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Abstract: We consider the C∗-algebras constructed from certain hyper-

bolic dynamical systems. The construction, due to Ruelle, generalizes

the C∗-algebras of Cuntz and Krieger. We discuss relations between the

C∗-algebras, show the existence of natural asymptotically abelian systems

and investigate the K-theory and E-theory of these C∗-algebras.

§1. Introduction

In [14], David Ruelle constructed C∗-algebras from certain hyperbolic dynamical sys-

tems including Smale spaces. Special cases are the topological Markov chains where these

C∗-algebras were earlier constructed by Cuntz and Krieger [6,8]. Thus, Ruelle’s algebras

may be viewed as “higher dimensional” analogues of the Cuntz-Krieger algebras (– the

OA’s as well as other algebras appearing in [6,8]). This paper is an attempt to continue

these investigations.

* Research supported by NSERC.
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Roughly speaking, a Smale space is a compact metric space (X, d) with a homeomor-

phism φ of X so that, locally, X can be written as a product of two subsets. Moreover, on

the first subset φ is (exponentially) contracting and on the second φ−1 is contracting. One

is then interested in three equivalence relations on the points of X determined as follows.

For x, y in X, they are equivalent if the distance between φn(x) and φn(y), their n-th

iterates, tends to zero as n goes to plus infinity, minus infinity and both plus and minus

infinity. These are referred to as stable, unstable and asymptotic equivalence. Locally, the

first two are given in the local product structure. The third can actually be represented

by certain local maps called conjugating homeomorphisms arising directly from the Smale

space structure. These dynamical notions are presented in Section 2. These are taken

more or less directly from Ruelle’s papers [13,14] (except for two technical lemmas), but

we present it here for completeness.

We consider the C∗-algebras of these equivalence relations which we denote by S, U

and A, respectively. In [14], the emphasis is on the C∗-algebra A. The point of [14] is to

relate Gibbs states of the dynamical system with KMS states on the C∗-algebra. Here, we

make use of the fact that the original homeomorphism induces ∗-automorphisms, αs, αu

and αa, of S, U and A, respectively. We show that the action of αa on A is asymptotically

abelian. This result along with other basic properties of the C∗-algebras is developed in

Section 3.

In Section 4, we consider the K-theory for our C∗-algebras. The asymptotically abelian

action provides us with various elements in the Connes-Higson E-theory [5]. In particular,

the K0-group of one of our C∗-algebras (the mapping cylinder for (A,αa)) is actually a

ring. Moreover, this C∗-algebra has a natural trace and the induced map from K0 to

the reals is actually a ring homomorphism precisely because our original system is strong

mixing (with respect to the measure of maximum entropy).

I would like to thank: Nigel Higson for several helpful conversations and for an early

version of [5], Terry Loring for the present simple proof of 3.1, Jerry Kaminker for initially

drawing my attention to [14], and David Ruelle for remarks which helped clarify some of

the hypotheses.
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§2. Dynamics

We describe Smale spaces and certain results we will need later. We will also present

several examples. We follow the two papers of Ruelle [13,14] with some minor changes of

notation.

Let (X, d) be a compact metric space and let φ be a homeomorphism of X. Rather than

begin with the rigourous (and perhaps confusing) treatment, we will proceed heuristically.

We suppose that, locally, X is a product space; for every x in X, we have two sets,

V S(x, ε), V U (x, ε), where ε > 0 is some small parameter. These are subsets of X and their

intersection is {x}. Moreover, their cartesian product is homeomorphic to a neighbourhood

of x. This decomposition should be invariant under φ in the sense that φ
(

V S(x, ε)
)

and V S (φ(x), ε) should agree in some neighbourhood of φ(x), as should φ
(

V U (x, ε)
)

and

V U (φ(x), ε). Most importantly φ | V S(x, ε) should be contracting, as is φ−1 | V U (x, ε).

Postponing our rigourous definition further, let us look at some examples.

1. Subshifts of finite type (SFT).

Let n be a positive integer and let A be a fixed n×n matrix whose entries are zeros and

ones. We will assume A is primitive; i.e. for some k, Ak has no zero entries. Let {1, · · · , n}Z

be the space of doubly infinite sequences of {1, · · · , n} with the product topology. Define

X =
{

(xi)∞i=−∞ ∈ {1, · · · , n}Z | Axi xi+1 = 1, for all i in Z
}

,

and

φ(x)i = xi−1, i ∈ Z, x ∈ X.

We use the metric

d(x, y) =
∑

i∈Z
2−|i| |xi − yi|.

To see the local product structure here, consider

V S(x, ε) = {y ∈ X | xi = yi, for all i ≤ 0}

V U (x, ε) = {y ∈ X | xi = yi, for all i ≥ 0} .

3



It’s fairly easy to see that there is a natural homeomorphism between V U (x, ε)× V S(x, ε)

and

{y ∈ X | x0 = y0}

which is a neighbourhood of x. Moreover, for y, y′ ∈ V S(x, ε)

d (φ(y), φ(y′)) = 1
2 d(y, y′)

and for z, z′ in V U (x, ε)

d
(

φ−1(z), φ−1(z′)
)

= 1
2 d(z, z′).

We leave it to the reader to observe that V S
(

φ(x), ε
)

and φ
(

V S(x, ε)
)

are not equal but

“agree in a neighbourhood of φ(x).”

2. Anosov diffeomorphisms

Let M be a compact Riemannian manifold. An Anosov diffeomorphism is a smooth

map φ : M → M such that TM = E ⊕ F , where E, F are sub-bundles of TM , each

invariant under Tφ and such that, for some constants C and 0 < δ < 1, we have

‖(Tφ)k v‖ ≤ Cδk ‖v‖, v ∈ E, k = 1, 2, 3, · · ·

‖(Tφ)−k w‖ ≤ Cδk ‖w‖, w ∈ F, k = 1, 2, 3, · · ·

The sets V S(x, ε) and V U (x, ε) are obtained by integrating E and F , locally. We refer the

reader to [2] and [16] for further discussion.

