
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{O}\mathrm{P}\mathrm{T}\mathrm{I}\mathrm{M}. © 2023 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 33, \mathrm{N}\mathrm{o}. 4, \mathrm{p}\mathrm{p}. 2625--2653

SECOND-ORDER OPTIMALITY CONDITIONS FOR GENERAL
NONCONVEX OPTIMIZATION PROBLEMS AND VARIATIONAL

ANALYSIS OF DISJUNCTIVE SYSTEMS\ast 

MAT\'U\v S BENKO\dagger , HELMUT GFRERER\ddagger , JANE J. YE\S ,
JIN ZHANG\P , AND JINCHUAN ZHOU\| 

Abstract. In this paper, we propose second-order sufficient optimality conditions for a very
general nonconvex constrained optimization problem, which covers many prominent mathematical
programs. Unlike the existing results in the literature, our conditions prove to be sufficient, for an
essential local minimizer of second order, under merely basic smoothness and closedness assump-
tions on the data defining the problem. In the second part, we propose a comprehensive first-
and second-order variational analysis of disjunctive systems and demonstrate how the second-order
objects appearing in the optimality conditions can be effectively computed in this case.
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1. Introduction. For decades, variational analysis has been recognized as an
important tool for studying optimization problems; we refer the reader to the standard
monographs [5, 8, 24, 30, 31, 41]. Recently, second-order variational analysis has been
developed rapidly; see [14, 16, 19, 29, 39, 40] and the references therein.

In this paper, we will deal with some special aspects of second-order variational
analysis, namely, second-order optimality conditions for an optimization problem in
the form

(GP) min f(x) s.t. g(x)\in C.

Here C \subset \BbbR m is a closed set, and f : \BbbR n \rightarrow \BbbR and g : \BbbR n \rightarrow \BbbR m are twice contin-
uously differentiable functions unless otherwise specified. This general model covers
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2626 BENKO, GFRERER, YE, ZHANG, AND ZHOU

many common optimization problems, including the very challenging ones with con-
straints expressed via complementarity relations, in which case not only the feasible
set g - 1(C) := \{ x\in \BbbR n | g(x)\in C\} but also the set C are nonconvex; see the comments
below.

We concentrate on the development of tight second-order optimality conditions;
i.e., the difference between the necessary and sufficient conditions should be small.
Note that there are also other intrinsic issues of second-order conditions like stability
of solutions or the convergence of numerical algorithms. For example, Rockafellar
[39, 40] has demonstrated the importance of second-order variational analysis in nu-
merical optimization, but these topics are far beyond the scope of this paper.

Let us now provide a brief discussion on existing results dealing with second-order
optimality conditions, both necessary and sufficient. If C is convex polyhedral, as in
the case of the standard nonlinear programs, second-order optimality conditions can
be expressed via the second derivative of the Lagrangian. If C lacks polyhedrality,
however, an additional term is needed to capture the curvature of C, and there are
various tools that can be utilized for that purpose. When C is convex, a comprehensive
analysis of second-order conditions is available in Bonnans and Shapiro [5, sections
3.2 and 3.3]. There, the second-order necessary conditions are derived within the
framework of convex analysis and are of the following form (cf. [5, Theorem 3.45]):
If a suitable constraint qualification holds at a local minimizer \=x, then for every
critical direction u and every convex subset K(u) of the second-order tangent set
T 2
C(g(\=x);\nabla g(\=x)u), there is a multiplier \lambda fulfilling first-order optimality conditions

such that

\nabla 2
xxL(\=x,\lambda )(u,u) - \sigma K(u)(\lambda )\geq 0.(1.1)

Here, L denotes the Lagrangian, and \sigma is the support function. In particular, if the
second-order tangent set T 2

C(g(\=x);\nabla g(\=x)u) is convex, we arrive at the condition

\nabla 2
xxL(\=x,\lambda )(u,u) - \sigma T 2

C(g(\=x);\nabla g(\=x)u)(\lambda )\geq 0.(1.2)

