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The multiobjective bilevel program is a sequence of two optimization problems, with the upper-level problem being multiob-
jective and the constraint region of the upper level problem being determined implicitly by the solution set to the lower-level
problem. In the case where the Karush-Kuhn-Tucker (KKT) condition is necessary and sufficient for global optimality of
all lower-level problems near the optimal solution, we present various optimality conditions by replacing the lower-level
problem with its KKT conditions. For the general multiobjective bilevel problem, we derive necessary optimality conditions
by considering a combined problem, with both the value function and the KKT condition of the lower-level problem involved
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mathematical program with complementarity constraints, and the case of a multiobjective optimization problem.

Key words : multiobjective optimization; preference; necessary optimality condition; partial calmness; constraint
qualification; nonsmooth analysis; value function; bilevel programming problem

MSC2000 subject classification : Primary: 90C29, 90C46; secondary: 90C26, 90C33
OR/MS subject classification : Primary: programming/complementarity; secondary: programming/multiple criteria
History : Received March 4, 2010; revised August 28, 2010.

1. Introduction. Let W be a finite-dimensional Banach space and let ≺ be a (nonreflexive) preference for
vectors in W . We consider the following multiobjective bilevel programming problem (BLPP):

�BLPP� min
x� y

F �x� y�

s.t. y ∈ S�x��
G�x� y�≤ 0�

where S�x� denotes the set of solutions of the lower-level problem:

�Px�� min
y

f �x� y�

s.t. g�x� y�≤ 0

and F � Rn × Rm →W , f � Rn × Rm → R, G� Rn × Rm → Rq , g� Rn × Rm → Rp. We allow p or q to be zero
to signify the case in which there are no explicit inequality constraints. In these cases it is clear that certain
references to such constraints are simply to be deleted.
We say that �x� y� is a feasible point for problem (BLPP) if y ∈ S�x� and G�x� y�≤ 0. We say that ��x� �y� is a

local solution to (BLPP), provided that it is a feasible point for (BLPP) and there exists no other feasible point
�x� y� in the neighborhood of ��x� �y� such that F �x� y�≺ F ��x� �y��
The preference we use in this paper is very general. It includes the following commonly used preferences as

special cases. Let K be a closed cone in W . The preference relation for two vectors x� y ∈W is defined by x≺ y
if and only if x− y ∈K and x 	= y. We call such a preference a generalized Pareto preference. In particular, if
W =RN and K =RN

− �= �z ∈RN � z has nonpositive components�, then the generalized Pareto preference in this
case is simply called the Pareto preference. When F �x� y� is a scalar function, the preference is <; the problem
becomes a single-objective BLPP.
In this paper we assume that all preferences are closed at any F ��x� �y�, where ��x� �y� is a local minimum of

(BLPP) as defined below.
Definition 1.1 (Mordukhovich [18, Definition 5.55]). Let l�r� �= �t ∈W� t ≺ r� denote the level set at

r ∈W with respect to the given preference ≺. We say that a preference ≺ is closed around r̄ ∈W provided that:
(H1) It is locally satiated around r̄ ; i.e., for any r ∈W , r ∈ l�r� for all r in some neighborhood of r̄ , where

l�r� denotes the closure of the level set l�r�.
(H2) It is almost transitive on W ; i.e., t ∈ l�r� and r ≺ s, implies t ≺ s.
The local satiation propety holds for any reasonable preference, and the almost transitivity requirement also

holds for many preferences. For example, both (H1) and (H2) hold for the generalized Pareto preference when
the closed cone K is convex and pointed (Mordukhovich [18, Proposition 5.56]). However, the almost transitive
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property may be restrictive in some applications. For example, it is known that the preference described by the
lexicographical order is not almost transitive (see Mordukhovich [18, Example 5.57]). The reader is referred
to a recent paper (Bao and Mordukhovich [1]) for results concerning the set-valued optimization in welfare
economics, where the preference is not almost transitive.
The bilevel programming has been an important research area, and many researchers have made contributions.

The origin of the BLPP can be traced back to von Stackelberg [23], who used it to model the market economy
in 1934. BLPP has been successfully used to model the so-called leader-follower game or the moral hazard
model of the principal-agent problem in political science and economics (see e.g., Mirrlees [16]). The reader
is referred to several monographs (Bard [3], Dempe [6], Shimizu et al. [21]) for more applications of bilevel
programming and to a bibliography review (Dempe [7], Vicente and Calamai [22]).
The classical Karush-Kuhn-Tucker (KKT) approach (also called the first-order approach) to solve a single-

objective BLPP is to replace the lower-level problem with its KKT condition and solve the resulting mathematical
programming problem with equilibrium constraints (MPEC). For MPECs, it is well known that the usual nonlin-
ear programming constraint qualification—the Mangasarian-Fromovitz constraint qualification (MFCQ)—does
not hold (see Ye et al. [34, Proposition 1.1]). Because MFCQ is a standard constraint qualification and a standard
assumption for many numerical algorithms to work, the classical KKT condition may not hold, and the classical
numerical algorithms may fail if we treat an MPEC as a standard nonlinear programming problem with equality
and inequality constraints. By reformulating MPECs in different ways, various alternative stationary concepts
such as Clarke, Mordukhovich, Strong, and Bouligand (also known as Piecewise) (C-, M-, S-, B-(P-)) stationary
points arise (see, e.g., Scheel and Scholtes [20], Ye [28]), and constraint qualifications under which a local
optimal solution of MPEC is a stationary point in the various sense have been given (see, e.g., Luo et al. [15],
Ye [28]).
By using the KKT approach, one would hope to find candidates for optimal solutions of BLPP. This, however,

may not always possible. Even for the case where the lower-level problem is convex, a recent paper of Dempe
and Dutta [8] gives an example of BLPP with a convex lower level that has a local solution to the corresponding
MPEC, whose �x� y� components are not a local solution to the original BLPP. Therefore, for the general case of
BLPP with a not necessarily convex lower-level problem, there may not even exist any relationships between the
original bilevel program and its KKT reformulation. To clarify this point, let us examine the following simple
example taken from Ye and Zhu [32, Example 4.3].

�P� min �x− 0�5�2+ �y− 2�2

s.t. y ∈ S�x� �= argmin
y

�y3− 3y� y ≥ x− 3��

0≤ x≤ 4�

It is easy to verify that the set of optimal solution for the lower-level problem is

S�x� =



�x− 3� if 0≤ x < 1�

�−2�1� if x= 1�

�1� if 1< x≤ 4�

and ��x� �y�= �1�1� is the unique solution to the the bilevel program �P�. Replacing the lower-level problem with
its KKT condition, we get the following problem:

min �x− 0�5�2+ �y− 2�2

s.t. 3y2− 3−�= 0�

x− 3− y ≤ 0� (1)

�≥ 0� �x− 3− y��= 0�

0≤ x≤ 4� (2)

At ��x� �y�= �1�1�, because the constraints (1)–(2) are not binding, the KKT condition would imply the existence
of a real number u such that (

0
0

)
= 2

(�x− 0�5
�y− 2

)
+
(
0
6�y

)
u�
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But this is impossible. This example reveals a striking fact: the optimal solution of the original BLPP may not
even be a stationary point of the resulting single-level problem by the KKT approach! Therefore, if the KKT
approach is not used properly, the true optimal solution of the bilevel program may be missed completely!
In Ye and Zhu [30, 31], the following value function approach is taken to reformulate the BLPP. Define the

value function of the lower-level problem as an extended valued function V � Rn → �R by

V �x� �= inf
y
�f �x� y�� g�x� y�≤ 0��

where �R �= R ∪ �−�� ∪ �+�� is the extended real line and inf���= +� by convention. Then it is obvious
that problem (BLPP) can be reformulated as the following problem involving the value function:

(VP) min
x� y

F �x� y�

s.t. f �x� y�−V �x�≤ 0�

g�x� y�≤ 0�

G�x� y�≤ 0�

It is easy to think that because the reformulation (VP) is exactly equivalent to the original BLPP, the problem
will be solved if the nonsmooth necessary optimality condition is used on the problem (VP). The problem
turns out to be not so simple, because the nonsmooth MFCQ does not hold at any feasible solution of the
problem (VP), so the KKT condition may not hold. To deal with this difficulty, Ye and Zhu [30, 31] proposed
the partial calmness condition. The value function approach was further developed in Ye [27, 29] using other
constraint qualifications, such as the Abadie constraint qualification. For the case where the value function is
convex, Ye [27, 29] showed that the resulting KKT condition takes a simpler form in which only one solution of
the lower-level optimal problem is involved. Under the partial calmness condition, this simpler KKT condition
was proved to hold under the assumption of inner semicontinuity of the solution mapping of the lower-level
program (Dempe et al. [9]).
In a recent paper (Ye and Zhu [32]), Ye and Zhu observed that the partial calmness condition may be too

strong for many nonconvex BLPPs. For our simple problem �P�, the value function of the lower-level problem
can be easily derived:

V �x�=
{
−2 if 1≤ x≤ 4

�x− 3�3− 3�x− 3� if 0≤ x≤ 1�
�

By using the value function, the bilevel program �P� is obviously equal to

min �x− 0�5�2+ �y− 2�2

s.t. y3− 3y−V �x�≤ 0�

y ≥ x− 3�

0≤ x≤ 4�

The KKT condition (in the component y) for the above problem would imply the existence of a nonnegative
number u such that

0= 2��y− 2�+ �3�y2− 3�x�u�
which is impossible for ��x� �y� = �1�1� to hold. Therefore, the value function approach is not useful for this
problem either.
Our simple example demonstrates that neither the KKT nor the value function approach is applicable. To cope

with this difficulty, Ye and Zhu [32] suggest that a combination of the classical KKT and the value function
approach should be taken in this case. For our simple problem �P�, the combined approach means that we
add the KKT condition for the lower-level problem into the constraints of the problem �VP� and consider the
following combined problem:

min �x− 0�5�2+ �y− 2�2

s.t. y3− 3y−V �x�≤ 0�
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3y2− 3−�= 0�

x− 3− y ≤ 0�

�≥ 0� �x− 3− y��= 0�

0≤ x≤ 4�

At first glance, it seems that the KKT condition for the lower-level problem is superfluous. However, the resulting
necessary optimality condition derived from such a combined problem is much more likely to hold because now
there are multipliers corresponding to both the value function constraint and the KKT condition constraints,
which provide more freedom to choose the multipliers. In the case of the multiplier corresponding to the value
function being zero, the approach reduces to the KKT approach. In the case where the multiplier corresponding
to the KKT condition is zero, the approach reduces to the value function approach. For our simple problem �P�,
it was shown in Ye and Zhu [32, Example 4.3] that the the nonsmooth multiplier rule holds for the combined
problem, with both multipliers corresponding to the value function constraint and the KKT condition of the
lower-level problem nonzero. Hence, both the classical KKT approach and the value function approach fail, and
only the combined approach works for problem �P�.
Various concepts of stationary conditions have their own usages. The S-stationary condition is known to be

equivalent to the classical stationary condition and is hence the sharpest of all. However, it requires a very strong
constraint qualification. In the case when the S-stationary condition does not hold, the M-stationary condition
is the next sharpest condition, and it holds under relatively weak conditions. In particular, the M-stationary
condition is very useful in the sensitivity analysis (see Lucet and Ye [13, 14]). C- and P-type stationary conditions
are usually weaker, but many numerical algorithms converge to them. Thus, it is important to study all concepts
of stationary conditions.
Note that in the single-objective bilevel programming paper (Ye and Zhu [32]), to concentrate on the main

idea of the combined approach, the C-, M-type stationary conditions were left out, and in a multiobjective
bilevel programming paper (Ye and Zhu [33]) the C-, S-, and P-stationary conditions were not studied for the
KKT approach and the combined approach has not been taken to study the general problem. To fill this gap
in this paper, we use the combined approach introduced in Ye and Zhu [32] to derive various C-, M-, S-, and
P-stationary conditions for the multiobjective BLPP.
In Mordukhovich [18, §5.3], necessary optimality conditions for a class of multiobjective MPECs with an

alternative criteria of optimality called the generalized order optimality have been derived. Results of this paper
may be similarly extended to this class of multiobjective MPECs using the results of Mordukhovich [18, §5.3].
We organize the paper as follows. In the next section we provide the notations and the background materials

on variational analysis to be used throughout the paper. In this section we also introduce the concepts of C-,
S-, and P-stationary conditions for multiobjective MPECs and provide constraint qualifications under which a
local optimal solution to the multiobjective MPEC is C-, S-, and P-stationary points. In §3 we concentrate on
the KKT approach, and in §4 we use the combined approach to study a general BLPP.

2. Preliminaries and preliminary results. In this paper we adopt the following standard notation. For
any two vectors a�b in a finite-dimensional Banach spaces Z, we denote by �a�b� the inner product. Given a
function F � Rn →Rm, we denote its Jacobian by $F �z� ∈Rm×n. If m= 1, the gradient $F �z� ∈Rn is considered
as a column vector. For a subset A⊆ Rn, we denote by intA, Ā, coA the interior, the closure, and the convex
hull of A, respectively. For a matrix A ∈Rn×m, AT is its transpose.

2.1. Background in variational analysis. We present some background materials on variational analysis
that will be used throughout the paper. Detailed discussions on these subjects can be found in Clarke [4]; Clarke
et al. [5]; Mordukhovich[17, 18]; and Rockafellar and Wets [19].
Definition 2.1 (Normal Cones). Let ' be a nonempty subset of a finite-dimensional space Z. Given

z ∈', the convex cone
N(�z)'� �= �* ∈Z� ∃+ > 0� such that �*� z′ − z� ≤ +�z′ − z�2 ∀ z′ ∈'�

is called the proximal normal cone to set ' at point z; the closed cone

N�z)'�=
{
lim
k→�

*k� *k ∈N(�zk)'�� zk ∈'� zk → z

}
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is called the limiting normal cone (also known as Mordukhovich normal cone or basic normal cone) to ' at
point z. The Clarke normal cone can be obtained by taking the closure of the convex hull of the limiting normal
cone, i.e.,

Nc�z)'�= �coN�z)'��
Note that alternatively the Fréchet (also called regular) normal cone (see Mordukhovich [17, Definition 1.1(ii)])

can be used to construct the limiting normal cone because the two definitions coincide in the finite-dimensional
space (see Mordukhovich [17, Commentary to Chap. 1] or Rockafellar and Wets [19, p. 345] for a discussion).
When ' is convex, the proximal normal cone, the limiting normal cone, and the Clarke normal cone coincide
with the normal cone in the sense of the convex analysis, i.e.,

N(�z)'�=Nc�z)'�=N�z)'�= �* ∈Z� �*� z′ − z� ≤ 0� ∀ z′ ∈'��

Definition 2.2 (Limiting Normal Cones to Moving Sets Mordukhovich [18, Definition 5.69]). Let
S� Z⇒W be a set-valued mapping from a finite-dimensional space Z into another finite-dimensional space W ,
and let �r� z� ∈ gphS, where gphS = ��0� z�� z ∈ S�0�� denotes the graph of the set-valued map S. Then

N+�z) S�r�� �=
{
lim
k→�

*k� *k ∈N(�zk) S�rk��� zk ∈ S�rk�� zk → z� rk → r

}

is the extended normal cone to S�r� at z. The mapping S is normally semicontinuous at �r� z� if

N+�z) S�r��=N�z)S�r���

Definition 2.3 (Clarke Generalized Gradients). Let f � Rn → R be Lipschitz continuous near �x. The
Clarke generalized directional derivative of f at �x in direction d ∈Rn is defined by

f ���x)d� �= lim sup
x→�x� t↓0

f �x+ td�− f �x�

t
�

and the Clarke generalized gradient at �x is a convex and compact subset of Rn defined by

2cf ��x� �= �3 ∈Rn� �3�d� ≤ f ���x)d� ∀d ∈Rn��

Definition 2.4 (Limiting Subdifferential). Let f � Rn → �R be a lower semicontinuous function and finite
at �x ∈Rn. The proximal subdifferential (Rockafellar and Wets [19, Definition 8.45]) of f at �x is defined as

2(f ��x� �= �* ∈Rn� ∃+ > 0� 4 > 0 such that f �x′�≥ f ��x�+�*� x′ − �x�−+�x′ − �x�2 ∀x′ ∈ B��x�4���

and the limiting (Mordukhovich or basic Mordukhovich [17]) subdifferential of f at �x is defined as

2f ��x� �=
{
lim
k→�

3k� 3k ∈ 2(f �xk�� xk → �x� f �xk�→ f ��x�
}
�

When f is Lipschitz continuous near �x, the Clarke generalized gradient can be obtained by taking the convex
hull of the limiting subdifferential, i.e.,

2cf ��x�= co 2f ��x��
The following calculation rules for Clarke generalized gradients will be useful in the paper.