Let us examine a prototype more closely. Let A =
(

2 1
1 1

)

and view A as a linear

isomorphism of R2. As A preserves the integer lattice Z2, we may pass to a diffeomorphism

φ of the quotient R2/Z2 ∼= T2 = M . Now A has eigenvalues λ = (3 −
√

5)/2 < 1 and

λ−1 > 1. The decomposition of TM into E ⊕ F is obtained by decomposing R2 into

the eigenspaces of A. The sets V S(x, ε) and V U (x, ε) can be seen in M as line segments

through x determined by the eigenvectors.
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3. Solenoids

We describe one specific example only. Regard S1 as the unit circle in the complex

plane and φ0 : S1 → S1 be the map φ0(z) = z2. Let X be the inverse limit of the system

X0 = S1←−−−−−
φ0

X1 = S1←−−−−−
φ0

X2 = S1←−−−−− · · ·

Concretely, we can describe X as

{

(z0, z1, z2, · · ·) | zi ∈ S1, z2
i+1 = zi, i = 0, 1, 2, · · ·

}

.

Let π : X → S1 denote the map π(z0, z1, z2, · · ·) = z0. Also, define φ : X → X by

φ(z0, z1, z2, · · ·) = (z2
0 , z0, z1, · · ·) so that φ−1(z0, z1, z2, · · ·) = (z1, z2, z3, · · ·). It is easy to

see that, for any z0 in S1,

π−1{z0} ∼=
∞
∏

n=1

{−1, +1} =
∑

.

Moreover π is a fibration; for any (zn)∞1 , in X, there is a neighbourhood which is homeo-

morphic to
{

z ∈ S1 | |z − z0| < ε
}

×
∑

.

It is also easy to see that π ◦ φ = φ0 ◦ π. Fix x = (xn)∞1 in X, which is identified with

(x0, (δn)∞1 ) in the product space above. Let

V S(x, ε) = {x0} ×
∑

and V U (x, ε) =
{

z ∈ S1 | |z − x0| < ε
}

× {(δn)∞1 }.

(Or rather, V S(x, ε) and V U (x, ε) are the sets in X identified with these.) We leave it to

the reader to verify that these sets satisfy the desired properties.

Let us return to our attempt to define a Smale space in the general setting. If x and

y are sufficiently close then their local product neighbourhoods will “agree” where they

overlap. The intersection of V S(x, ε) and V U (y, ε) will be a single point which we denote

by [x, y] (– having nothing to do with commutators).
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Notice that with this definition, we may characterize V S(x, ε) as those points z such that

[x, z] = z. The rigourous definition begins by hypothesizing the existence of the map [·, ·]

and obtaining the V S(x, ε) and V U (x, ε) as above.

We say that (X, d, φ) is a Smale space if there is 0 < λ0 < 1, ε0 > 0 and a continuous

function

[ , ] : {(x, y) | x, y ∈ X, d(x, y) < ε0} → X

satisfying the following. First we require

[x, x] = x

[[x, y], z] = [x, z]

[x, [y, z]] = [x, z]

for x, y, z in X, whenever both sides of the equation are defined. We let

V S(x, ε) = {y ∈ X | [x, y] = y and d(x, y) < ε} ,

V U (x, ε) = {y ∈ X | [y, x] = y and d(x, y) < ε} ,

for any 0 < ε ≤ ε0. We also require

[φ(x), φ(y)] = φ ([x, y]) ,

whenever both sides of the equation are defined. Finally, we assume that

d (φ(y), φ(z)) ≤ λ0 d(y, z), y, z ∈ V S(x, ε)

d
(

φ−1(y), φ−1(z)
)

≤ λ0 d(y, z), y, z ∈ V U (x, ε).

Briefly referring back to example 1, we let ε0 = 1
2 , λ0 = 1

2 . Note that if d ((xi)i, (yi)i) <

ε0, then x0 = y0. We define

[(xi), (yi)]j =
{

xj for j ≤ 0

yj for j ≥ 0

if d(x, y) < ε0.

It follows from the definitions that, for any x in X,

[ , ] : V U (x, ε0/2)× V S(x, ε0/2) → X
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is a homeomorphism onto a neighbourhood of x in X. It can also be shown that, for any

0 < ε < ε0,

V S(x, ε) =
{

y ∈ X | d
(

φn(x), φn(y) < ε, for all n = 0, 1, 2, · · ·
}

V U (x, ε) =
{

y ∈ X | d
(

φn(x), φn(y)
)

< ε, for all n = 0,−1,−2, · · ·
}

and that, for x, y with d(x, y) < ε0,

V S(x, ε0) ∩ V U (y, ε0) =
{

[x, y]
}

.

These last observations show that [ , ], if it exists, depends only on (X, d, φ).

We will also assume throughout that our Smale space is irreducible in the sense that

it is topologically mixing; that is, for every pair of open sets U and V , there is N ≥ 1, such

that for all n ≥ N , φn(U)∪ V is non-empty. For more on this issue, we refer the reader to

the discussion of Smale’s spectral decomposition in [13].

For a Smale space as above, there is a unique φ-invariant probability measure which

maximizes the entropy of the transformation φ. We denote this measure by µ and refer

to it as the Bowen measure [15]. The idea of the proof (which is due to Sinai originally)

is to “code” the system by using Markov partitions. The existence of Markov partitions

follows from the definition of Smale space. As shown in Theorem 1 [15], much more is

true. Fixing x in X, the map [ , ] defines a homeomorphism between V U (x, ε) × V S(x, ε)

and a neighbourhood of x in X. Restricting µ to this set and identifying the set with

V U (x, ε) × V S(x, ε) via [ , ], the measure µ is a product measure µx
u × µx

s . Here the

measures µx
u and µx

s depend on x. However, Theorem 1 of [15] asserts that these may be

chosen such that

(i) for x and y sufficiently close, and ε, ε′ small, z → [y, z] defines a homeomorphism

from V S(x, ε) into V S(y, ε′) which carries µx
s to µy

s . Similarly z → [z, y] defines a

homeomorphism from V U (x, ε) into V U (y, ε′) which carries µx
u to µy

u.

(ii)

µφ(x)
s ◦ φ = λ−1 µx

s
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on the appropriate domain and

µφ(x)
u ◦ φ = λ µx

u,

where λ > 1 and log(λ) is the topological entropy of (X, φ) [18].