By [5, Proposition 3.46], this condition is also necessary at a local minimizer, provided
that the multiplier \lambda fulfilling the first-order optimality condition is unique, regardless
whether or not T 2

C(g(\=x);\nabla g(\=x)u) is convex.
In the very recent paper by Gfrerer, Ye, and Zhou [19], optimality conditions have

been stated for nonconvex C. In this case, one has to consider different types of first-
order optimality conditions involving strong (S-), Mordukhovich (M-), and Clarke (C-)
multipliers, respectively. Moreover, the feasible region may behave quite differently
when moving away from the minimizer \=x in different directions. This fact motivates
the use of different constraint qualifications and different types of multipliers when
considering different critical directions.

When a directional nondegeneracy condition for the critical direction u is satisfied,
ensuring that directional S-, M-, and C-multipliers coincide and are unique, condition
(1.2) remains valid; see [19, Corollary 5]. When relaxing the directional nondegeneracy
to the directional Robinson constraint qualification, one can still show that for every
convex subset K(u) of T 2

C(g(\=x);\nabla g(\=x)u), there is some directional C-multiplier \lambda 
satisfying (1.1); cf. [19, Corollary 4]. As it is shown in [19, Proposition 8], this is a
very strong second-order necessary condition. However, it has the disadvantage that
the directional C-multiplier \lambda depends not only on the critical direction u but also
on the convex set K(u). This can be remediated by the use of the so-called lower
generalized support function \^\sigma . It was shown in [19] that under the directional metric
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SECOND-ORDER VARIATIONAL ANALYSIS 2627

subregularity constraint qualification, which is weaker than the directional Robinson
constraint qualification, there is a directional M-multiplier \lambda such that

\nabla 2
xxL(\=x,\lambda )(u,u) - \^\sigma T 2

C(g(\=x);\nabla g(\=x)u)(\lambda )\geq 0.

This function \^\sigma is indeed an extension of the support function, as for any closed set
D, we have \^\sigma D \leq \sigma D, and the equality holds when D is closed and convex.

Now let us consider the second-order sufficient conditions. Let L\alpha (x,\lambda ) := \alpha f(x)+
\langle \lambda , g(x)\rangle . If, at a feasible point \=x, for every critical direction u, the set C is outer
second-order regular at g(\=x) in direction \nabla g(\=x)u and there are \alpha \geq 0 and \lambda \in \BbbR m such
that \alpha \nabla f(\=x)u= 0, \nabla xL

\alpha (\=x,\lambda ) = 0, and

\nabla 2
xxL

\alpha (\=x,\lambda )(u,u) - \sigma T 2
C(g(\=x);\nabla g(\=x)u)(\lambda )> 0,

then the point \=x is a local minimizer fulfilling the so-called quadratic growth condition.
In a slightly different form, this result was first proved in [5, Theorem 3.86] for convex
sets C and then extended in [19, Theorem 4] to the nonconvex case. These suffi-
cient conditions were essentially improved in the recent work by Mohammadi, Mor-
dukhovich, and Sarabi [29, Proposition 7.3], where the assumption of outer second-
order regularity is dropped and the sigma term  - \sigma T 2

C(g(\=x);\nabla g(\=x)u)(\lambda ) is replaced by the

second-order subderivative d2\delta C(g(\=x);\lambda )(\nabla g(\=x)u) of the indicator function \delta C . One
of the main results of this paper is an improvement of [29, Proposition 7.3] in that the
set C is assumed to be neither convex nor parabolically derivable. Moreover, we do
not need the existence of an S-multiplier, and we can choose different multipliers for
every critical direction in order to fulfill the second-order sufficient condition. Finally,
we not only prove the quadratic growth condition but also show that the point in
question is an essential local minimizer of second order.

Summing up these considerations, we see that, besides the imposed constraint
qualification, the second-order optimality conditions rely on the three second-order
objects \^\sigma T 2

C(\=z;w)(\lambda ), \sigma T 2
C(\=z;w)(\lambda ), and d2\delta C(\=z;\lambda )(w), each of them describing in some

way the curvature of the set C and linked together by the inequalities

d2\delta C(\=z;\lambda )(w)\leq  - \sigma T 2
C(\=z;w)(\lambda )\leq  - \^\sigma T 2

C(\=z;w)(\lambda ),

which are valid for any closed set C, every tangent w \in TC(\=z), and every \lambda with
\langle \lambda ,w\rangle \geq 0; see Proposition 2.18 below.