Proposition 2.1 (See Clarke [4], Clarke et al. [5]). Let f � g� Rn → R be Lipschitz continuous near
�x ∈Rn and 6�7 be any real numbers. Then

2c�6f +7g���x�⊆ 62cf ��x�+72cg��x��

Note that for limiting subdifferentials, in general, the above calculation rule holds only when 6 and 7 are
nonnegative.
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2.2. Necessary optimality conditions for MPECs. In this subsection we consider the multiobjective MPEC
defined as follows:

MPEC min f �z�

s.t. g�z�≤ 0� h�z�= 0

0≤G�z�⊥H�z�≥ 0�

where W is a finite-dimensional Banach space, f � Rn →W , G�H� Rn → Rm, g� Rn → Rp, h� Rn → Rq , and
a⊥ b means that the vector a is perpendicular to vector b. For simplicity and easy reference in this section, we
assume that f is Lipschitz near z∗ and all other functions are continuously differentiable.
Given a feasible vector z∗ of MPEC, we define the following index sets:

Ig �= Ig�x
∗�= �i� gi�z

∗�= 0��

6 �= 6�z∗�= �i� Gi�z
∗�= 0�Hi�z

∗� > 0��

7 �= 7�z∗�= �i� Gi�z
∗�= 0�Hi�z

∗�= 0��

0 �= 0�z∗�= �i� Gi�z
∗� > 0�Hi�z

∗�= 0��

Definition 2.5 (MPEC Stationary Conditions). A feasible point z∗ of MPEC is called a Clarke station-
ary point (C-stationary point) if there exists a unit vector � ∈N+�f �z∗�) l�f �z∗��� and ��g��h��G��H� ∈Rp+q+2m

such that the following conditions hold:

0 ∈ 2��� f ��z∗�+∑
i∈Ig

�
g
i $gi�z

∗�+
q∑
i=1

�hi $hi�z
∗�−

m∑
i=1
;�Gi $Gi�z

∗�+�Hi $Hi�z
∗�<� (3)

�i ≥ 0 i ∈ Ig� �Gi = 0 i ∈ 0� �Hi = 0 i ∈ 6� (4)

�Gi �
H
i ≥ 0 i ∈ 7�

A feasible point z∗ of MPEC is called a Mordukhovich stationary point (M-stationary point) if there exists a unit
vector � ∈ N+�f �z∗�) l�f �z∗��� and ��g��h��G��H� ∈ Rp+q+2m such that (3)–(4) and the following condition
holds:

either �Gi > 0� �
H
i > 0 or �Gi �

H
i = 0 ∀ i ∈ 7�

A feasible point z∗ of MPEC is called a strong stationary point (S-stationary point) if there exists a unit vector
� ∈N+�f �z∗�) l�f �z∗��� and ��g��h��G��H� ∈Rp+q+2m such that (3)–(4) and the following condition holds:

�Gi ≥ 0� �Hi ≥ 0 ∀ i ∈ 7�
A feasible point z∗ of MPEC is called a piecewise stationary point (P-stationary point) if for each partition of
the index set 7 into P�Q, there exists a unit vector � ∈N+�f �z∗�) l�f �z∗��� and ��g��h��G��H� ∈Rp+q+2m such
that (3)–(4) and the following condition holds:

�Gi ≥ 0 ∀ i ∈ P� �Hi ≥ 0 ∀ i ∈Q�
Remark 2.1. In the case where ≺ is the Pareto preference, by Zhu [35] the preference ≺ is regular in the

sense that it is closed and the set-valued mapping S�z� �= l�f �z�� is normally semicontinuous; moreover

N+�f �z
∗�) l�f �z∗���=N�f �z∗�) l�f �z∗���=RN

+

and in the case where ≺ is the generalized Pareto preference with a closed cone K,

N+�f �z
∗�) l�f �z∗���=N�f �z∗�) l�f �z∗���=K− �= �s ∈W� �s� t� ≤ 0� t ∈K��

Remark 2.2. As for single-level MPECs, it is not hard to show that the S-stationary condition is equivalent
to the classical KKT condition for MPEC. For the special case of a single-level smooth MPEC, the P-stationary
point is equivalent to a Bouligand stationary (B-stationary) point in the sense of Scheel and Scholtes [20] and
is equivalent to a B-stationary point in the classical sense of Luo et al. [15] if a certain constraint qualification
for each branch of the MPEC holds.
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Definition 2.6 (MPEC Constraint Qualifications). Let z∗ be a feasible point of MPEC. We say that
the no nonzero abnormal C-multiplier constraint qualification (NNACMCQ) holds at z∗ if there is no nonzero
vector �= ��g��h��G��H� ∈Rp+q+2m such that

0=∑
i∈Ig

�
g
i $gi�z

∗�+
q∑
i=1

�hi $hi�z
∗�−

m∑
i=1
;�Gi $Gi�z

∗�+�Hi $Hi�z
∗�<�

�i ≥ 0 i ∈ Ig� �Gi = 0 i ∈ 0� �Hi = 0 i ∈ 6�
�Gi �

H
i ≥ 0 ∀ i ∈ 7�

We say that the MPEC no nonzero abnormal multiplier constraint qualification (MPEC NNAMCQ) holds at z∗

if there is no nonzero vector �= ��g��h��G��H� ∈Rp+q+2m such that

0=∑
i∈Ig

�
g
i $gi�z

∗�+
q∑
i=1

�hi $hi�z
∗�−

m∑
i=1
;�Gi $Gi�z

∗�+�Hi $Hi�z
∗�<�

�i ≥ 0 i ∈ Ig� �Gi = 0 i ∈ 0� �Hi = 0 i ∈ 6�
either �Gi > 0� �

H
i > 0� or �Gi �

H
i = 0 ∀ i ∈ 7�

We say that the MPEC linear independence constraint qualification (MPEC LICQ) holds at z∗ if the gradient
vectors

$gi�z
∗� i ∈ Ig� $hi�z

∗� i= 1� > > > � q� $Gi�z
∗� i ∈ 6∪7� $Hi�z

∗� i ∈ 0 ∪7

are linearly independent.
We say that the error bound constraint qualification holds at z∗ if there exist positive constants ?, 4, and @

such that

d�z�� � ≤ ?��6�7�u� v�� ∀ �6�7�u� v� ∈ @B
z ∈� �6�7�u� v�∩B4�z

∗��

where d�z�� � is the distance of z to the feasible region � and

� �6�7�u� v� �= {
z� g�z�+6≤ 0� h�z�+7= 0� 0≤G�z�+ v⊥H�z�+ u≥ 0

}
is the perturbed feasible region of MPEC.
We say that the MPEC linear constraint qualification (MPEC linear CQ) holds if all functions G�H�g�h

are affine. We say that MPEC piecewise MFCQ holds at z∗ if MFCQ holds at z∗ for each branch of MPEC
corresponding to partition P�Q of index set 7 defined as

MPECP∪Q min f �z�

s.t. Gi�z�= 0 i ∈ 6� Hi�z�= 0 i ∈ 0�
Gi�z�≥ 0� Hi�z�= 0 i ∈ P�
Gi�z�= 0� Hi�z�≥ 0 i ∈Q�
g�z�≤ 0� h�z�= 0�

Remark 2.3. By Ye [28, Proposition 2.1], MPEC NNAMCQ is equivalent to the MPEC generalized MFCQ
(MPEC GMFCQ), a MPEC version of the MFCQ. We refer the reader to the definition of MPEC GMFCQ in
Ye [28, Definition 2.11].
It is known that for a single-objective MPEC with smooth problem data, a local optimal solution of MPEC

must be an S-stationary point under MPEC LICQ. The proof of the results used the fact that under the MPEC
LICQ each branch of MPEC has a unique multiplier (see Ye [25]). But this proof cannot be used for our case
because the objective function is only assumed to be Lipschitz continuous.
To derive the S-stationary condition under the MPEC LICQ, we will need the following result, which is also

of independent interest.
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Proposition 2.2. Let � denote the feasible region of MPEC and z∗ ∈ � . Suppose that MPEC LICQ holds
at z∗, and let 3 be an element of the normal cone N�z∗)� �. Then there exists �= ��g��h��G��H� ∈ Rp+q+2m

such that

3 =∑
i∈Ig

�
g
i $gi�z

∗�+
q∑
i=1

�hi $hi�z
∗�−

m∑
i=1
;�Gi $Gi�z

∗�+�Hi $Hi�z
∗�<�

�
g
i ≥ 0 i ∈ Ig� �Gi = 0 i ∈ 0� �Hi = 0 i ∈ 6�

�Gi ≥ 0� �Hi ≥ 0 i ∈ 7�

Proof. By the definition of the limiting normal cone, 3 = limk→� 3k with 3k ∈N(�zk)� �, zk ∈� , zk → z∗.
By the definition of the proximal normal cone, there exists Mk > 0 such that

�3k� z− zk� ≤Mk�z− zk�2 ∀ z ∈� �

which implies that z= zk is a minimizer of the following problem:

min −�3k� z�+Mk�z− zk�2
s.t. z ∈� �

The above problem is an MPEC with continuously differentiable problem data. Because MPEC LICQ holds
at z∗ and zk → z∗, MPEC LICQ holds at zk as well. Therefore, zk is an S-stationary point for the above MPEC.
That is, there exists a unique multiplier �k = ��gk��hk��Gk��Hk� ∈Rp+q+2m such that

3k =
∑
i∈Ig

�
gk
i $gi�zk�+

q∑
i=1

�hki $hi�zk�−
m∑
i=1
;�Gki $Gi�zk�+�Hki $Hi�zk�<�

�
gk
i ≥ 0 i ∈ Ikg � �Gki = 0 i ∈ 0k� �Hki = 0 i ∈ 6k�

�Gki ≥ 0� �Hki ≥ 0 i ∈ 7k�

where

Ikg �= Ig�zk�= �i� gi�zk�= 0��

6k �= 6�zk�= �i� Gi�zk�= 0� Hi�zk� > 0��

7k �= 7�zk�= �i� Gi�zk�= 0� Hi�zk�= 0��

0k �= 0�zk�= �i� Gi�zk� > 0� Hi�zk�= 0��

Let k→� and zk → z∗; then by the MPEC LICQ, �k is bounded and hence there exists a convergent subsequence.
Without loss of generality, assume that the limit of the sequence �k = ��gk��hk��Gk��Hk� is �= ��g��h��G��H�.
Taking limits as k→�, because zk → z∗, 3k → 3, and �k → �, we have the desired conclusion. �

We are now in a position to develop the necessary optimality conditions for our multiobjective MPEC.