We now describe conjugating homeomorphisms for the Smale space (X, d, φ). First of

all, we say x and y in X are conjugate or asymptotic if

lim
|n|→∞

d (φn(x), φn(y)) = 0.

Fix such a pair (x, y). We will define a map γ from a neighbourhood of x to one of y which

maps x to y and so that z and γ(z) are asymptotic, for all z in the domain of γ. First,

find n0 ≥ 1 so that d (φn(x), φn(y)) < ε0 for all |n| ≥ n0. Next, choose ε sufficiently small

that λ−n0
0 ε < ε0. This means that, for all n = −n0, · · · , n0,

φn (

V S(x, ε)
)

⊆ V S (φn(x), ε0)

φn (

V U (x, ε)
)

⊆ V U (φn(x), ε0) .

Consider the composition of the following three maps: (let n = n0)

z ∈ V S(x, ε) → φ−n(z) ∈ V S (

φ−n(x), ε0
)

,

φ−n(z) ∈ V S (

φ−n(x), ε0
)

→ [φ−n(y), φ−n(z)] ∈ V S (

φ−n(y), ε0
)

,

[

φ−n(y), φ−n(z)
]

∈ V S (

φ−n(y), ε0
)

→ φn [

φ−n(y), φ−n(z)
]

∈ V S(y, ε0).

Each is a homeomorphism onto its image. This is the “stable coordinate” of the map γ.

The “unstable coordinate” is obtained in a similar way. To write γ, we take z close to

x, take its stable and unstable coordinates (namely [x, z] and [z, x]) apply these maps to

both and recover a point near y from its stable and unstable coordinates. Specifically,

γ(z) =
[

φ−n [φn[z, x], φn(y)] , φn [

φ−n(y), φ−n[x, z]
]]

.

It is easy to verify that γ is defined in a neighbourhood of x, that γ(x) = y and that

lim
|n|→∞

d (φn (γ(z)) , φn(z)) = 0
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and the limit is uniform over z in the domain of γ, which we denote Oγ .

The following facts are consequences of the hypothesis of topological mixing—proofs

can be found in [13]. By 7.16(b) of [13], the asymptotic equivalence class of any point in

X is countable and dense in X. Also each conjugating homeomorphism leaves invariant µ.

As noted before, the Smale space structure provides a coding by Markov partitions. This

means that our Smale space is metrically isomorphic with a subshift of finite type. Since

the Smale space is topologically mixing, so is the subshift. This implies that the subshift,

hence the Smale space, are both strong mixing (with respect to µ) [13, 18].

In addition to asymptotic equivalence, we will be interested in stable and unstable

equivalence. Two points x and y are stably equivalent if

lim
n→+∞

d (φn(x), φn(y)) = 0

and unstably equivalent if

lim
n→−∞

d (φn(x), φn(y)) = 0.

We denote the stable and unstable equivalence classes of x by V S(x) and V U (x). Note

that it follows from the definitions that V S(x) ∩ V U (x) is the set of points asymptotic

with x, which we denote V (x). It is easy to see, using the contracting property of φ, that

V S(x, ε0) is contained in V S(x). In fact, if φn(y) is in V S (φn(x), ε0), for some positive n,

then y is in V S(x). So we have

φ−n (

V S (φn(x), ε0)
)

⊆ V S(x),

for all n = 1, 2, 3, · · ·. After taking the union over n above, the reverse inclusion also holds.

This can be seen most clearly in the case x is a fixpoint of φ. If y is in V S(x), it means

that the forward orbit of y tends to x. For some N , d (φn(y), x) < ε0, for all n ≥ N .

Consider the stable and unstable co-ordinates of φN (y),
[

x, φN (y)
]

and
[

φN (y), x
]

. If the

unstable part is not equal to x, then the expanding nature of φ on V U (x, ε0) will force

d (φn(y), x0) > ε0 for some n > N , a contradiction. This can be made into a rigourous
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proof that
[

φN (y), x
]

= x and hence φN (y) is in V S(x, ε0). In general, we have

V S(x) =
⋃

n≥0

φ−n (

V S (φn(x), ε0)
)

V U (x) =
⋃

n≥0

φn (

V U (

φ−n(x), ε0
))

.

We now have three equivalence relations which we want to consider as groupoids (see [11]).

Thus, we need topologies on all three and Haar systems for each.

First define
G0

s =
{

(x, y) ∈ X ×X | y ∈ V S(x, ε0)
}

G0
u =

{

(x, y) ∈ X ×X | y ∈ V S(x, ε0)
}

and then let
Gn

s = (φ× φ)−n (G0
s)

Gn
u = (φ× φ)n (G0

u)

for each n = 1, 2, 3, · · · . Each Gn
s , Gn

u is given the relative topology of X ×X and

Gs =
∞
⋃

n=1

Gn
s

Gu =
∞
⋃

n=1

Gn
u

are given the inductive limit topology.

As we noted above, these are the stable and unstable equivalence relations. We can

also define

Gn
a = Gn

s ∩Gn
u, n = 0, 1, 2, · · ·

and let

Ga =
⋃

n≥0

Gn
a ,

with each Gn
a given the relative topology of X ×X and Ga the inductive limit topology.

The last agrees with the topology on Ga given by Ruelle in [14].

As for Haar systems for Gs, Gu and Ga, we proceed as follows. As in [14], Ga is

r-discrete and counting measure is a Haar system. Let us consider Gs. Fix x in X. Let
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δx denote point mass at x. We define a measure on G0
s by δx × µx

s , and then on Gn
s by

λ−n δφn(x) × µφn(x)
s ◦ (φ× φ)n.

The fact that any two of these measures agree on their common domain of definition follows

from (c) of Theorem 1 of [15], which is our condition (ii) mentioned earlier. In this way

we obtain a measure µx
s on Gs. It is easy to verify that {µx

s | x ∈ X} forms a Haar system

for Gs and

µφ(x)
s ◦ (φ× φ) = λ−1 µx

s .

The Haar system {µx
u | x ∈ X} for Gu is obtained in a similar way and

µφ(x)
u ◦ (φ× φ) = λ µx

u.