When studying optimization problems via some elaborate machinery of varia-
tional analysis, interesting as it may be, the important question remains: Can the
employed tools be effectively computed or estimated and the obtained results suit-
ably applied?

While with convex C we can formulate several standard programs as problem
(GP), such as nonlinear programs, second-order cone programs, etc., we are primarily
interested in programs modeled with nonconvex C. Such programs are considered very
challenging but also increasingly important by the optimization community. Among
others, they include the bilevel programs (see, e.g., Dempe [9] and Ye and Zhu [45]),
programs with constraints governed by quasi-variational inequalities (see, e.g., Mor-
dukhovich and Outrata [32]), and the mathematical program with second-order cone
complementarity constraints (SOC-MPCC) (see, e.g., Outrata and Sun [34] and Ye
and Zhou [43]). All of these problem classes can be modeled as a special case of
problem (GP) with set C possessing the following structure:

C =
\bigl\{ \bigl( 
y, b(y)T \eta 

\bigr) 
| (q(y), \eta )\in gphNP

\bigr\} 
,(1.3)
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2628 BENKO, GFRERER, YE, ZHANG, AND ZHOU

where b and q are sufficiently smooth mappings (b maps into the space of matrices of
an appropriate dimension, and in many cases, there holds that b=\nabla q), P is a convex
polyhedral set, and NP is the associated normal cone mapping. By taking z := (y, \eta ),
B(z1, z2) := (z1, b(z1)

T z2), G(z1, z2) := (q(z1), z2), and D := gphNP , the set C given
by (1.3) can be represented as

C =B(\Gamma ), where \Gamma = \{ z | G(z)\in D\} .

Since P is assumed to be convex polyhedral, the set D is polyhedral; i.e., D is the
finite union of convex polyhedral sets.

In this paper, we will calculate \^\sigma T 2
\Gamma (\=z;w)(\lambda ), \sigma T 2

\Gamma (\=z;w)(\lambda ), and d2\delta \Gamma (\=z;\lambda )(w) and
defer the calculation of these three quantities for \Gamma replaced by the set C defined
by (1.3) to a forthcoming paper by Benko et al. [4]. To accomplish this goal, in
the second part of the paper, we provide a comprehensive first- and second-order
variational analysis of the disjunctive system

\Gamma :=G - 1(D) = \{ x\in \BbbR n | G(x)\in D\} ,

where G : \BbbR n \rightarrow \BbbR d is twice continuously differentiable and D \subset \BbbR d is assumed to be
polyhedral. The obtained results are also of independent interest and may be useful
in other applications.

We organize our paper as follows. Section 2 contains the preliminaries and auxil-
iary results. In section 3, we derive the second-order sufficient optimality condition for
the general program (GP). Sections 4 and 5 are devoted to the first- and the second-
order variational analysis of the set G - 1(D), respectively. Finally, in section 6, we
demonstrate how to recover the second-order necessary and sufficient conditions from
[12] for the disjunctive program by means of our results.

2. Preliminaries and auxiliary results. In this section, we recall some back-
ground material from variational analysis and provide some preliminary results. Let
us begin with the notation. The open unit ball is denoted by \BbbB , and the open ball
centered at z with radius \delta is denoted by \BbbB (z, \delta ). For a set S \subset \BbbR n, denote by span
S, cl S, and conv S its linear span, closure, and convex hull, respectively. We call
a subspace L \subset \BbbR n the generalized lineality space of S and denote it by \scrL (S) pro-
vided that it is the largest subspace satisfying S + L\subset S. Since any linear subspace
includes 0, we actually have S + \scrL (S) = S, and if S is a closed convex cone, we get
\scrL (S) = S \cap ( - S). The indicator function \delta S : \BbbR n \rightarrow \=\BbbR := [ - \infty ,+\infty ] of S is given
as \delta S(z) = 0 for z \in S and \delta S(z) = +\infty if z /\in S. Next, if S is closed, let S\circ and
\sigma S :\BbbR n \rightarrow \=\BbbR stand for the polar cone to S and the support function of S, respectively,
i.e., S\circ := \{ z\ast \in \BbbR n | \langle z\ast , z\rangle \leq 0, \forall z \in S\} and \sigma S(z