Theorem 2.1 (MPEC Necessary Optimality Conditions). Let z∗ be a local optimal solution for MPEC.
Then the following statements are true.

(I) Under NNACMCQ, z∗ is C-stationary.
(II) Under one of the following constraint qualifications, z∗ is M-stationary:
(i) MPEC NNAMCQ (or equivalently MPEC GMFCQ) holds at z∗.
(ii) The MPEC linear CQ holds.
(iii) The error bound constraint qualification holds at z∗.

(III) If MPEC LICQ holds, then z∗ is S-stationary.
(IV) If either MPEC linear CQ or MPEC piecewise MFCQ holds at z∗, then z∗ is P-stationary.
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Proof. (I) It is easy to see that z∗ is also a local solution of the following nonsmooth multiobjective nonlinear
programming problem:

�MPEC� min f �z�

s.t. Gi�z�= 0 i ∈ 6� Hi�z�= 0 i ∈ 0�
min�Gi�z��Hi�z��= 0 i ∈ 7�
g�z�≤ 0� h�z�= 0�

Note that from the proof of Ye and Zhu [33, Theorem 1.2], with the absence of the normal semicontinuity
of the set-valued mapping l�f �z�� (i.e., the preference is closed but not regular), it is easy to see that the Fritz
John type necessary optimality condition in Ye and Zhu [33, Theorem 1.3] holds, with the limiting normal cone
N�f �z∗�) l�f �z∗��� replaced by the extended normal cone N+�f �z∗�) l�f �z∗��� (see also Mordukhovich [18, §5]).
By the Fritz John type necessary optimality condition in Ye and Zhu [33, Theorem 1.3] with

N�f �z∗�) l�f �z∗��� replaced by the extended normal cone N+�f �z∗�) l�f �z∗��� and the nonsmooth calculus rule
for the nonsmooth function min�Gi�z��Hi�z�� (as in Scheel and Scholtes [20, Lemma 1]), we find that there
exist ?0 ∈ �0�1�, a unit vector � ∈ N+�f �z∗�) l�f �z∗��� and ��g��h��G��H� ∈ Rp+q+2m, not all equal to zero,
such that the following conditions hold:

0 ∈?02��� f ��z∗�+
∑
i∈Ig

�
g
i $gi�z

∗�+
q∑
i=1

�hi $hi�z
∗�−

m∑
i=1
;�Gi $Gi�z

∗�+�Hi $Hi�z
∗�<�

�i ≥ 0 i ∈ Ig� �Gi = 0 i ∈ 0� �Hi = 0 i ∈ 6�
�Gi �

H
i ≥ 0 i ∈ 7�

By the virtue of NNAMCCQ, ?0 can be taken as 1 and hence the conclusion for (I) follows.
(II) It is well known that MPEC NNAMCQ and the MPEC linear CQ both imply the error bound constraint

qualification (see Ye [26, Theorems 4.3 and 4.4]). Hence it suffices to show (II)(iii). By virtue of Ye and
Zhu [33, Theorem 1.3], treating the problem (MPEC) as the following optimization problem with an abstract
constraint set:

min f �z� s.t. z ∈� �

we conclude that there exists a unit vector � ∈N+�f �z∗�) l�f �z∗��� such that

0 ∈ 2��� f ��z∗�+N�z∗)� ��

Rewrite the feasible region � as

� = �z� C�z� ∈Q�
where C�z�= �g�z��h�z��G�z��H�z�� and Q= Rp

− × �0�×' with ' �= ��x� y�� 0≤ x ⊥ y ≥ 0�. Because the
error bound constraint qualification at z∗ is equivalent to the calmness of the set-valued map � �6�7�u� v� at
�0� z∗�, using the recent result of Ioffe and Outrata [12, Proposition 3.4], we obtain

N�z∗)� �⊆ �$C�z∗�T y∗� y∗ ∈N�C�z∗�)Q���

Because

N�C�z∗�)Q�=N�g�z∗�)Rp
−�×Rq ×N�G�z∗��H�z∗�)'�

and

N�G�z∗��H�z∗�)'�=


��

G��H��

�Gi = 0 if i ∈ 0
�Hi = 0 if i ∈ 6
either �Gi > 0� �Hi > 0� or �Gi �

H
i = 0 if i ∈ 7




(see, e.g., Ye [26, Proposition 3.7]), the desired assertion follows.
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(III) By virtue of Ye and Zhu [33, Theorem 1.3], treating the problem (MPEC) as the following optimization
problem with an abstract constraint set:

min f �z� s.t. z ∈� �

we conclude that there exists a unit vector � ∈N+�f �z∗�) l�f �z∗��� such that

0 ∈ 2��� f ��z∗�+N�z∗)� ��

If MPEC LICQ holds at z∗, then by Proposition 2.2, we conclude that z∗ is S-stationary.
(IV) It is easy to see that for each partition �P�Q� of the index set 7, z∗ is a local solution of the subproblem

MPECP∪Q. Hence, if either MPEC linear CQ or MPEC piecewise MFCQ holds at z∗, then z∗ is P-stationary. �

Remark 2.4. All results in Theorem 2.1 are new except II(i), which was derived in Ye and Zhu [33, Theo-
rem 4.2]. (II)(iii) and (II)(ii) have improved the results of Ye and Zhu [33, Theorems 4.8 and 4.9], respectively,
in that the preference is not required to be the Pareto preference (which was called the preference in the weak
Pareto sense in Ye and Zhu [33]). In the case where there are no equilibrium constraints, (II)(iii) and (II)(ii) pro-
vide the error bound and the linear constraint qualifications for the classical multiobjective optimization problem
under the general preference studied in this paper. To our knowledge, even these results are new. Recently Bao
and Mordukhovich [1] have introduced some notions of relative Pareto minimizers for constrained multiobjec-
tive optimization problems and derived necessary optimality conditions for these problems. Using the necessary
optimality conditions in Bao and Mordukhovich [1, Theorem 5.3] and our proof technique, one can show that
(II)(iii) and (II)(ii) can also serve as constraint qualifications for the necessary optimality conditions for MPECs
with various notions of relative Pareto minimizers, as defined in Bao and Mordukhovich [1].

3. The KKT approach. If it works, the KKT approach provides a simple characterization of optimality for
BLPP. However, as discussed in the introduction, the KKT approach may be misleading if it is not used properly.
In this section we try to explore the possibility of using the KKT approach to solve BLPPs. The following result
provides a relationship between local solutions of (BLPP) and problem (KP).

Proposition 3.1. Let ��x� �y� be a solution of (BLPP) on U��x� �y�, where U��x� �y� is a neighborhood of ��x� �y�.
Suppose that for each �x� y� ∈U��x� �y�, the KKT condition is necessary and sufficient for y to be a global optimal
solution of the lower-level problem �Px� and �u is a corresponding multiplier associated with ��x� �y�; i.e.,

$yf ��x� �y�+ �u$yg��x� �y�= 0� �u≥ 0� �g��x� �y�� �u� = 0�

where u$yg�x� y� �=
∑p

i=1 ui$ygi�x� y�. Then ��x� �y� �u� is a local optimal solution (on U��x� �y� × Rp) of the
following one-level multiobjective optimization problem, where the lower-level problem has been replaced by its
KKT conditions:

�KP� min
x� y�u

F �x� y�

s.t. $yf �x� y�+ u$yg�x� y�= 0�

g�x� y�≤ 0� u≥ 0� �g�x� y��u� = 0�

G�x� y�≤ 0�

Conversely, suppose that ��x� �y� �u� is a local optimal solution to (KP) restricting on U��x� �y�× Rp, the KKT
condition is necessary and sufficient for �y to be a global optimal solution of the lower-level problem �P�x�, and
the KKT condition holds at each y ∈ S�x� for all �x� y� ∈U��x� �y�. Then ��x� �y� is a local solution of (BLPP).