Later, we will ned the following technical results.

Lemma 2.1. Let γ be a conjugating homeomorphism for (X, φ) with domain Oγ and

let ε be so that 0 < ε < ε0. Then there is a positive integer N so that, if n ≥ N and x, y

in X lie in φ−n(Oγ) with y in V S(x, ε), then

φ−n γφn(y) = [φ−n γφn(x), y].

Proof. First we use the fact that d (φn γ(z), φn(z)) tends to zero uniformly for z in

Oγ . We find N so

d (φn γ(z), φn(z)) < ε0 − ε

for all z in Oγ and |n| ≥ N . It follows that, for n ≥ N and z in Oγ ,

φn γ(z) ∈ V S (φn(z), ε0 − ε)

φ−n γ(z) ∈ V U (

φ−n(z), ε0 − ε
)

.

Let x′ = φ−nγφn(x), for n ≥ N fixed. Note that x′ is in V U (x, ε0 − ε) and φ2n(x′)

is in V S
(

φ2n(x), ε0 − ε
)

. Let γ′ be the conjugating map taking φn(x) to φn(x′). Of

course γφn(x) = φn(x′), by definition of x′, so by the uniqueness property of conjugating

maps described in [14], γ = γ′ on their common domain. By hypothesis φn(y) is in
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Oγ ; we show that φn(y) is in Oγ′ . Since y is in V S(x, ε), φn(y) is in V S (φn(x), ε) and

[φn(y), φn(x)] = φn(x). Also, x′ is in V U (x, ε0 − ε) and y is in V S(x, ε) so

d(x′, y) ≤ d(x′, x) + d(x, y) < ε0

and so [x′, y] exists. Since [x′, y] is in V S(x′, ε0), φi ([x, y]) is in V S
(

φ(ix′), ε0
)

for all

i ≥ 0. A direct computation using the definition of γ′ shows γ′ (φn(y)) exists and equals

φn ([x, y]). The conclusion follows at once.

The next result shows that for given conjugating maps γ1 and γ2, the maps φ−n γ1φn

and φm γ2 φ−m will commute as m, n tend to plus infinity. This also appears in Krieger’s

work on subshifts of finite type [8]. The difference here is that the conjugating maps

appear directly from the Smale space structure as well as this property. Secondly, unlike

the situation for subshifts of finite type, our conjugating maps are only defined locally.

Lemma 2.2. Let γ1, γ2 be conjugating maps and let K1 ⊆ Oγ1 , K2 ⊆ Oγ2 be compact.

Then there is a positive integer N so that for all m,n ≥ N we have

(i) if x ∈ φ−n(K1), φ−nγ1φn(x) ∈ φm(K2),

then x ∈ φm(Oγ2), φmγ2φ−m(x) ∈ φ−n(Oγ1)

(ii) if x ∈ φm(K2), φmγ2φ−m(x) ∈ φ−n(K1),

then x ∈ φ−n(Oγ1), φ−nγ1φn(x) ∈ φm(Oγ2)

and in either case,

(

φm γ2 φ−m) (

φ−n γ1 φn)

(x) =
(

φ−n γ1 φn) (

φm γ2 φ−m)

(x).

Proof. We first choose ε > 0 (and ε < ε0) so that all x with ε of Ki are in Oγ1 , for

i = 1, 2. We choose N sufficiently large so as to satisfy the concludion of the previous

lemma for both γ1 and γ2 and so that, for |k| ≥ N

d
(

φk γ1(z1), φk(z1)
)

< ε

d
(

φk γ2(z2), φk(z2)
)

< ε

for all z1 in Oγ1 , z2 in Oγ2 .
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For x, m, n as in (i) it follows that φ−m(x) is within ε of φ−m φ−n γ1φn(x) ∈ K2 and

so φ−m(x) ∈ Oγ2 . Similarly, φnφmγ2γ−m(x) is within ε of φn(x) ∈ K and so is in Oγ1 .

Property (ii) is checked in a similar way.

Let y = φm γ2 φ−m(x), so for all k ≥ 0

d
(

φk(y), φk(x)
)

= d
(

φk+m γ2φ−m(x), φk+m δ−m(x)
)

< ε

and so y is in V S(x, ε). Therefore, we may apply Lemma 2.1 to compute
(

φ−n γ1 φn) (

φmγ2 φ−m)

(x) =
(

φ−n γ1 φn)

(y)

=
[

φ−n γ1φn(x), y
]

=
[

φ−n γ1φn(x), φmγ2 φ−m(x)
]

.

A similar application of Lemma 2.1 shows

(

φmγ2φ−m) (

φ−n γ1φn)

(x) =
[

φ−n γ1 φn(x), φmγ2 φ−m(x)
]

and we are done.

æ §3. C∗-Algebras

From the Smale space (X, d, φ) we have constructed the groupoids (of equivalence

relations) Ga, Gs and Gu, each with a Haar system. Again, we remark that Ga is an

r-discrete groupoid; i.e. ∆ = {(x, x) | x ∈ X} is an open subset of Ga. We let A, S and U

denote the C∗-algebras associated with Ga, Gs and Gu, respectively [11]. (The choice of

notation is to suggest “asymptotic,” “stable” and “unstable” C∗-algebras. There is a slight

problem since the term “stable C∗-algebra” already has a distinct meaning [10]. Caution

should be used, for example, when one observes that in all of our examples both the stable

and unstable C∗-algebras are stable.)

For convenience, we regard the convolution algebra of continuous complex-valued func-

tions on Ga, denoted Cc(Ga), as a subalgebra of A. Similarly, we have Cc(Gs) ⊆ S,

Cc(Gs) ⊆ U . Also, since ∆ is open in Ga, the C∗-algebra of continuous complex-valued

functions on X, C(X), is a C∗-subalgebra of A.
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We remark that in our examples, the groupoids Ga, Gs and Gu are amenable [11].

I do not know if this is true in general. By virtue of II.4.6 of [11], and the fact noted

in Section 2 the Ga-equivalence classes are dense in X, the reduced groupoid C∗-algebra,

C∗red (Ga), is simple.

