, φ). We obtain an index map from K1(C∗(X,φ)) to Z by sending a
unitary v in C∗(X,φ) to the Fredholm index

Ind(Pρ(v)P ) = dimker(Pρ(v)P )− dimker((Pρ(v)P )∗) ,

where we consider Pρ(v)P as an operator on PH. Now, for v = vγ , γ in Γ , as above,
it is fairly easy to see that

dimker(Pρ(v)P ) = κ(γ) and dimker(Pρ(v)∗P ) = λ(γ) .
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Definition 5.7. If Γ is the topological full group of a Cantor minimal system, then
Γ0 will denote the kernel of any non-trivial homomorphism from Γ to Z.

Then we have

Proposition 5.8. The topological full group of Γ0 is equal to Γ.

Proof. By definition of Γ0, it is sufficient to show that φ ∈ τ [Γ0] to prove that
τ [Γ0] = Γ.

For all x ∈ X, let Vx ∈ CO(X) be such that Vx ∩ φ(Vx) = ∅. Then set

γx =











φ on Vx

φ−1 on φ(Vx)

1 elsewhere

.

By construction, I(γx) = 0 and therefore γx ∈ Γ0.
As X is compact, there exist x1, x2, · · · , xn in X such that ∪n

i=1Vxi = X. Set

U1 = V1, U2 = V2 r U1, · · · , Un = Vn r (U1 ∪ · · · ∪ Un−1) .

Then {U1, · · · , Un} forms a clopen partition of X and the homeomorphism γ defined
by

γ(x) = γxi(x) if x ∈ Ui

belongs to τ [Γ0]. As γ = φ, the proposition is proved. �

Let us now give a description of the normalizer N(Γ) of Γ as a semi-direct product.
First of all, we introduce the following:

Definition 5.9. If (X, φ) is a Cantor minimal system, then Cε(φ) denotes the sub-
group of all γ ∈ Homeo(X) such that either γφγ−1 = φ or γφγ−1 = φ−1.

Let us recall the following (unpublished) Theorem 2.6 of M. Boyle [B1], which will
be used in Proposition 5.11.

Theorem 5.10. Suppose φ and ψ are (topologically) transitive homeomorphisms of a
compact metric space such that φ ∈ τ [ψ] and φ and ψ have the same orbits.

Then φ is conjugate to ψ or ψ−1 by an element of τ [ψ] .

Remark that Cε(φ) acts by conjugation on the topological full group Γ, and on the
kernel Γ0 of the index map by Lemma 5.3.
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Proposition 5.11. Let (X,φ) be a Cantor minimal system.
If Γo Cε(φ) denotes the semi-direct product of the topological full group Γ of φ by

Cε(φ), then we get the following short exact sequence:

0 → Z ι−→ Γo Cε(φ) Φ−→ N(Γ) → 1 ,

where ι and Φ are defined by ι(n) = (φn, φ−n) and Φ(γ, η) = γη.

Proof. If γ ∈ N(Γ), then γφγ−1 ∈ Γ; moreover γφγ−1 and φ have the same orbits. By
Theorem 5.10, there exists η ∈ Γ and ε ∈ {1,−1} such that γφγ−1 = ηφεη−1. Then
η−1γ ∈ Cε(φ) and Φ(η−1, ηγ) = γ. Therefore, Φ is onto.

Let (γ, η) ∈ Ker φ. Then γ ∈ Γ∩Cε(φ). As the index of γφγ−1 is one, γ commutes
with φ. It is easily observed that the only elements of Γ that commutes with φ are
powers of φ. Hence ker (Φ) is equal to ι(Z). �

¿From Proposition 5.11 and its proof, one gets easily

Corollary 5.12. Let (X,φ) be a Cantor minimal system.
If Γ0 o Cε(φ) denotes the semi-direct product of Γ0 by Cε(φ), then Γ0 o Cε(φ) is

isomorphic to N(Γ) .

To prove that any group isomorphism between Γ0-groups is spatial, we define as in
Section 3 the notion of a local full subgroup Γ0

U , U ∈ CO(X), of Γ0 by

Γ0
U = {γ ∈ Γ0 ; γ(x) = x , for all x ∈ U c },

and we indicate the necessary changes to be brought to Section 3 to characterize them
algebraically.