Proof. Let ��x� �y� be an optimal solution to (BLPP) restricting on B��x� �y�. Then �y must be a global optimal
solution of the lower-level problem P�x. By the assumption, the KKT condition holds and �u is a corresponding
multiplier. Hence, ��x� �y� �u� is a feasible solution to problem (KP). To show that ��x� �y� �u� is a local optimal
solution of (KP), it suffices to show that there is no other feasible point �x� y�u� of (KP) on U��x� �y�×Rp such
that

F �x� y�≺ F ��x� �y�� (5)

We show this by contradiction. Suppose that there is a feasible point �x� y�u� of (KP) on U��x� �y�×Rp such that
(5) holds. Then by the assumption, y must be a global optimal solution of Px and hence �x� y� is obviously a
feasible solution of the (BLPP); this contradicts the fact that ��x� �y� is an optimal solution to (BLPP) on U��x� �y�.
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Conversely, suppose that ��x� �y� �u� is an optimal solution to (KP) on U��x� �y�× Rp. Then there is no other
feasible solution �x� y�u� that lies in U��x� �y�×Rp such that

F �x� y�≺ F ��x� �y�� (6)

We now prove that ��x� �y� is an optimal solution to (BLPP) on U��x� �y� by contradiction. First by the assumption,
the KKT condition is necessary and sufficient for �y to be a global optimal solution of the lower-level problem P�x.
Consequently, �y ∈ S��x� and hence ��x� �y� is a feasible solution to (BLPP). Suppose that ��x� �y� is not an optimal
solution of (BLPP) on U��x� �y�. Then there exists �x� y�, a feasible solution of (BLPP) on U��x� �y�, such that
(6) holds. But by the assumption, the KKT condition holds at �x� y�, which means that there exists u such that
�x� y�u� is a feasible solution of problem (KP). This contradicts the optimality of ��x� �y� �u�. �

Remark 3.1. (i) Note that the converse statement of Proposition 3.1 is not the same as saying that the �x� y�
component of a local solution of (KP) must be a local solution of (BLPP), because ��x� �y� �u� is required to be a
local optimal solution to (KP) locally for �x� y� but globally for all u component. In fact, Dempe and Dutta [8,
Example 3.1] have given an example for which the �x� y� component of a local solution of (KP) is not a local
solution of (BLPP) that has a convex lower-level problem. Moreover, they showed that LICQ of the lower-level
problem is not a generic condition, and hence this situation is not just an exception. Actually, the converse
statement of Proposition 3.1 for the case of a single-objective bilevel program with a convex lower-level problem
and the Slater condition was given by Dempe and Dutta [8, Theorem 3.2].
(ii) Although it is obvious that for the case where the lower-level problem is convex and the Slater condition

holds for P�x; the KKT condition is necessary and sufficient for all lower-level problems near the optimal solution.
There are a few more situations where this condition holds for not necessarily convex lower-level problems, for
example, when the lower-level problem is generalized convex, i.e., when f �x� ·� is a differentiable pseudoconvex
function, gi�x� ·� are differentiable quasiconvex functions and a certain constraint qualification is satisfied for
all lower-level problems near the optimal solution. Another case when this happens is when all lower-level
problems near the optimal solution have a unique KKT point and the optimal solution exists.
Given a feasible vector ��x� �y� �u� in the feasible region of (KP), we define the following index sets:

IG = IG��x� �y� �= �i� Gi��x� �y�= 0�

I+ = I+��x� �y� �u� �= �i� gi��x� �y�= 0� �ui > 0�
Iu = Iu��x� �y� �u� �= �i� gi��x� �y� < 0� �ui = 0�

I0 = I0��x� �y� �u� �= �i� gi��x� �y�= 0� �ui = 0��

Definition 3.1 (Stationary Conditions for (KP)). Let ��x� �y� �u� be a feasible solution to (KP). We say
that ��x� �y� �u� is a C-stationary point if there exists a unit vector � ∈N+�F ��x� �y�) l�F ��x� �y��� and 7 ∈Rm, Eg ∈Rp,
EG ∈Rq , such that

0 ∈ 2���F ���x� �y�+$�$yf + �u$yg���x� �y�T 7+$g��x� �y�T Eg +$G��x� �y�T EG� (7)

EG
i ≥ 0 i ∈ IG� EG

i = 0 i 	∈ IG� (8)

E
g
i = 0 i ∈ Iu� �$yg��x� �y�7�i = 0 i ∈ I+� (9)

E
g
i �$yg��x� �y�T 7�i ≥ 0 i ∈ I0�

We say that ��x� �y� �u� is an M-stationary point if there exist a unit vector � ∈N+�F ��x� �y�) l�F ��x� �y��� and 7 ∈Rm,
Eg ∈Rp, EG ∈Rq such that (7)–(9) and the following condition holds:

either Eg
i > 0� �$yg��x� �y�7�i > 0 or E

g
i �$yg��x� �y�7�i = 0 i ∈ I0�

We say that ��x� �y� �u� is an S-stationary point if there exist a unit vector � ∈N+�F ��x� �y�) l�F ��x� �y��� and 7 ∈Rm,
Eg ∈Rp, EG ∈Rq , such that (7)–(9) and the following condition holds:

E
g
i ≥ 0� �$yg��x� �y�7�i ≥ 0 i ∈ I0�

We say that ��x� �y� �u� is a P-stationary point if for each partition of the index set I0 into P�Q there exist a unit
vector � ∈N+�F ��x� �y�) l�F ��x� �y��� and 7 ∈Rm, Eg ∈Rp, EG ∈Rq such that (7)–(9) and the following condition
holds:

E
g
i ≥ 0 i ∈ P� �$yg��x� �y�7�i ≥ 0 i ∈Q�
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Theorem 3.1. Let ��x� �y� be a local optimal solution of (BLPP). Assume that F is Lipschitz continuous, G is
C1, and f � g are twice continuously differentiable around ��x� �y�. Further assume that for each �x� y�, which is
sufficiently close to ��x� �y�, the KKT condition is necessary and sufficient for y to be a global optimal solution
of Px and �u is a corresponding multiplier associated with ��x� �y�.

(I) ��x� �y� �u� is a C-stationary point if there is no nonzero vector 7 ∈Rm, Eg ∈Rp, EG ∈Rq such that

0= $�$yf + �u$yg���x� �y�T 7+$g��x� �y�T Eg +$G��x� �y�T EG�

EG
i ≥ 0 i ∈ IG� EG

i = 0 i 	∈ IG�
E
g
i = 0 i ∈ Iu� �$yg��x� �y�7�i = 0 i ∈ I+�

E
g
i �$yg��x� �y�7�i ≥ 0 i ∈ I0�

(II) ��x� �y� �u� is an M-stationary point if one of the following constraint qualifications holds:
(i) There is no nonzero vector 7 ∈Rm, Eg ∈Rp, EG ∈Rq such that

0= $�$yf + �u$yg���x� �y�T 7+$g��x� �y�T Eg +$G��x� �y�T EG�

EG
i ≥ 0 i ∈ IG� EG

i = 0 i 	∈ IG�
E
g
i = 0 i ∈ Iu� �$yg��x� �y�7�i = 0 i ∈ I+�

either E
g
i > 0� �$yg��x� �y�7�i > 0 or E

g
i �$yg��x� �y�7�i = 0 i ∈ I0�

(ii) $yf � g�G are affine mappings.
(iii) The error-bound constraint qualification holds for (KP) at ��x� �y� �u�.
(iv) There is no inequality constraint G�x� y�≤ 0. Furthermore, the second-order sufficient condition holds

for the lower-level problem P�x at �y; i.e., for any nonzero v such that

$ygi��x� �y�T v= 0� i ∈ I+� $ygi��x� �y�T v≤ 0� i ∈ I0
�v� �$ 2

y f ��x� �y�+ �u$ 2
y g��x� �y��v�> 0.

(III) ��x� �y� �u� is an S-stationary point if MPEC LICQ holds for KP.
(IV) ��x� �y� �u� is a P-stationary point if either $yf � g�G is affine or MPEC piecewise MFCQ holds for KP.