We begin with some basic properties of A, S and U .

Theorem 3.1. The C∗-algebras A and S ⊗max U are strongly Morita equivalent.

Proof. Let H denote the product groupoid Gs ×Gu. Then, we have

C∗(H) ∼= C∗(Gs)⊗max C∗(Gu) = S ⊗ U.

The unit space of H is X×X and the diagonal ∆ is an abstract transversal in the sense of

Muhly et al. [9]. Using the notation of [9], H∆
∆ is clearly isomorphic to Ga, so the result

follows by Theorem 2.8 of [9].

The original homeomorphism φ preserves the equivalence relations we are considering

and induces ∗-automorphisms αa, αs and αu of A, S and U , respectively. Explicitly, we

note that
αa(f) = f ◦ (φ−1 × φ−1), f ∈ Cc(Ga)

αs(g) = λg ◦ (φ−1 × φ−1), g ∈ Cc(Gs)

αu(h) = λ−1h ◦ (φ−1 × φ−1), h ∈ Cc(Gu),

where log λ is the topological entropy of φ as before.

Theorem 3.2. The C∗-dynamical system (A, αa) is asymptotically abelian; that is,

for all a, b in A,

0 = lim
|n|→∞

‖[αn
a(a), b]‖ = lim

|n|→∞
‖αn

a(a)b− bαn
a(α)‖.

Proof. We will show that for a, b in A,

lim
m,n→+∞

‖[α−n
a (a), αm

a (b)]‖ = 0

and the conclusion follows. Also, it suffices to consider a = f , b = g in Cc(Ga) which is

dense in A. We can cover the supports of f and g by finitely many open sets of the form

{(x, γ(x)) | x ∈ Oγ},
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for some conjugating map γ [14]. Then by using a partition of unity, we may express f and

g as finite sums of functions each of whose support is contained in a set as above. In this

way, we see it suffices to consider the case where we have two conjugating maps γ1, γ2,

compact sets K1 ⊆ Oγ1 , K2 ⊆ Oγ2 and f and g are supported in {(x, γ1(x)) | x ∈ K1} and

{(x, γ2(x)) | x ∈ K2}, respectively.

Let ε > 0 be given. Choose N sufficiently large so as to satisfy the conclusion of

Lemma 2.2. Since f and g are uniformly continuous, there is a δ > 0 so that for any x, y

with d(x, y) < δ, we have

|f (x, γ1(x))− f (y, γ1(y)) | < ε/2 sup |g|

|g (x, γ2(x))− g (y, γ2(y)) | < ε/2 sup |f |.

Also choose N sufficiently large so that

d (φn(x), φnγ1(x)) < δ

d (φn(y), φnγ2(y)) < δ

for all |n| ≥ N , x in Oγ1 and y in Oγ2 .

Let us compute the products α−n
a (f)αm

a (g) and αm
a (g)α−n

a (f) at a point (x, y) in Ga,

for n ≥ N . We denote the respective values by c1 and c2 for convenience. So we have

c1 = α−n
a (f)αm

a (g) (x, y)

=
∑

f (φn(x), φn(z)) g (φ−m(z), φ−m(y))

where the sum is taken over all z in V (x). Immediately, we see the sum reduces to

a single term, when z = φ−nγ1φn(x). More precisely c1 = 0 unless x is in φ−n(K1),

z = φ−nγ1φn(x) is in φm(K2) and y = (φmγ2φ−m) (φ−nγ1φn) (x). Similarly, c2 = 0 unless

x is in φm(K2), z′ = φmγ2φ−m(x) is in φ−n(K1) and y = φ−nγ1φnφmγ2φ−n(x). By

Lemma 2.2, we need only compare c1 and c2 for x in φ−n(Oγ1) and φm(Oγ2), φ−nγ1φn(x)

in φm(Oγ2), and φmγ2φ−m(x) in φ−n(Oγ1). For such x, we have

d
(

φn(x), φnφmγ2φ−m(x)
)

= d
(

φn+mφ−m(x), φn+mγ2φ−m(x)
)

< δ

since m + n ≥ N , φ−m(x) ∈ Oγ2 and our choice of N . Similarly, we also have

d
(

φ−m(x), φ−mφ−nγ1φn(x)
)

< δ.
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Finally, we can compute, using z = φ−nγ1φn(x) and z′ = φmγ2φ−m(x),

|c1 − c2| = |f (φn(x), φn(z)) g
(

φ−m(z), φ−m(y)
)

− g
(

φ−m(x), φ−m(z′)
)

f (φn(z′), φn(y)) |

≤ |f (φx(x), φn(z)) g
(

φ−m(z), φ−m(y)
)

− f (φn(z′), φn(y)) g
(

φ−m(z), φ−m(y)
)

|

+ |f (φn(z′), φn(y)) g
(

φ−m(z), φ−m(y)
)

− f (φn(z′), φn(y)) g
(

φ−n(x), φ−m(z′)
)

|

≤ sup |g| |f (φn(x), γ1φn(x))− f (φn(z′), γ1φn(z′))|

+ sup |f |
∣

∣g
(

φ−m(z), γ2φ−m(z)
)

− g
(

φ−m(x), γ2φ−m(x)
)∣

∣

< ε.

We have shown that, for a given x, there is at most one y for which either c1 or c2 is

non-zero and in either case |c1 − c2| < ε. So for fixed x,

∑

y∈V (x)

|
[

α−n
a (f), αm

a (g)
]

(x, y)| < ε

and so

‖
[

α−n
a (f), αm

a (g)
]

‖I,d < ε

— see page 50 of [11]. A similar argument deals with the I, r-norm and so by definition

‖
[

α−n
a (f), αm

a (g)
]

‖ < ε

as desired.

Some of the following is already in [14] (see 2.1 and 2.2) but we provide a proof for

completeness.

Theorem 3.3. The formula

Tr(f) =
∫

X
f(x, x) dµ(x)
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defines a trace on the algebras Cc(Ga), Cc(Gs) and Cc(Gu). This extends to a bounded

trace on A.

Moreover, we have
Tr ◦ αs = λ Tr

Tr ◦ αu = λ−1 Tr

and Tr ◦ αa = Tr.