\ast ) := sup\{ \langle z\ast , z\rangle | z \in S\} for
z\ast \in \BbbR n. For an extended function \varphi : \BbbR n \rightarrow \=\BbbR , we define its effective domain by
dom\varphi := \{ z | \varphi (z) < +\infty \} . For w \in \BbbR n, denote by \{ w\} \bot the orthogonal complement
of the linear space generated by w. Let o : \BbbR + \rightarrow \BbbR n stand for a mapping with the

property that o(t)/t \rightarrow 0 when t \downarrow 0. The symbol z\prime 
S\rightarrow z indicates that z\prime \in S and

z\prime \rightarrow z. For a mapping \psi : \BbbR n \rightarrow \BbbR d and z \in \BbbR n, we denote by \nabla \psi (z) \in \BbbR d\times n its
Jacobian at z and by \nabla 2\psi (z) its second derivative at z as defined by

wT\nabla 2\psi (z) := lim
t\rightarrow 0

\nabla \psi (z + tw) - \nabla \psi (z)
t

\forall w \in \BbbR n.

Hence,

\nabla 2\psi (z)(w,w) :=wT\nabla 2\psi (z)w= (wT\nabla 2\psi 1(z)w, . . . ,w
T\nabla 2\psi d(z)w)

T \forall w \in \BbbR n.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SECOND-ORDER VARIATIONAL ANALYSIS 2629

2.1. Variational geometry. First we review the various classical concepts of
tangent and normal cones.

Definition 2.1 (tangent and normal cones [41]). Given S \subset \BbbR n, z \in S, the
regular/Clarke tangent cone and tangent/contingent cone to S at z are defined, re-
spectively, by

\widehat TS(z) := lim inf
z\prime S\rightarrow z
t\downarrow 0

S  - z\prime 

t
=
\Bigl\{ 
w \in \BbbR n

\bigm| \bigm| \bigm| \forall tk \downarrow 0, zk S\rightarrow z, \exists wk \rightarrow w with zk + tkwk \in S
\Bigr\} 
,

TS(z) :=
\bigl\{ 
w \in \BbbR n

\bigm| \bigm| \exists tk \downarrow 0, wk \rightarrow w with z + tkwk \in S
\bigr\} 
.

For w \in TS(z), the outer second-order tangent set to S at z in direction w is defined
by

T 2
S(z;w) :=

\biggl\{ 
s\in \BbbR n

\bigm| \bigm| \bigm| \exists tk \downarrow 0, sk \rightarrow s with z + tkw+
1

2
t2ksk \in S

\biggr\} 
.

The regular/Fr\'echet normal cone, the proximal normal cone, and the limit-
ing/Mordukhovich normal cone to S at z are given, respectively, by\widehat NS(z) :=

\bigl\{ 
z\ast \in \BbbR n

\bigm| \bigm| \langle z\ast , z\prime  - z\rangle \leq o
\bigl( 
\| z\prime  - z\| 

\bigr) 
\forall z\prime \in S

\bigr\} 
,\widehat Np

S(z) :=
\bigl\{ 
z\ast \in \BbbR n

\bigm| \bigm| \exists \gamma > 0 : \langle z\ast , z\prime  - z\rangle \leq \gamma \| z\prime  - z\| 2 \forall z\prime \in S
\bigr\} 
,

NS(z) :=
\Bigl\{ 
z\ast \in \BbbR n

\bigm| \bigm| \bigm| \exists zk S\rightarrow z, z\ast k \rightarrow z\ast with z\ast k \in \widehat NS(zk)
\Bigr\} 
.