Proof. By virtue of Proposition 3.1, under the assumptions of the theorem, ��x� �y� �u� is a local optimal
solution of (KP). Because (KP) is a MPEC, (I), (II)(i)(ii)(iii), (III), and (IV) follow immediately from applying
(I), (II)(i)(ii)(iii), (III), and (IV) of Theorem 2.1 to the problem (KP), respectively. It now remains to show
that (II)(iv) implies the error-bound constraint qualification in (II)(iii). Indeed, the implication of (II)(iv) to the
error-bound constraint qualification in (II)(ii) follows from the error-bound result of Hager and Gowda [11,
Lemma 2]. �

Remark 3.2. Necessary optimality conditions for multiobjective bilevel programs using the KKT approach
have been studied in the literature by Ye and Zhu [33] for the smooth case and Bao et al. [2] for the nonsmooth
case. All results in Theorem 3.1 are new except II(i), which was derived in Ye and Zhu [33, Theorem 5.3(b)].
(II)(ii) has improved the results of Ye and Zhu [33, Theorem 5.3(a)] in that the preference is not required to be
the Pareto preference (which was called the preference in the weak Pareto sense in Ye and Zhu [33]). (II)(iv)
has improved the results of Ye and Zhu [33, Theorem 5.3(c)] in that no LICQ is required for the lower-level
problem. This result is even new for the case of a single-objective BLPP, in which case it improved the result of
Ye [29, Theorem 5.1(d)] in that no LICQ is required for the lower-level problem. This new result significantly
improves the existing results, because the LICQ is a pretty strong requirement. (The author thanks a referee for
questioning the necessity of the LICQ, which motivated finding the answer to the question.)

4. Combined MPEC and the value function approach. Unfortunately, as demonstrated in the introduction
section by using the example (P), optimal solutions of many nonconvex BLPPs where the lower-level problem
is not convex do not satisfy the KKT conditions derived by using either the KKT approach or the value function
approach (see more examples in Ye and Zhu [32]). According to Proposition 3.1, even when the lower-level
problem is convex, the KKT condition is still required to hold for all points near the optimal solution for the
KKT approach to work.
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As proposed in Ye and Zhu [32], we should consider the following combined problem:

�CP� minx� y�u F �x� y�

s.t. f �x� y�−V �x�≤ 0�

$yf �x� y�+ u$yg�x� y�= 0�

g�x� y�≤ 0� u≥ 0� �g�x� y��u� = 0�

G�x� y�≤ 0�

(10)

The relationship of (CP) and (BLPP) is given in the following proposition. Note that using the combined
problem, the KKT condition is only required to hold at the optimal solution ��x� �y�.
Proposition 4.1. Let ��x� �y� be a local (global) optimal solution to (BLPP). Suppose that at �y, the KKT

condition holds for the lower-level problem P�x. Then there exists �u such that ��x� �y� �u� is a local (global) optimal
solution of (CP). Conversely, suppose that ��x� �y� �u� is an optimal solution to (CP) restricting on U��x� �y�×Rp,
where U��x� �y� is a neighborhood of ��x� �y� and the KKT condition holds at y ∈ S�x� for lower-level problem Px
for all �x� y� in U��x� �y�. Then ��x� �y� is a local solution of (BLPP).

Proof. Let ��x� �y� be a local optimal solution to (BLPP). Then �y must be a global optimal solution to the
lower-level problem P�x. By the assumption, the KKT condition holds; i.e., there exists a multiplier �u such that

0= $yf ��x� �y�+
p∑
i=1

�ui$ygi��x� �y��

�u≥ 0�
p∑
i=1

�uigi��x� �y�= 0�

Therefore, ��x� �y� �u� is a feasible solution to problem (CP). To show that ��x� �y� �u� is a local optimal solution
of (CP), it suffices to show that there is no other feasible point �x� y�u� of (CP) in a neighborhood of ��x� �y� �u�
such that

F �x� y�≺ F ��x� �y�� (11)

We show this by contradiction. Suppose that there is a feasible point �x� y�u� of (CP) in a neighborhood of
��x� �y� �u� such that (11) holds. Then, because the �x� y� components of the vector �x� y�u� are obviously a
feasible solution of the (BLPP), this contradicts the fact that ��x� �y� is a local optimal solution to (BLPP).
Conversely, suppose that ��x� �y� �u� is an optimal solution to (CP) on U��x� �y�× Rp. Then there is no other

feasible solution �x� y�u� that lies in U��x� �y�×Rp such that

F �x� y�≺ F ��x� �y�� (12)

We now prove that ��x� �y� is an optimal solution to (BLPP) on U��x� �y�. To the contrary, suppose that ��x� �y� is not
an optimal solution of (BLPP) on U��x� �y�. Then there exists �x� y�, a feasible solution to (BLPP) on U��x� �y�,
such that (12) holds. But by the assumption, the KKT condition holds at �x� y�, which means that there exists u
such that �x� y�u� is a feasible solution of the problem (CP). This contradicts the optimality of ��x� �y� �u�. �

Suppose that the value function V �x� is Lipschitz continuous near the optimal solution then the problem
(CP) is an MPEC with continuously differentiable and Lipschitz-continuous problem data. However, because of
the value function constraint (10), we can argue as in Ye and Zhu [32, Proposition 1.3] that the usual MPEC
constraint qualifications such as MPEC LICQ and MPEC piecewise MFCQ will never hold. Because the value
function is usually not linear, the MPEC linear CQ is unlikely to hold as well. We extend the following partial
calmness condition for (CP) introduced in Ye and Zhu [32] to the multiobjective case.
Definition 4.1 (Partial Calmness for (CP)). Let ��x� �y� �u� be a local solution of (CP) with W =RN . We

say that (CP) is partially calm at ��x� �y� �u� if there exists ? > 0 such that ��x� �y� �u� is a local solution of the
following partially penalized problem:

�CP�? min F �x� y�+?�f �x� y�−V �x��

s.t. $yf �x� y�+ u$yg�x� y�= 0�

u≥ 0� g�x� y�≤ 0� �g�x� y��u� = 0

G�x� y�≤ 0�

(13)
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where F �x� y�+?�f �x� y�− V �x�� denote the vector in W = RN with the ith component equal to Fi�x� y�+
?�f �x� y�−V �x��.
Definition 4.2 (Stationary Conditions for (CP) Based on the Value Function). Let ��x� �y� �u� be a

feasible solution to (CP) with W = RN . Suppose that F �G are C1 and f � g are C2 around ��x� �y�. We
say that ��x� �y� �u� is a C-stationary point based on the value function if there exists a unit vector � ∈
N+�F ��x� �y�) l�F ��x� �y��� and ?≥ 0, 7 ∈Rm, Eg ∈Rp, EG ∈Rq such that

0 ∈
N∑
i=1

�i$Fi��x� �y�+?;$f ��x� �y�− 2cV ��x�× �0�<

+$�$yf + �u$yg���x� �y�T 7+$g��x� �y�T Eg +$G��x� �y�T EG� (14)

EG
i ≥ 0 i ∈ IG� EG

i = 0 i 	∈ IG� (15)

E
g
i = 0 i ∈ Iu� �$yg��x� �y�7�i = 0 i ∈ I+� (16)

E
g
i �$yg��x� �y�7�i ≥ 0 i ∈ I0�

We say that ��x� �y� �u� is an M-stationary point based on the value function if there exist a unit vector � ∈
N+�F ��x� �y�) l�F ��x� �y��� and ?≥ 0, 7 ∈ Rm, Eg ∈ Rp, EG ∈ Rq such that (14)–(16) and the following condition
holds:

either E
g
i > 0� �$yg��x� �y�7�i > 0� or E

g
i �$yg��x� �y�7�i = 0 i ∈ I0�

We say that ��x� �y� �u� is an S-stationary point based on the value function if there exist a unit vector � ∈
N+�F ��x� �y�) l�F ��x� �y��� and ?≥ 0, 7 ∈ Rm, Eg ∈ Rp, EG ∈ Rq such that (14)–(16) and the following condition
holds:

E
g
i ≥ 0� �$yg��x� �y�7�i ≥ 0 i ∈ I0�

We say that ��x� �y� �u� is a P-stationary point based on the value function if for each partition of the index set I0
into P�Q, there exist a unit vector

� ∈N+�F ��x� �y�) l�F ��x� �y���
and ?≥ 0, 7 ∈Rm, Eg ∈Rp, EG ∈Rq such that (14)–(16) and the following condition holds:

E
g
i ≥ 0 i ∈ P� �$yg��x� �y�7�i ≥ 0 i ∈Q�

According to Proposition 4.1, similarly as in the proof of Theorem 3.1, we may apply Theorem 2.1 to the
problem ��CP��? and obtain the following results.

Theorem 4.1. Let ��x� �y� be a local solution to (BLPP) with W = RN . Suppose that F �G are C1 and f � g
are C2 around ��x� �y�. Suppose that at �y, the KKT condition holds for the lower-level problem P�x and �u is a
corresponding multiplier. Moreover, suppose that the value function V �x� is Lipschitz continuous near �x and
(CP) is partially calm at ��x� �y� �u�.

