
OPERATOR ALGEBRAS AND HYPERBOLIC DYNAMICS

Jerome Kaminker, Ian Putnam and Jack Spielberg

Department of Mathematical Sciences,
IUPUI, Indianapolis, Indiana, USA

Department of Mathematics, University of
Victoria, Victoria, British Columbia, Canada

Department of Mathematics, Arizona
State University, Tempe, Arizona, USA

1. Introduction

The interaction between operator algebras and ergodic theory is a well es-
tablished part of both areas. Similarly, the connections between C∗-algebras
and topological dynamics enriches both subjects. In this note we discuss some
algebras associated to hyperbolic dynamical systems and describe some of their
properties. They are higher dimensional generalizations of Cuntz-Krieger alge-
bras.

2. Hyperbolic dynamical systems

The class of dynamical systems we will consider are expansive homeomor-
phisms of compact metric spaces, (X, f), which have canonical coordinates.
These have been called Smale spaces by Ruelle, [17]. To be more precise, a
homeomorphism f : X → X is expansive if there is an expansivity constant
δ > 0 so that if d(fn(x), fn(y)) < δ for all n, then x = y. The ε-stable set at
x is W s(x, ε) = {y : d(fn(x), fn(y)) ≤ ε for all n ≥ 0} and the ε-unstable set is
Wu(x, ε) = {y : d(fn(x), fn(y)) ≤ ε for all n ≤ 0}. The meaning of canonical
coordinates is that there exist an ε0 > 0 so that for any ε with ε0 > ε > 0 there
is a homeomorphism of W s(x, ε)×Wu(x, ε) with a neighborhood of x satisfying
certain properties, [17]. Further, there is a constant λ, with 0 < λ < 1 such
that the homeomorphism f expands by a factor of λ in the ε-unstable set and
contracts by λ on the ε-stable set. We require also that (X, f) is topologically
mixing.

It is a consequence of these properties that a Smale space has a dense set
of periodic points and also a dense orbit. Moreover, its topological entropy is
log λ > 0, so it can be considered a “chaotic” dynamical system. Basic sets
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of Axiom A diffeomorphisms have this structure. If X is a Smale space of
dimension zero then (X, f) is conjugate to (ΣA, σA), a subshift of finite type.
The 2-adic solenoid with the shift automorphism and the 2-dimensional torus
with the automorphism induced by the matrix

[

2 1
1 1

]

are higher dimensional
examples.

There is an invariant measure, µ, on X, the Bowen measure, distinguished
by the property of having maximal entropy. It has the additional property that
in a canonical coordinate system at x it can be expressed as a product measure,

µ = µx
s × µx

u,

with the measures µx
s and µx

u no longer invariant, but rather scale by λ and λ−1

respectively under the action of f , [19].
In the next section we will associate operator algebras to these dynamical

systems.

3. Ruelle algebras

One possibility for a C∗-algebra to associate to (X, f) is the crossed product,
C(X)oZ. While this can be useful, it is possible to make a different construction
in the spirit of the work of Cuntz and Krieger, [5]. These algebras, which are
called Ruelle algebras, possess several properties which the crossed products do
not have. The basic difference in the construction is that we replace C(X) by
a noncommutative algebra before taking the crossed product. In many cases
this algebra is a deformation of C(X) and it would be interesting to obtain a
general result of this sort. While C(X) is unital with many ideals and with an
invariant trace given by µ, its replacement will be stable, simple and have a
trace which is scaled by the automorphism induced by f .

There are two equivalence relations defined on X called stable and unstable
equivalence. Points x and y are stably equivalent if limn→∞ d(fn(x), fn(y)) =
0, and they are unstably equivalent if limn→∞ d(f−n(x), f−n(y)) = 0. We
denote this by x ∼

s
y or x ∼

u
y, and write S,U ⊆ X × X for the equivalence

relations. The algebras we will construct are obtained as the C∗-algebras of
these groupoids, [16]. In order to obtain this we must assign locally compact
topologies and Haar systems to the relations. We will give the definitions for
S, those for U being strictly analogous.

One can write S as a union S =
⋃

Sn, where Sn is defined inductively
as follows. Let S0 = {(x, y) : y ∈ W s(x, ε0)} and set Sn = (f × f)−n(S0).
Give Sn the relative topology as a subset of X ×X and let S have the direct
limit topology. With this topology S is a locally compact groupoid. We next
define a Haar system for S. For x ∈ X let µx

s be the measure coming from
decomposing the Bowen measure in a canonical coordinate neighborhood of x.
Let µx

0 = δx × µx
s . This defines a family of measures parametrized by X on S0.