Recall that for any set S, one always has \widehat NS(z) = TS(z)
\circ , and if S is closed, then

NS(z)
\circ = \widehat TS(z); cf. Rockafellar and Wets [41, Theorem 6.28].

Recently, motivated by the formula \widehat TS(z) = lim inf
z\prime S\rightarrow z

TS(z
\prime ) (cf. [41, Theorem

6.26]), a directional variant of the regular tangent cone has been introduced.

Definition 2.2 (directional regular tangent cone [19, Definition 2]). Given S \subset 
\BbbR n, z \in S, and w \in \BbbR n, the regular/Clarke tangent cone to S at z in direction w is
defined by\widehat TS(z;w) := lim inf

t\downarrow 0,w\prime \rightarrow w
z+tw\prime \in S

TS(z + tw\prime )

=
\Bigl\{ 
v \in \BbbR n

\bigm| \bigm| \forall tk \downarrow 0,wk \rightarrow w,z + tkwk \in S,\exists vk \rightarrow v with vk \in TS(z + tkwk)
\Bigr\} 
.

It is easy to see that \widehat TS(z; 0) = \widehat TS(z). Similar to the regular tangent cone,
the directional regular tangent cone \widehat TS(z;w) is a closed and convex cone; see [19,
Proposition 3].

Proposition 2.3 ([19, Proposition 1]). Given a closed set S \subset \BbbR n, for every
z \in S and every w \in TS(z), one has

TTS(z)(w) + \widehat TS(z;w) = TTS(z)(w), T 2
S(z;w) + \widehat TS(z;w) = T 2

S(z;w).

Definition 2.4 (directional normal cones [11, 19, 20]). Given S \subset \BbbR n, z \in S and
a direction w \in \BbbR n, the limiting and the Clarke normal cone to S in direction w at z
are given, respectively, by

NS(z;w) :=
\Bigl\{ 
z\ast \in \BbbR n

\bigm| \bigm| \bigm| \exists tk \downarrow 0,wk \rightarrow w,z\ast k \rightarrow z\ast with z\ast k \in \widehat NS(z + tkwk)
\Bigr\} 
,

N c
S(z;w) := cl convNS(z;w).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2630 BENKO, GFRERER, YE, ZHANG, AND ZHOU

By [12, Lemma 2.1], when S is the union of finitely many convex polyhedral sets,
we have that for any w \in TS(z),

NS(z;w)\subset NS(z)\cap \{ w\} \bot .

Moreover, if S is a closed convex set and w \in TS(z),

NS(z;w) =NTS(z)(w) =NS(z)\cap \{ w\} \bot .(2.1)

Proposition 2.5 (directional tangent-normal polarity [19, Proposition 3]). For
a closed set S \subset \BbbR n, z \in S, and w \in \BbbR n, one has

\widehat TS(z;w) =NS(z;w)
\circ =N c

S(z;w)
\circ , \widehat TS(z;w)\circ =N c

S(z;w).

The definition of the lineality space \scrL (S) readily yields

TS(z + l) = TS(z), \widehat NS(z + l) = \widehat NS(z) \forall z \in S, \forall l \in \scrL (S).(2.2)

By the previous proposition, we also get the following result.

Proposition 2.6. Let S \subset \BbbR n be a closed set, z \in S, and w \in TS(z). Then\bigl( 
spanNS(z;w)

\bigr) \circ 
=
\bigl( 
spanN c

S(z;w)
\bigr) \circ 

=\scrL ( \widehat TS(z;w))\subset \scrL (TTS(z)(w)).(2.3)

Proof. Notice that\bigl( 
spanNS(z;w)

\bigr) \circ 
=
\bigl( 
spanN c

S(z;w)
\bigr) \circ 

=
\bigl( 
N c

S(z;w) - N c
S(z;w)

\bigr) \circ 
=
\bigl( 
N c

S(z;w)
\bigr) \circ \cap  - 

\bigl( 
N c

S(z;w)
\bigr) \circ 

=\scrL (N c
S(z;w)