(I) ��x� �y� �u� is a C-stationary point based on the value function if there is no nonzero vector 7 ∈ Rm,
Eg ∈Rp, EG ∈Rq such that

0= $�$yf + �u$yg���x� �y�T 7+$g��x� �y�T Eg +$G��x� �y�T EG�

EG
i ≥ 0 i ∈ IG� EG

i = 0 i 	∈ IG�
E
g
i = 0 i ∈ Iu� �$yg��x� �y�7�i = 0 i ∈ I+�

E
g
i �$yg��x� �y�7�i ≥ 0 i ∈ I0�

(II) ��x� �y� �u� is an M-stationary point based on the value function if one of the following constraint qualifi-
cations holds:

(i) There is no nonzero vector 7 ∈Rm, Eg ∈Rp, EG ∈Rq such that

0= $�$yf + �u$yg���x� �y�T 7+$g��x� �y�T Eg +$G��x� �y�T EG�

EG
i ≥ 0 i ∈ IG� EG

i = 0 i 	∈ IG�
E
g
i = 0 i ∈ Iu� �$yg��x� �y�7�i = 0 i ∈ I+�

either E
g
i > 0� �$yg��x� �y�7�i > 0� or E

g
i �$yg��x� �y�7�i = 0 i ∈ I0�

(ii) $yf � g�G are affine mappings.
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(iii) The error-bound constraint qualification holds for �CP�? at ��x� �y� �u�.
(iv) There is no inequality constraint G�x� y�≤ 0, and the second-order sufficient condition holds for the

lower-level problem P�x at �y; i.e., for any nonzero v such that

$ygi��x� �y�T v= 0� i ∈ I+� $ygi��x� �y�T v≤ 0� i ∈ I0
�v� �$ 2

y f ��x� �y�+ �u$ 2
y g��x� �y��v�> 0.

(III) ��x� �y� �u� is an S-stationary point based on the value function if MPEC LICQ holds for �CP�?.
(IV) ��x� �y� �u� is a P-stationary point if either $yf � g�G is affine or MPEC piecewise MFCQ holds for �CP�?.

In what follows, we give some sufficient conditions for partial calmness of the problem (CP) to hold. First
we apply an error-bound result from Wu and Ye [24, Theorem 4.2] to obtain the following result.

Lemma 4.1. Let �� and � denote the feasible regions of the problem CP? and (CP), respectively. If for
some c > 0, @ > 0, and each �x� y� ∈ �� such that 0< f �x� y�−V �x� < @ there exists a unit vector �dx�dy�du�
that lies in the tangent cone of �� at �x� y�u� such that

$f �x� y�T �dx�dy�−V −�x)dx�≤−c−1�

then

d��x� y�u��� �≤ c�f �x� y�−V �x�� ∀ �x� y�u� ∈ �� such that 0< f �x� y�−V �x� < @� (17)

where

V −�x)dx� �= lim inf
d′→dx� t↓0

V �x+ td′�−V �x�

t

is the lower Dini derivative of V at x in direction dx.

Proposition 4.2. Assume that ��x� �y� �u� is a local solution of (CP) with W = RN and ≺ is the Pareto
preference. Furthermore, suppose that for some c > 0, @> 0, and each �x� y� ∈ �� such that 0< f �x� y�−V �x� <
@, there exists a unit vector �dx�dy�du� that lies in the tangent cone of �� at �x� y�u� such that

$f �x� y�T �dx�dy�−V −�x)dx�≤−c−1�

Then (CP) is partially calm at ��x� �y� �u� with ?= LF c, where LF is the Lipschitz constant of F .

Proof. To the contrary, suppose that ��x� �y� �u� is not a local solution of CP? with ? = LF c. Then for all
@> 0, there is �x� y�u� ∈ �� ∩B���x� �y� �u��@� such that

F �x� y�+LF c�f �x� y�−V �x��≺ F ��x� �y��

Let � x�  y�  u� be the projection of �x� y�u� to � ; i.e., � x�  y�  u� ∈� and

d��x� y�u��� �= ��x� y�u�− � x�  y�  u���

By Lemma 4.1, we can choose @> 0 small enough such that the local error bound (17) holds and F is Lipschitz.
Then

F � x�  y� ≤ F �x� y�+LF ��x� y�− � x�  y�� by Lipschitz continuity of F

≤ F �x� y�+LF ��x� y�u�− � x�  y�  u��
≤ F �x� y�+LF c�f �x� y�−V �x�� by local error bound (17)

≺ F ��x� �y��

But this contradicts the fact that ��x� �y� �u� is a local solution of (CP). �
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It can be shown easily that the linearization cone of the feasible region of �CP?� can be described as follows:
Definition 4.3 (Linearization Cone). Let �� denote the feasible region of the problem CP?. The lin-

earization cone of �� at ��x� �y� �u� is the cone defined by

����x� �y� �u�) �� � �=



�d� v� ∈Rn+m ×Rp�

$�$yf + �u$yg���x� �y�T d+$yg��x� �y�T v= 0

$Gi��x� �y�T d ≤ 0 i ∈ IG
$gi��x� �y�T d= 0 i ∈ I+
vi = 0 i ∈ Iu
$gi��x� �y�T d ≤ 0� vi ≥ 0 i ∈ I0



�

Because the feasible region of a MPEC may be nonconvex, it is unreasonable to expect that the usual
linearization cone of the feasible region �� is equal to the tangent cone of the feasible region �� . However, in
the MPEC literature, it is known that under weak assumptions, the MPEC linearization cone defined as follows
is equal to the tangent cone of the feasible region. When the tangent cone is equal to the MPEC linearization
cone, it is said that MPEC Abadie constraint qualification holds. The reader is referred to Ye [28] for sufficient
conditions for MPEC Abadie constraint qualification to hold.
Definition 4.4 (MPEC Linearization Cone). The MPEC linearization cone of �� at ��x� �y� �u� is the cone

defined by

�MPEC���x� �y� �u�) �� � �=




�d� v� ∈Rn+m ×Rp�

$�$yf + �u$yg���x� �y�T d+$yg��x� �y�T v= 0

$Gi��x� �y�T d ≤ 0 i ∈ IG
$gi��x� �y�T d= 0 i ∈ I+
vi = 0 i ∈ Iu{
$gi��x� �y�T d · vi = 0

$gi��x� �y�T d ≤ 0� vi ≥ 0
i ∈ I0




�

Theorem 4.2. Let ��x� �y� be a local solution to (BLPP) with W = RN . Suppose that F �G are C1 and f � g
are C2 around ��x� �y�. Suppose that at �y, the KKT condition holds for the lower-level problem P�x and �u is a
corresponding multiplier. Moreover, suppose that the value function V �x� is Lipschitz continuous near �x.

If for some ?> 0 there is no �d� v� ∈�MPEC���x� �y� �u�) �� � such that

;F +?�f −V �<����x� �y�)d�≺ 0� (18)

where ;F +?�f −V �<����x� �y�)d� denotes the vector with the ith component equal to ;Fi+?�f −V �<����x� �y�)d�,
then ��x� �y� �u� is an M- and P-stationary point based on the value function.

If for some ?> 0 there is no �d� v� ∈����x� �y� �u�) �� � such that

;F +?�f −V �<����x� �y�)d�≺ 0 (19)

then ��x� �y� �u� is an S-stationary point based on the value function.

Proof. By (18), �d� v�= �0� v� is an optimal solution to the following linearized problem:

min
�d� v�

H�d� �= ;F +?�f −V �<����x� �y�)d�

s.t. $�$yf + �u$yg���x� �y�T d+$yg��x� �y�T v= 0�

$Gi��x� �y�T d ≤ 0 i ∈ IG�
$gi��x� �y�T d= 0 i ∈ I+�
vi = 0 i ∈ Iu�{
$gi��x� �y�T d · vi = 0�

$gi��x� �y�T d ≤ 0� vi ≥ 0
i ∈ I0� (20)
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The objective function of the above problem is nonsmooth and convex and the constraint functions are all linear
in variable �d� v�. Hence, the MPEC linear CQ holds. Applying Theorem 2.1, we conclude that there exists a
unit vector � ∈N+�F ��x� �y�) l�F ��x� �y���, multipliers 7 ∈Rm, Eg ∈Rp, EG ∈Rq , Eu ∈Rp such that

0 ∈ 2���H��0�+$�$yf + �u$yg���x� �y�T 7+$g��x� �y�T Eg +$G��x� �y�T EG�

0= $yg��x� �y�7−Eu�

EG
i ≥ 0 i ∈ IG� EG

i = 0 i 	∈ IG�
E
g
i = 0 i ∈ Iu� Eu

i = 0 i ∈ I+�
either E

g
i > 0 E

u
i > 0 or E

g
i E

u
i = 0 i ∈ I0�

By the calculus rules for Clarke generalized gradients in Proposition 2.1, one has