Extend them to S by defining µx
n = λ−n(δx×µx

s ) ◦ (f × f)n on Sn, and call the
resulting measure µ̃x

s .

3.1 Proposition [13]. The measures {µ̃x
s} form a Haar system on the locally

compact groupoid S.

In a similar manner one obtains a Haar system {µ̃x
u} on U .
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3.2 Definition. The stable and unstable algebras associated to (X, f) are C∗(S)
and C∗(U), the reduced C∗-algebras of the groupoids S and U .

The homeomorphism f induces automorphisms, fs
∗ and fu

∗ , of these algebras
and we may form the crossed products.

3.3 Definition. The stable and unstable Ruelle algebras are Rs = S o Z and
Ru = U o Z.

Properties of the algebras.
We will now list some basic properties of these algebras, referring to [6], [7],

[13], [14], [15] for proofs.

3.4 Theorem. Let (X, f) be a topologically mixing Smale space. Then one
has

(1) The algebras S and U are separable, nuclear and simple.
(2) There are traces, τs and τu which are scaled by the automorphisms in

the sense that τs(fs
∗ (a)) = λτs(a) and τu(fu

∗ (b)) = λ−1τu(b).
(3) There are faithful representations ρs, ρu : S, U → L(H) which have the

property that
ρs(a)ρu(b) ∈ K.

(4) The images of ρs and ρu asymptotically commute in the sense that, for
a ∈ S and b ∈ U , one has

lim
n→∞

‖[ρs((fs
∗ )

n(a)), ρu(b)]‖ = 0.

In all known examples the algebras S and U are stable and we expect that
this holds in general. More interestingly, in all known cases they are of the form
lim
→

(C(X)⊗ F )i where F is a finite dimensional algebra.

For the Ruelle algebras we have equally nice properties.

3.5 Theorem. Let (X, f) be a topologically mixing Smale space. Then the
algebras Rs and Ru are separable, nuclear, simple, stable and purely infinite.

It follows from Theorem 3.6 that Ruelle algebras are very close to belonging
to the class of algebras covered by the Kirchberg-Phillips classification theorem,
[9], [12]. Indeed, the only missing property is the requirement that the algebras
satisfy the Universal Coefficient Theorem of Rosenberg and Schochet. This is
an interesting point and we will see in the next section that possessing this
property has several strong implications.

For a subshift of finite type, Ruelle algebras are stable Cuntz-Krieger al-
gebras. In higher dimensions this need not be true, but one does have the
following result.

3.7 Proposition. Let (X,f) be a topologically mixing Smale space. Assume
that Rs satisfies the Universal Coefficient Theorem. If there is no torsion in
K1(Rs), then Rs is isomorphic to OA ⊗K for some aperiodic 0-1 matrix A.

A similar result holds for Ru.
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4. Duality

The original motivation for the definition of Rs and Ru was to understand
the duality inherent in the transversality of the stable and unstable equivalence
classes and the expanding and contracting nature of the homeomorphism. The
C∗-algebraic version of these properties are (3) and (4) of Theorem 3.5. In
this section we will describe how this leads to a K-theoretic version of Spanier-
Whitehead duality. We note that Alain Connes has incorporated a notion of
noncommutative Poincaré duality into the definition of noncommutative man-
ifold, [4]. It is related to what is discussed here, and we will address this point
later.

4.1 Definition. Let A and B be C∗-algebras. Then A and B are Spanier-
Whitehead dual if there are classes ∆ ∈ KKp(A⊗B,C) and δ ∈ KKp(C, A⊗B)
such that

⊗∆: Ki(A) → Ki+p(B)

and
δ⊗ : Ki+p(B) → Ki(A)

are inverse isomorphisms.

We will refer to the classes ∆ and δ as duality elements. If A and B are
C(X) and C(Y ) respectively, with X and Y finite complexes that are Spanier-
Whitehead dual in the usual sense, then A and B are also dual in the sense of
Definition 4.1.