Proof. The last three formulas follow from the definitions. The fact that Tr extends

to a linear functional on A can be seen by realizing it as the composition of two maps

Cc(G) → C(X) → C

the first given by restriction to ∆ (which is identified with X) and the second by integration.

Prop. II.4.8 of [11] asserts that the first map extends to a continuous map on A and we

are done.

It remains for us to verify the trace properties. First, we consider Cc(Ga). Arguing

as in the proof of Theorem 3.2, we may assume that f and g are of the form considered

there. Then, we have

Tr(f · g) =
∫

x∈X

∑

z∈V (x)

f(x, z) g(z, x) dµ(x).

The sum is zero except for those x in K1 with γ1(x) in K2 and γ2γ1(x) = x. We denote

this set by L1 and so

Tr(fg) =
∫

L1

f (x, γ1(x)) g (γ1(x), x) dµ(x).

Similarly, let L2 denote the set of x in K2 with γ2(x) in K1 and γ1γ2(x) = x and we have

Tr(gf) =
∫

L2

g (x, γ2(x) ) f (γ2(x), x) dµ(x).

It is straightforward to verify that γ1(L1) = L2 and γ−1
1 = γ2 and then Tr(fg) = Tr(gf)

follows from the invariance of µ under the conjugating homeomorphisms as noted in Sec-

tion 2.
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Let us now deal with Cc(Gs) and since Tr ◦ αs = λTr, we can replace f and g by

(αs)n(f) and (αs)n(g), for any n. Therefore, without loss of generality we may assume

that the support of f is contained in

K0 = {(x, y) ∈ Gs | d(x, y) < ε}

where ε > 0 is any fixed constant. Further, for any x0 in X the map

V U (x0, ε0/2)× V S(x0, ε0/2)× V S(x0, ε0/2) → Gs

defined by sending (x1, x2, x3) to ([x1, x2], [x1, x3]) is a homeomorphism onto a neighbour-

hood of (x0, x0) in Gs. By compactness, we may cover ∆ by finitely many such neighbour-

hoods, then choose ε small enough so that K0 is also covered by these neighbourhoods.

Finally using a partition of unity we can reduce to the case where f is supported in such

a neighbourhood. In this case, we may rewrite the integral for Tr(fg) changing variables

via the homeomorphism above so that

Tr(fg) =
∫∫∫

f(x1, x2, x3) g(x1, x3, x2) dµu(x1) dµs(x2) dµs(x3)

where the integral is over

(x1, x2, x3) ∈ V U (x0, ε0/2)× V S(x0, ε0/2)× V S(x0, ε0/2).

We have used the fact that under [, ], µ becomes µu × µs. A similar computation can be

made for Tr(gf) and it is clear that they are equal.

There is one more important relation between A, S and U ; there are natural ∗-

homomorphisms from A into the multiplier algebras M(S) and M(U). We refer the reader

to [10] for a treatment of multiplier algebras.

Theorem 3.4. For f in Cc(Ga), g in Cc(Gs) and h in Cc(Gu), define

(ρs(f)g) (x, y) =
∑

z∈V (x)

f(x, z) g(z, y)

(g ρs(f)) (x, y) =
∑

z∈V (x)

g(x, z) f(z, y)
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for (x, y) in Gs and
(ρu(f)h) (x, y) =

∑

z∈V (x)

f(x, z)h(z, y)

(h ρu(f)) (x, y) =
∑

z∈V (x)

h(x, z) f(z, x)

for (x, y) in Gu. Then, ρs and ρu extend to ∗-homomorphisms

ρs :A → M(S)

ρu :A → M(U).

Proof. This is actually shown in II.2.4 of [11]. While it is not true that Ga is a closed

subgroupoid of Gs and Gu, the inclusion maps Ga ⊆ Gs and Ga ⊆ Gu are continuous and

proper and that is all that is required in II.2.4.

If we let αs and αu also denote the natural extensions of αs and αu to M(S) and

M(U), respectively, then it is easy to verify that

ρs ◦ αa = αs ◦ ρs

ρu ◦ αa = αu ◦ ρu.

We will not prove the following—its proof is similar to that of Theorem 3.2. Note

though, that the limits are one-sided.

Theorem 3.5. For a in A, b in S and c in U , we have

lim
n→+∞

‖
[

ρs
(

α−n
a (a)

)

, b
]

‖ = 0

lim
n→+∞

‖ [ρu (αn
a(a)) , c] ‖ = 0.

We introduce yet another C∗-algebra which will be important for our later discussion

involving E-theory. We denote this by Ca and define it to be the mapping cylinder for

(A, α); specifically,

Ca = {f : [0, 1] → A | f is continuous and f(1) = αa (f(0))} .

There is a natural action of R on C, also denoted by α, defined by

(αt f)(x) = αbt+sc
a (f(t + s− bt + sc)) ,
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for f in C, t in R and s in [0,1], where b·c denotes the greatest integer function.

Theorem 3.6. The system (Ca, α) is asymptotically abelian; that is, for f , g in C

0 = lim
|t|→∞

‖ [αt(f), g] ‖.

Proof. Let ε > 0 be given. Since f and g are uniformly continuous, we may partition

the interval [0, 1] by points 0 = s0 < s1 < · · · < sm = 1 so that, for s in [si, si+1],

i = 0, · · · , m− 1,
‖f(s)− f(si)‖ < ε/5‖g‖

‖g(s)− g(si)‖ < ε/5‖f‖.

Since (A,αa) is asymptotically abelian, we may find N so that, for |n| ≥ N ,

‖ [αn
a (f(si)) , g(sj)] ‖ < ε/5

for all i, j = 0, 1, · · · ,m.

For any |t| ≥ N + 1 and s in [0, 1], let k denote bt + sc and s′ denote t + s− bt + sc.