2cHi�0�⊆ $Fi��x� �y�+?�$f ��x� �y�− 2cV ��x�× �0���

Hence, we have by Proposition 2.1 that

2���H��0� ⊂ 2c���H��0�

⊂
n∑
i=1

�i2
cHi�0�

⊂
n∑
i=1

�i$Fi��x� �y�+?�$f ��x� �y�− 2cV ��x�× �0���

The conclusion that ��x� �y� �u� is an M-stationary point based on the value function follows from replacing Eu by
$yg��x� �y�7. Similarly, we can prove that ��x� �y� �u� is a P-stationary point based on the value function.
Now suppose that (19) holds. Then �d� v�= �0� v� is an optimal solution to the following linearized problem:

min
�d� v�

H�d� �= F �
?���x� �y�)d�

s.t. $�$yf + �u$yg���x� �y�T d+$yg��x� �y�T v= 0�

$Gi��x� �y�T d ≤ 0 i ∈ IG�
$gi��x� �y�T d= 0 i ∈ I+�
vi = 0 i ∈ Iu�
$gi��x� �y�T d ≤ 0� vi ≥ 0 i ∈ I0�

The above problem is a multiobjective optimization problem with linear constraints. The conclusion that ��x� �y� �u�
is an S-stationary point based on the value function follows from applying Theorem 2.1 to the above optimization
problem. �

The necessary optimality conditions obtained in Theorem 4.2 involve the Clarke generalized directional deriva-
tive and the Clarke generalized gradient of the value function, and V �x� is required to be Lipschitz continuous.
Let x ∈ Rn. For any y ∈ S�x� we denote the set of KKT multipliers for the lower-level problem Px at y as
follows:

M1�x� y� �=
{
u ∈Rp� 0= $yf �x� y�+

p∑
i=1

ui$ygi�x� y�� u≥ 0�
p∑
i=1

uigi�x� y�= 0
}
�

Recall that a set-valued map Y is called uniformly bounded around �x if there exists a neighborhood U of �x such
that the set

⋃
x∈U Y �x� is bounded. The following result can be found in Gauvin and Dubeau [10] (which is a

special case of Clarke [4, Theorem 6.5.2]).

Proposition 4.3. Assume that the set-valued map Y �x� �= �y ∈ Rm� g�x� y� ≤ 0� is uniformly bounded
around �x. Suppose that MFCQ holds at y′ for all y′ ∈ S��x�. Then the value function V �x� is Lipschitz continuous
near �x and

2cV ��x�⊆ coW��x��
where

W��x� �= �$xf ��x� y′�+ u′$xg��x� y′�� y′ ∈ S��x�� u′ ∈M1��x� y′��� (21)



Ye: Necessary Optimality Conditions for Multiobjective Bilevel Programs
182 Mathematics of Operations Research 36(1), pp. 165–184, © 2011 INFORMS

In some practical circumstance, calculating the Clarke generalized gradients may be difficult or impossible.
We now introduce two new conditions under which our new necessary optimality conditions hold. Our new
conditions do not involve either the Clarke generalized directional derivative or the Clarke generalized gradient
of the value function.
Definition 4.5. Given a feasible vector ��x� �y� �u� of �CP?�. Suppose the preference is the Pareto preference.

We say that (CP) is MPEC-weakly calm at ��x� �y� �u� with modulus ? if there is no �d� v� ∈�MPEC���x� �y� �u�) �� �
such that

;$F ��x� �y�+?$f ��x� �y�<T d−? min
3∈W��x�

3dx≺ 0� (22)

We say that (CP) is weakly calm at ��x� �y� �u� with modulus ? if there is no �d� v� ∈����x� �y� �u�) �� � such that
;$F ��x� �y�+?$f ��x� �y�<T d−? min

3∈W��x�
3dx≺ 0� (23)

Because

�−V ����x)dx�= max
3∈2�−V �c��x�

�3dx�≤ max
3∈−W��x�

�3dx�= max
3∈W��x�

�−3dx�=− min
3∈W��x�

�3dx��

the MPEC-weakly calmness condition and the weakly calmness condition are weaker than conditions (18) and
(19), respectively.

Theorem 4.3. Let ��x� �y� be a local solution to (BLPP) with W = RN and ≺ being the Pareto preference.
Suppose that F �G are C1 and f � g are C2 around ��x� �y�. Suppose that at �y, the KKT condition holds for the
lower-level problem P�x and �u is a corresponding multiplier. Moreover, suppose that the set W��x� as defined in
(21) is nonempty and compact.

If (CP) is MPEC-weakly calm at ��x� �y� �u� with modulus ? ≥ 0, then there exist �i ≥ 0, i = 1� > > > �N ,∑N
i=1 �i = 1, 6i ≥ 0,

∑n+1
i=1 6

i = 1, yi ∈ S��x�, ui ∈M1��x� yi�, i= 1�2� > > > � n+ 1, and 7 ∈ Rm, Eg ∈ Rp, EG ∈ Rq

such that

0=
N∑
i=1

�i$xFi��x� �y�+?
n+1∑
i=1

6i�$xf ��x� �y�−$xf ��x� yi�− ui$xg��x� yi��

+$x�$yf + �u$yg���x� �y�T 7+$xg��x� �y�T Eg +$xG��x� �y�T EG� (24)

0=
N∑
i=1

�i$yFi��x� �y�+?$yf ��x� �y�+$y�$yf + �u$yg���x� �y�T 7+$yg��x� �y�T Eg +$yG��x� �y�T EG� (25)

EG
i ≥ 0 i ∈ IG� EG

i = 0 i 	∈ IG� (26)

E
g
i = 0 i ∈ Iu� �$yg��x� �y�7�i = 0 i ∈ I+� (27)

either E
g
i > 0� �$yg��x� �y�7�i > 0 or E

g
i �$yg��x� �y�7�i = 0 i ∈ I0�

Also for each partition of the index set I0 into P , Q there exist �i ≥ 0, i = 1� > > > �N ,
∑N

i=1 �i = 1, 6i ≥ 0,∑n+1
i=1 6

i = 1, yi ∈ S��x�, ui ∈M1��x� yi�, i= 1�2� > > > � n+ 1, and 7 ∈ Rm, Eg ∈ Rp, EG ∈ Rq such that (24)–(27)
and the following condition hold:

E
g
i ≥ 0 i ∈ P� �$yg��x� �y�7�i ≥ 0 i ∈Q�

If (CP) is weakly calm with modulus ?≥ 0 at ��x� �y� �u�, then there exist �i ≥ 0� i= 1� > > > �N
∑N

i=1 �i = 1, 6i ≥ 0,∑n+1
i=1 6

i = 1, yi ∈ S��x�, ui ∈M1��x� yi�, i= 1�2� > > > � n+ 1, and 7 ∈ Rm, Eg ∈ Rp, EG ∈ Rq such that (24)–(27)
holds and

E
g
i ≥ 0� �$yg��x� �y�7�i ≥ 0 i ∈ I0�

Proof. Suppose that (CP) is MPEC-weakly calm. Then (22) holds at ��x� �y� �u� for some ?≥ 0. Therefore,
�d� v�= �0� v� is an optimal solution to the following linearized problem:

min
�h� v�

C�x� y�d�

s.t. $�$yf + �u$yg���x� �y�T d+$yg��x� �y�T v= 0�

$Gi��x� �y�T d ≤ 0 i ∈ IG�
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$gi��x� �y�T d= 0 i ∈ I+
vi = 0 i ∈ Iu{
$gi��x� �y�T d · vi = 0

$gi��x� �y�T d ≤ 0� vi ≥ 0
i ∈ I0� (28)

where
Ci�x� y�d� �= ;$Fi��x� �y�+?$f ��x� �y�<T d−? min

3∈W��x�
3T dx�

Let J�z� �=min3∈W��x� 3T z. Because the set W��x� is assumed to be nonempty and compact, by Danskin’s theorem
one has 2J�0�= coW��x�� Therefore, by Proposition 2.1

2cCi��x� �y�0�⊂ $Fi��x� �y�+?;$f ��x� �y�− coW��x�× �0�<�

By Carathéodory’s theorem, the convex set coW��x�⊆ Rn can be represented by not more than n+ 1 elements
at a time. Therefore,

coW��x� =




n+1∑
i=1

6i�$xf ��x� yi�+ ui$xg��x� yi��� yi ∈ S��x�� ui ∈M1��x� yi��

6i ≥ 0�
n+1∑
i=1

6i = 1



�

As in the proof of Theorem 4.2, the desired result follows in applying Theorem 2.1, and we omit the proof.
The proof of the assertion under the weakly calmness condition is similar, and we omit it. �

Remark 4.1. (i) A sufficient but not necessary condition for the set W��x� to be nonempty and compact is
that the MFCQ holds at every optimal solution of the lower-level problem P�x and the set-valued map Y �x� �=
�y ∈Rm� g�x� y�≤ 0� is uniformly bounded around �x.
(ii) The new M, S, or P type optimality conditions obtained in Theorem 4.3 are in general weaker than the

M-, S-, or P-stationary conditions based on the value function defined as in Definition 4.2 respectively since by
the sensitivity of the value function

2cV ��x�⊆ coW��x�� (29)

However they are the most suitable surrogates for the C-, M-, S-, or P-stationary conditions, because the equality
in (29) holds under certain conditions.
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