\circ ) =\scrL ( \widehat TS(z;w)),
where the first equality holds obviously using the fact that the set N c

S(z;w) is a closed
convex cone, the second equality follows from [38, Theorem 2.7], the third equality
follows from the calculus rule for polar cones in [38, Corollary 16.4.2], the fourth
equality hold by the fact that the set N c

S(z;w)
\circ is a closed convex cone, and the fifth

equality holds by Proposition 2.5.
Proposition 2.3 yields TTS(z)(w) + \widehat TS(z;w) = TTS(z)(w), and since \widehat TS(z;w) is

a closed convex cone by [19, Proposition 3], we have \scrL ( \widehat TS(z;w)) = \widehat TS(z;w) \cap 
( - \widehat TS(z;w)). Thus,

TTS(z)(w) +\scrL ( \widehat TS(z;w))\subset TTS(z)(w)

holds as well, and the inclusion in (2.3) follows by the definition of the lineality
space.

2.2. Directional proximal normal cone. It turns out that we also need a
directional version of the proximal normal cone; see Proposition 2.18. To this end, we
need the following definition.

Definition 2.7 (directional neighborhood [11]). Let w \in \BbbR n. For \delta , \rho > 0,

V\delta ,\rho (w) :=
\bigl\{ 
w\prime \in \delta \BbbB 

\bigm| \bigm| \bigm\| \bigm\| \| w\| w\prime  - \| w\prime \| w
\bigm\| \bigm\| \leq \rho \| w\prime \| \| w\| 

\bigr\} 
is called a directional neighborhood of direction w.
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SECOND-ORDER VARIATIONAL ANALYSIS 2631

It is easy to see that V\delta ,\rho (w)\subset V\delta ,\rho (0) = \delta \BbbB . Hence, the directional neighborhood
is in general smaller than the classical neighborhood.

Recall that the proximal normal cone to a closed set S at a point z \in S can be
equivalently given by\widehat Np

S(z) := \{ z\ast \in \BbbR n | \exists \delta , \gamma > 0 : \langle z\ast , z\prime  - z\rangle \leq \gamma \| z\prime  - z\| 2 \forall z\prime \in S \cap \BbbB (z, \delta )\} ;

see, e.g., [8, Proposition 1.5]. By replacing the standard neighborhood by the di-
rectional one, we arrive at the following directional version of the proximal normal
cone.

Definition 2.8 (directional proximal normal cone). Given a closed set S \subset \BbbR n,
a point z \in S, and a direction w \in TS(z), we define the proximal prenormal cone to S
in direction w at z as

\^\scrN p
S (z;w) := \{ z\ast \in \BbbR n | \exists \delta , \rho , \gamma > 0 : \langle z\ast , z\prime  - z\rangle \leq \gamma \| z\prime  - z\| 2 \forall z\prime \in S \cap (z + V\delta ,\rho (w))\} 

and the proximal normal cone to S at z in direction w as\widehat Np
S(z;w) :=

\^\scrN p
S (z;w)\cap \{ w\} \bot .

In the case when w \not \in TS(z), we set \^\scrN p
S (z;w) :=

\widehat Np
S(z;w) := \emptyset .

From the definition, we can see that the proximal prenormal cone is in general
larger than the classical proximal normal cone, i.e., \widehat Np

S(z) \subset \^\scrN p
S (z;w), for any w \in 

TS(z). Moreover, from the definition, any vector z\ast satisfying \langle z\ast ,w\rangle < 0 is always
included in \^\scrN p

S (z;w). In fact, we have

\{ z\ast | \langle z\ast ,w\rangle < 0\} \subset \^\scrN p
S (z;w)\subset \{ z\ast | \langle z\ast ,w\rangle \leq 0\} .(2.4)

Since the vectors z\ast satisfying \langle z\ast ,w\rangle < 0 do not provide much useful information,
it is natural to restrict the directional proximal prenormals by intersecting with the
orthogonal complement of w. This restriction yields the concept of directional prox-
imal normal cone and ensures that the directional proximal normal is contained in
the directional limiting normal cone; see Proposition 2.9. In particular, when S is a
closed convex set, combining (2.1) and (2.6) below, we get\widehat Np

S(z;w) =NS(z;w) =NS(z)\cap \{ w\} \bot =NTS(z)(w).(2.5)

In the following proposition, we show convexity of the directional proximal normal
cone and compare it with other normal cones.