Note that |k| ≥ N and for some i, j, s ∈ [si, si+1] and s′ ∈ [sj , sj+1] so we have

‖ [αt(f), g] (s)‖ = ‖
[

αk
a (f(s′)) , g(s)

]

‖

≤ ‖αk
a (f(s′)) g(s)− αk

a (f(s′)) g(si)‖

+ ‖αk
a (f(s′)) g(si)− αk

a (f(sj)) g(si)‖

+ ‖
[

αk
a (f(sj)) , g(si)

]

‖

+ ‖g(si) αk
a (f(sj))− g(si)αk

a (f(s′)) ‖

+ ‖g(si) αk
a (f(s′))− g(s) αk

a (f(s′)) ‖

< ε.

There is a natural trace on Ca, which we denote by Tr, defined by

Tr(f) =
∫ 1

0
Tr (f(s)) ds.
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Note that Tr is α-invariant. Also, if f is a projection in Ca (or Mn(Ca)), then {f(s) | 0 ≤

s ≤ 1} is a continuous path of projections in A which are therefore all unitarily equivalent

and so all have the same trace. Hence, we have

Tr(f) =
∫ 1

0
Tr (f(s)) ds = Tr (f(0)) .

æ §4. K-Theory and E-Theory

In this section, we discuss the K-theory of the C∗-algebras constructed in Section 3.

One of the principal tools will be the E-theory of Connes and Higson [5].

Let us make some preliminary remarks about K∗(Ca). There is an obvious map

e0 : Ca → A defined by e0(f) = f(0), for f in Ca, and we have a short exact sequence

0 → C0(0, 1)⊗A → Ca
e0→A → 0.

The six-term exact sequence for K-groups can be used to produce the following exact

sequence [4].

K0(A)
id−(αa)∗
−−−−−→ K0(A) −−−−−→ K1(Ca)

(e0)∗

x









y (e0)∗

K0(Ca) ←−−−−− K1(A) ←−−−−−
id−(αa)∗

K1(A)

We also remark that

Ki(Ca) ∼= Ki+1(Ca ×
αa

R) ∼= Ki+1(A ×
αa

Z);

the first isomorphism being Connes’ analogue of the Thom isomorphism [4] and the second

resulting from Ca ×
α
R and A ×

αa

Z being strongly Morita equivalent [9].

Theorem 4.1. K∗(Ca) has a natural Z2-graded ring structure. In particular, K0(Ca)

is an ordered ring.

Proof. The asymptotically abelian action of 3.5 provides the ring structure as described

in [5].
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Since we will require it later, let us explicitly write the formula for the product on

K0(Ca). Suppose p = (pij) is a projection in Mm(Ca) and q = (qk`) is a projection in

Mn(Ca). For each t in R, we will construct at in Mmn(Ca). Rather than indexing the

matrices in the conventional way, it will be more convenient to use pairs of entries from

{1, · · · ,m} × {1, · · · , n}. We define (at)(i,k),(j,`) = αt(pij) qk`. It follows from αt being

asymptotically abelian that

lim
t→+∞

‖a2
t − at‖ = 0.

Let χ denote the following function on C,

χ(z) =

{

1 if Re(z) > 1
2

0 if Re(z) < 1
2 .

For t sufficiently large, the spectrum of at lies in the domain of χ and χ(at) is a projection

in Mmn(Ca). Moreover, the function sending t to χ(at) (for t large) is continuous so by

the homotopy invariance of K-theory

lim
t→+∞

[χ(at)]0

exists in K0(Ca) and this is the product of the classes of p and q.

The trace on Ca induces a group homomorphism Tr : K0(Ca) → R which we wish to

show is actually a ring homomorphism.

Lemma 4.2. For f , g in Cc(G), we have

lim
n→∞

Tr (αn
a(f) g) = Tr(f)Tr(g).

Proof. As in the proof of Theorem 3.2, it suffices to consider f and g as there, arising

from K1, γ1, K2, γ2. First suppose γ2 6= id. Then we have suppg ∩∆ = ∅ and so

Tr(g) =
∫

g(x, x) dµ(x) = 0.

Also, we have

Tr (αn
a(f) g) =

∫

X

∑

y∈V (x)

f
(

φ−n(x), φ−n(y)
)

g(y, x) dµ(x).
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As before the sum reduces to a single term with y = φnγ1φ−n(x). Indeed, the integrand

is zero except on the set

{

x ∈ X | x ∈ φn(K1), φnγ1φ−n(x) ∈ K2, γ2φnγ1φ−n(x) = x
}

.

We will show that this set is empty for n sufficiently large and so

Tr (αn
a(f) g) = 0 = Tr(f)Tr(g),

as desired.

First, there is δ > 0 so that d (x, γ2(x)) ≥ δ for all x in K2 using the fact that, if

γ2(x) = x for some x in K2 then γ2 = id. For n sufficiently large

d (φn(z), φnγ1(z)) < δ

for all z in Oγ1 . Applying this to z = φ−n(x) we see

d
(

x, φnγ1φ−n(x)
)

< δ

d
(

γ2φnγ1φ−n(x), φnγ1φ−n(x)
)

≥ δ

and so γ2φnγ1φ−n(x) = x is impossible.

In a similar way, we have the result if γ1 6= id and we are left to consider the case

γ1 = γ2 = id. Here, we have

Tr (αn
a(f) g) =

∫

X
f

(

φ−n(x), φ−n(x)
)

g(x, x) dµ(x)

and as n tends to infinity, this has limit

∫

X
f(x, x) dµ(x) ·

∫

X
g(x, x) dµ(x) = Tr(f)Tr(g)

since φ is strong mixing with respect to µ [18].

We remark that an alternate proof would be to show that Tr is a factor state and then

appeal to 7.13.4 of [10].

Theorem 4.3. T̂ r : K0(Ca) → R is a ring homomorphism.
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Proof. It suffices to consider projections p in Mm(Ca) and q in Mn(Ca) and show that

T̂ r ([p]0 · [q]0) = Tr(p) · Tr(q).

Let at be as defined earlier so

[p]0 · [q]0 = lim
t→+∞

[χ(at)]0.

Since ‖a2
t − at‖ tends to zero as t goes to infinity, we have

lim
t→∞

‖χ(at)− at‖ = 0.

Furthermore, as χ(at) is a projection,

Tr (χ(at)) = Tr (χ(at)(0)) = Tr (χ (at(0))) .