Notice first of all that if U and V are two clopen sets of X, then by Lemma 3.3 U
and V are Γ0-equivalent if and only if U ∼Γ V .

Therefore, the dimension group associated to the dimension range D(Γ0) is K0(X, φ)
(see Section 3).

For any pair H and K of subgroups of Γ0, we consider as in Definitions 3.10, 3.22
and 3.25 the conditions (D1), (D2), (D3) and (D5) replacing Γ by Γ0. Then

Definition 5.13. A pair (H,K) of subgroups of Γ0 is a Dye pair if it satisfies the
conditions (D1), (D2), (D3) and (D5) and the following extra conditions (D4’)

For all α ∈ Γ0 rHK ,
(D4’.1) either there exists η ∈ H r {1} (resp. κ ∈ K r {1}) such that

αηα−1 ∈ K (resp. ακα−1 ∈ H ) ,

(D4’.2) or, for all η ∈ H , αηα−1 ∈ H (resp. for all κ ∈ K , ακα−1 ∈ K ) .
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Lemma 5.14. If U is a clopen set, then (Γ0
U , Γ0

U⊥) is a Dye pair.

Proof. We just have to check condition (D4’): Let α ∈ Γ0 r Γ0
UΓ0

U⊥ . If there exists
V ∈ CO(X), with V ⊂ U and α(V ) ⊂ U c, then we get (D4’.1). If not, then α(U) = U
and we get (D4’.2). The rest of the proof goes as in Lemma 3.26. �

To prove the converse, we need the equivalent of Lemma 3.27.

Lemma 5.15. Let (H,K) be a pair of subgroups of Γ0 satisfying the conditions (D1),
(D2), (D4’) and (D5) and such that PH = PK = X.

If O is a H- or K-invariant non empty open set, then O = X.

Proof. Let us assume that O is H-invariant, hence η−1Γ0
Oη = Γ0

O for all η ∈ H. It is
enough to show that

(5.15.1) Γ0
O ∩HK * K .

and then follow the proof of Lemma 3.27 verbatim.

If there exists α ∈ Γ0
O rHK, then by (D4’), we get that either (i)

there is η ∈ H r {1} such that αηα−1 ∈ K — thus η−1αηα−1 ∈ Γ0
O ∩ HK and

η−1αηα−1 /∈ K, which proves (5.15.1) in this case;
or (ii) for all η ∈ H , αηα−1 ∈ H . As α /∈ K, there exists η ∈ H , αηα−1 6= η. Then
η−1αηα−1 /∈ K and η−1αηα−1 ∈ Γ0

O ∩H which proves (5.15.1) in this case.
So we may assume ΓO ⊂ HK. Then (5.15.1) follows by the same argument as in

Lemma 3.27. �

Replacing Lemma 3.27 by Lemma 5.15, we get the equivalent of Proposition 3.28.

Proposition 5.16. If (H, K) is a Dye pair of subgroups of Γ0, then

(H, K) = (Γ0
PH

, Γ0
P⊥H

) .

Using this algebraic characterization of local subgroups of Γ0, we obtain:

Theorem 5.17. Any group isomorphism between Γ0-groups is spatial.

Therefore we get the following
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Corollary 5.18. For i = 1, 2, let (Xi, φi) be two Cantor minimal systems and let Γ0
i

be the corresponding kernels of the index maps.
If Γ0

1 and Γ0
2 are isomorphic, then the two Cantor minimal systems are flip conju-

gate.

Proof. By Proposition 5.8 and Theorem 5.17, any group isomorphism between Γ0
1 and

Γ0
2 extends to a spatial automorphism between Γ1 and Γ2.

Then the corollary follows from Theorem 2.4 of [GPS]. �

Remark 5.19 Let (X, φ) be a Cantor minimal system and let Γ0 be as above. If
K0(X, φ) is 2-divisible, e.g. if (X, φ) is the 2-odometer, we can prove that Γ0 is a
simple group. In fact, in this case Γ{y} is also simple. However, we have examples
where Γ{y} is not simple, e.g. if (X, φ) is the 3-odometer.

It is an open question whether Γ0 is a simple group in general; by Corollary 5.18 this
would imply that a complete invariant for flip conjugacy of Cantor minimal systems
is a simple, countable group. We can prove that if Γ0 is simple, then it is equal to the
commutator subgroup [Γ, Γ] of Γ.
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