Proposition 2.9. Let S \subset \BbbR n be closed, and let w \in TS(z) be given. Then both
\^\scrN p
S (z;w) and

\widehat Np
S(z;w) are convex cones and\widehat Np

S(z)\cap \{ w\} \bot \subset \widehat Np
S(z;w)\subset \widehat NTS(z)(w)\subset NTS(z)(w)\subset NS(z;w).(2.6)

Proof. By definition, it is easy to show that \^\scrN p
S (z;w) is a convex cone. Thus,\widehat Np

S(z;w) is also a convex cone as the intersection of two convex cones.

The first inclusion in (2.6) follows immediately from \widehat Np
S(z)\subset \^\scrN p

S (z;w), the third
one is trivial, and the last one was proved in [19, Lemma 3]. Thus, it remains to show
the second inclusion.

Since \widehat Np
S(z; 0) =

\widehat Np
S(z)\subset \widehat NS(z) = \widehat NTS(z)(0),
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2632 BENKO, GFRERER, YE, ZHANG, AND ZHOU

where the last equation follows from [18, equation (3)], the inclusion holds true for
w= 0. Now let w \not = 0, and consider z\ast \in \widehat Np

S(z;w). We wish to show that

z\ast \in (TTS(z)(w))
\circ = \widehat NTS(z)(w).(2.7)

By definition, we can find some \delta > 0, \gamma > 0 such that

\langle z\ast , z\prime  - z\rangle \leq \gamma \| z\prime  - z\| 2 \forall z\prime \in (z + V\delta ,\delta (w))\cap S.(2.8)

To show (2.7), we pick v \in TTS(z)(w) together with sequences tk \downarrow 0 and vk \rightarrow v
satisfying w + tkvk \in TS(z). For every k, there exist sequences \tau kj \downarrow 0 and skj \rightarrow 0 as
j \rightarrow \infty satisfying z + \tau kj (w + tkvk + skj ) \in S\forall j. For all k sufficiently large, we have\bigm\| \bigm\| w+tkvk
\| w+tkvk\|  - w

\| w\| 
\bigm\| \bigm\| < \delta 

2 , and we can find an index j(k) such that

\tau kj(k) <
1

k
tk, \| skj(k)\| <

1

k
tk,

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| w+ tkvk + skj(k)\bigm\| \bigm\| \bigm\| w+ tkvk + skj(k)

\bigm\| \bigm\| \bigm\|  - w+ tkvk
\| w+ tkvk\| 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| < \delta 

2
,

\tau kj(k)\| w+ tkvk + skj(k)\| < \delta .

It follows by Definition 2.7 that z + \tau kj(k)(w + tkvk + skj(k)) \in (z + V\delta ,\delta (w)) \cap S, and
together with \langle z\ast ,w\rangle = 0, we obtain from (2.8) that

\tau kj(k)tk

\Biggl\langle 
z\ast , vk +

skj(k)

tk

\Biggr\rangle 
=
\Bigl\langle 
z\ast ,

\Bigl( 
z + \tau kj(k)

\Bigl( 
w+ tkvk + skj(k)

\Bigr) \Bigr) 
 - z

\Bigr\rangle 
\leq \gamma 

\Bigl( 
\tau kj(k)

\Bigr) 2 \bigm\| \bigm\| \bigm\| w+ tkvk + skj(k)

\bigm\| \bigm\| \bigm\| 2 .
Dividing this inequality by \tau kj(k)tk, we conclude that

\langle z\ast , v\rangle = lim
k\rightarrow \infty 

\Biggl\langle 
z\ast , vk +

skj(k)

tk

\Biggr\rangle 
\leq lim

k\rightarrow \infty 
\gamma 
\tau kj(k)

tk

\bigm\| \bigm\| \bigm\| w+ tkvk + skj(k)

\bigm\| \bigm\| \bigm\| 2 = 0.