Finally, putting this all together with Lemma 4.2, we obtain

T̂ r ([p]0 [q]0) = lim
t→+∞

Tr (χ(at))

= lim
t→+∞

Tr (χ (at(0)))

= lim
t→+∞

Tr (at(0))

= lim
`→+∞

Tr (a`(0))

= lim
`→+∞

m
∑

i=1

n
∑

k=1

Tr
(

a`(0)(i,k),(i,k)
)

= lim
`→+∞

∑

i,k

Tr
(

α`
a (pii(0)) qkk(0)

)

=
∑

i,k

Tr (pii(0)) Tr (qkk(0))

= T̂ r[p]0 · T̂ r[q]0.

The choice of letting t go to plus infinity is rather arbitrary; using t tending to minus

infinity gives the opposite ring structure. Having decided on this, we have several other

asymptotic homomorphisms.
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(i) Ca ⊗A → A by f ⊗ b → e0 (α−t(f)) b, t ≥ 0,

(ii) A⊗ Ca → A by a⊗ f → a e0 (αt(f)) , t ≥ 0,

making K∗(A) a (graded) K∗(Ca)-bimodule. Furthermore, we also have

(iii) Ca ⊗ S → S by f ⊗ a → ρs (e0 (α−t(f))) a, t ≥ 0

making K∗(S) a left K∗(Ca)-module and

(iv) U ⊗ Ca → U by b⊗ f → b ρu (e0 (αt(f))) , t ≥ 0

making K∗(U) a right K∗(Ca)-module.

We conclude to this section by returning to our examples.

Subshifts of finite type.

Let A be an n×n matrix with non-negative integer entries (slightly more general than

we considered earlier). Let (X, φ) be the associated subshift of finite type. As described in

[6,8], the C∗-algebras A, S and U are all approximately finite-dimensional or AF-algebras.

Their respective K0-groups are computed as inductive limits of the systems

Zn ⊗ Zn AT⊗A
−−−−−→ Zn ⊗ Zn AT⊗A

−−−−−→ · · ·

Zn AT

−−−−−→ Zn AT

−−−−−→ Zn −−−−−→ · · ·

Zn A
−−−−−→ Z

A
−−−−−→ Zn −−−−−→ · · ·

æ In each case, the groups Zn are given the standard or simplicial order and the limit

is taken in the category of ordered abelian groups [7]. In the case of K0(A), we may

re-interpret the result as follows. Use the natural identification of

Zn ⊗ Zn ∼= Mn(Z) = Hk for all k = 1, 2, 3, · · · .

Then the map AT ⊗A from Hk to Hk+1 becomes

ik(T ) = ATA.

Also define αk : Hk → Hk+1 by

αk(T ) = A2T.
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Letting H denote the limit of the system (Hk, ik), one can show K0(A) ∼= H and the αk’s

induce an automorphism α of H which coincides with (αa)∗. Using the six term exact

sequence at the start of this section and the fact K1(A) = 0 since it is an AF-algebra, one

sees that
K0(Ca) ∼= ker(α : H → H)

K1(Ca) ∼= coker(α : H → H).

Using standard methods from algebra, one can show that K0(Ca) can also be described as

follows. In the ring Mn(Z), let Z(A) denote the centralizer of A. Then K0(Ca) is obtained

by inverting A in Z(A) (see [12]). In the case

A =





2 1 1
1 2 1
1 1 2





the reader can easily verify that K0(Ca) is non-commutative. (Also, see [7].)

Let us return to the specific Anosov example of Section 2. The eigenvectors of the

matrix
[

2 1
1 1

]

associated with eigenvalues λ = (3−
√

5)/2 and λ−1 are (1, θ) and (1,−θ−1),

where θ = (1 +
√

5)/2. One then sees that the groupoids Gs and Gu are those associated

with the Kronecker foliations of the two-torus associated with angles θ and −θ−1 (or rather

2πθ and −2πθ−1). Thus, we have

S ∼= Aθ ⊗K, U ∼= A−θ−1 ⊗K,

where Aθ, A−θ−1 are the irrational rotation C∗-algebras associated with θ and −θ−1 and

K denote the compact operators.

We remark that the stable manifold theorem [2] asserts that for a general Anosov

diffeomorphism φ of M , the stable set, V S(x), of a point x is always a one-to-one immersed

copy of Rk (where k = dim E). So stable equivalence actually gives a foliation of M

(smoothness is not always present) without holonomy. Thus the foliation C∗-algebra [3]

coincides with the C∗-algebra of the equivalence relation. Takai [17] has conjectured

Ki(S) ∼= Ki+k(M), Ki(U) ∼= Ki+n−k(M),
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for i = 0, 1, where n = dim M , k = dim E, n − k = dim F . In the example above the

foliations are actually given by flows, so the result is true by virtue of Connes’ analogue of

the Thom isomorphism [4].

Finally, let us consider the example of the “twice-around” solenoid of Section 2. Let

D =
{

exp(2πik2−`) | k ∈ Z, ` ∈ N
}

⊆ S1

be the dyadic roots of unity. It is easy to check that points x, y in X are stably equivalent

if and only if π(x) = π(y) d, for some d in D. From this, one can show that

S ∼=
(

C(S1)⊗K
(

L2(
∑

)
))

×D

∼=
(

C(S1)×D
)

⊗K.

As for unstable equivalence, there is a natural flow F on X such that π ◦ Ft(x) =

exp(2πit)π(x). The orbits of this flow are exactly the unstable equivalence classes and,

moreover,

U ∼= C(X)×F R.

This flow has a natural transversal π−1{1} ∼=
∑

and the first return map, F1, is the

2∞-odometer [18]. Therefore, using results of Rieffel (which can be found in [9]), we have

U ∼= C(X)×F R ∼= (C(
∑

)×F1 Z)⊗K.

It is interesting to note that while U and S are ∗-isomorphic to each other and to the

stablized Bunce-Deddens algebra of type 2∞ [1], one seems to be the Fourier transformed

version of the other — D̂ ∼=
∑

, ̂S1 ∼= Z.

In [19], Williams gives a more general construction for one-dimensional Smale spaces.

These are to the “2∞-example” above as shifts of finite type are to the full 2-shift.
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