It is possible to interpret the Baum-Connes conjecture for a countable torsion
free hyperbolic group in terms of this type of duality, [4]. Indeed, the Miscenko
line bundle determines a class δ ∈ KK(C, C0(BΓ)⊗C∗r (Γ)) and the dual Dirac
operator determines a class ∆ ∈ KK(C0(BΓ)⊗ C∗r (Γ),C). The Baum-Connes
conjecture holds for the group Γ if ∆ and δ are duality elements in the sense of
Definition 4.1.

We will next discuss how the algebras Rs and Ru are Spanier-Whitehead
dual. This requires the construction of the elements ∆ and δ and the proof
that they induce isomorphisms via Kasparov product. Since the dynamics plays
such a strong role here we shall sketch the constructions. To obtain ∆ we use
Theorem 3.5, (3) and (4). Those conditions allow us to define a sequence of
maps

∆n : C∗(S)⊗ C∗(U) → K

via
∆n(a⊗ b) = ρs((fs

∗ )
n(a))ρu(b).

One can obtain from this an asymptotic morphism defined on the tensor product
of the mapping cylinders of the automorphisms

∆t : Cyl(C∗(S), fs
∗ )⊗ Cyl(C∗(U), fu

∗ ) → C0(0, 1)⊗K

which determines an element in KK1(Cyl(C∗(S), fs
∗ ) ⊗ Cyl(C∗(U), fu

∗ ),C).
Since Cyl(C∗(S), fs

∗ ) and Cyl(C∗(U), fu
∗ ) are KK-equivalent (in the odd sense

via invertible KK-elements in KK1) to Rs and Ru, respectively, we obtain the
class

∆ ∈ KK1(Rs ⊗Ru,C).
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Note that this made strong use of the hyperbolic nature of the dynamics,
just as the construction of dual Dirac requires negative curvature assumptions.

The construction of δ does not require hyperbolicity, but does use the transver-
sality of the stable and unstable equivalence relations. To obtain our element
we will construct a unitary u ∈ (Cyl(C∗(S), fs

∗ ) ⊗ Cyl(C∗(U), fu
∗ ))+ which

will determine the class δ ∈ KK1(C,Rs ⊗ Ru) as above. Transversality im-
plies that C∗(S) ⊗ C∗(U) is strongly Morita equivalent to the C∗-algebra of
the r-discrete groupoid which is obtained as the intersection of the equivalence
relations, C∗(A). An explicit Morita equivalence bimodule can be used to as-
sociate to the unit, 1 ∈ C∗(A) a projection p ∈ C∗(S) ⊗ C∗(U). Using a
twisted version of Bott periodicity, the projection p yields the required class
[u] ∈ KK1(C, Cyl(C∗(S), fs

∗ )⊗Cyl(C∗(U), fu
∗ )). A careful analysis yields that

these elements induce inverse isomorphisms.

4.2 Theorem. Let (X, f) be a topologically mixing Smale space. Then the
classes ∆ and δ constructed above induce Spanier-Whitehead duality isomor-
phisms,

⊗∆: Ki(Rs) � Ki+1(Ru) : δ ⊗ .

The special case of zero dimensional Smale spaces was worked out in [6]
using different definitions of the duality elements. In that case, one can use
the construction of Cuntz-Krieger algebras using the full Fock space of a finite
dimensional Hilbert space to implement the duality. It would be very interesting
to find an analogous construction in the case of higher dimensional Smale spaces.
This could lead to new connections between hyperbolic dynamics and physics.

Implications of duality.
Let us assume for this subsection that Rs and Ru satisfy the Universal

Coefficient Theorem. Then the following Propositions are easy to prove.

4.3 Proposition. The groups, K∗(Rs) and K∗(Ru) are finitely generated.

One may ask if Proposition 4.3 follows from dynamical properties of Smale
spaces without the assumption that the Universal Coefficient Theorem holds.
For example, Smale spaces are automatically finite dimensional as a consequence
of the dynamics.

4.4 Proposition. Poincaré duality holds in the sense that Ki(Rs) ∼= Ki+1(Ru).

Proposition 4.4 follows from the fact that, under our hypothesis, Rs ∼= Ru.
Note that, even in the case of a zero dimensional Smale space, where Rs = OA
and Ru = OAt , one needs the Kirchberg-Phillips Theorem to verify that they
are isomorphic. As mentioned earlier, Connes has introduced the notion of
Poincaré duality in his work on the standard model in particle physics, [4]. It
is viewed there as a requirement that every non-commutative manifold should
satisfy. Proposition 4.4 suggests that Ruelle algebras might be viewed as odd-
dimensional non-commutative manifolds.

5. Compact abelian groups with expansive automorphisms

Compact abelian groups which admit expansive automorphisms have many
beautiful properties, [1], [3], [10]. For example, if they are connected, (and
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possibly in general), they admit the structure of Smale space, [3]. The examples
of the 2-adic solenoid with the shift automorphism and the 2-dimensional torus
with the automorphism induced by

[

2 1
1 1

]

are of this type. They have the
property of being Smale spaces. In this setting, the study of the Ruelle algebras
and their duality, as described in Section 4, lead to some results about the
groups themselves which we describe in this section.

Let (G, ϕ) be a compact abelian group with an expansive automorphism. Let
Gs and Gu denote the stable and unstable equivalence classes of the identity
element, e. It is easy to see that these are subgroups. Moreover, the stable and
unstable equivalence relations can be described in terms of them via

S ∼= GoGs

and
U ∼= GoGu.

One may use these identifications to induce topologies on the groups Gs and
Gu which will be different from their relative topology as subgroups of G. Let
Gh = Gs ∩Gu, (where Gh stands for the homoclinic subgroup to conform with
terminology in dynamics). Then Gh, viewed as a subgroup of either Gs or Gu,
is discrete.

The main result which comes from the study of this class of examples is the
following.

5.1 Theorem [8]. Let G be a connected compact abelian group with an expan-
sive automorphism. Then

(1) the groups Gs and Gu are their own Pontrjagin duals,

̂Gs ∼= Gs

and
̂Gu ∼= Gu

(2) Gh is the Pontrjagin dual of G,

̂Gh ∼= G.

These ideas have proved useful in dynamics, [11]. It is instructive to look
at the two examples we have been referring to. For the case of G = T 2 and
f =

[

2 1
1 1

]

), Gs and Gu are both copies of the real line which are densely
immersed in the torus with slopes corresponding to the eigenvectors of the
matrix. The topology induced on the subgroups from the equivalence relations
is the usual topology on R. The homoclinic subgroup Gh is isomorphic to a
lattice in R2 and the duality relations of Theorem 5.1 are apparent.

The 2-adic solenoid (Σ, σ) is a somewhat more interesting example. In this
case Σs ∼= Q2, where Q2 is the 2-adic numbers with its natural locally compact
topology, and Σu ∼= R, where R has its usual topology. In this case, Σh ∼= Z[12 ],
where Z[ 12 ] is the dyadic rationals which is included in the natural way in both
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Q2 and R as a discrete subgroup. Again, the duality relations are seen to follow
from standard facts about these groups. This example has a further property,
which need not hold in general. Namely, the stable and unstable algebras are
isomorphic. From the computations,

C∗(S) ∼= C0(Q2)o Z[
1
2
]

and
C∗(U) ∼= C0(R)o Z[

1
2
]

one obtains the isomorphism

C0(Q2)o Z[
1
2
] ∼= C0(R)o Z[

1
2
].

There are several ways to verify this isomorphism. One that is being investi-
gated involves wavelets and may provide some insights into connections between
dynamics and wavelets.

6. Final remarks

(1) An interesting question which remains is whether the Ruelle algebras
satisfy the Universal Coefficient Theorem. If they do, then according
to the Kirchberg-Phillips Theorem, they are in the class of groups for
which the K-groups are a complete isomorphism invariant. Note that
any pair of countable abelian groups can be realized as the K-groups
of an algebra in this class. Since the K-groups of the Ruelle algebras
will be finitely generated, one could ask if any classifiable algebra is a
direct limit of Ruelle algebras. If this holds, then then it would establish
an interesting link between classification of nuclear C∗-algebras, in the
sense of George Elliott’s program, [5], and hyperbolic dynamics.

(2) Consideration of Axiom A diffeomorphisms of compact manifolds leads
one to consider a class of algebras with a finite filtrations by ideals

A ⊇ A(1) ⊇ A(2) . . . ⊇ A(N) ⊇ C

, where
A(i)/A(i+1)

is isomorphic to a Ruelle algebras satisfying the Universal Coefficient
Theorem. Since then the subquotients are determined by K-theory, it
would be interesting to find additional invariants which would determine
the algebras themselves up to isomorphism.
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