Hence, (2.7) holds, and therefore the second inclusion in (2.6) follows.

2.3. Polyhedral sets. Next, we provide formulas for tangents and normals to
polyhedral sets. A set D\subset \BbbR d is said to be convex polyhedral if it is the intersection of
finitely many half-spaces, whereas it is said to be polyhedral whenever it is the union
of finitely many convex polyhedral sets.

Polyhedral sets enjoy the following important property; see also [41, Exercise
6.47].

Proposition 2.10 (exactness of tangential approximations [24, Proposition
8.24]). If D is polyhedral and z \in D, then there is an open neighborhood W of 0
such that

(D - z)\cap W = TD(z)\cap W,

or, equivalently,

D \cap (z +W ) = (z + TD(z))\cap (z +W ).(2.9)

Equation (2.10) in the result below extends [41, Proposition 13.13] from convex
polyhedral sets to polyhedral sets.
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SECOND-ORDER VARIATIONAL ANALYSIS 2633

Proposition 2.11. Let D be a polyhedral set, z \in D, and w \in TD(z). Then

T 2
D(z;w) = TTD(z)(w),(2.10) \widehat NTD(z)(w) = \widehat NT 2

D(z;w)(0) = (T 2
D(z;w))\circ ,(2.11)

ND(z;w) =NTD(z)(w) =NT 2
D(z;w)(0).(2.12)

Proof. Let D := \cup s
i=1Di, where each Di(i = 1, . . . , s) is convex polyhedral and

z \in D. By (2.9), we get

TD(z\prime ) = Tz+TD(z)(z
\prime ) = TTD(z)(z

\prime  - z) \forall z\prime \in D \cap (z +W ),(2.13)

where W is an open neighborhood of 0. Consider a tangent direction w \in TD(z).
Then, by [41, Proposition 13.13], we have T 2

Di
(z;w) = TTDi

(z)(w) whenever z \in Di

and w \in TDi(z). Since we have T 2
Di

(z;w) = TTDi
(z)(w) = \emptyset for the remaining i by

definition, we obtain (2.10) by

T 2
D(z;w) =

s\bigcup 
i=1

T 2
Di

(z;w) =

s\bigcup 
i=1

TTDi
(z)(w) = TTD(z)(w),(2.14)

where the first and third equations are due to [5, Proposition 3.37]. Polarization
of both sides yields (T 2

D(z;w))\circ = (TTD(z)(w))
\circ = \widehat NTD(z)(w). Since T 2

D(z;w) =
TTD(z)(w), we have

\widehat NT 2
D(z;w)(0) = \widehat NTTD(z)(w)(0) = \widehat NTD(z)(w),

where the last equality follows from the fact that TD(z) is a closed cone; see, e.g., [18,
equation (3)]. Hence, (2.11) holds. It remains to show (2.12). For all z\prime sufficiently
close to z, we have \widehat ND(z\prime ) = \widehat NTD(z)(z

\prime  - z) by virtue of (2.13). Hence, for every
w \in TD(z), we have

ND(z;w) = \{ z\ast | \exists tk \downarrow 0,wk \rightarrow w,z\ast k \rightarrow z\ast with z\ast k \in \widehat ND(z + tkwk) = \widehat NTD(z)(wk)\} 
(2.15)

=NTD(z)(w).

For w = 0, we particularly have ND(z) = NTD(z)(0). Since TD(z) is also polyhe-
dral, the same formula applies, and taking into account (2.14), we get NTD(z)(w) =
NTTD(z)(w)(0) = NT 2

D(z;w)(0). Combining this equation with (2.15), we obtain
(2.12).

2.4. Variational geometry of constraint systems under metric subregu-
larity. Let us mention some basic facts about the tangents and the normals to a set S
described by constraints as S := g - 1(C) = \{ x\in \BbbR n | g(x)\in C\} , where g :\BbbR n \rightarrow \BbbR d and
C \subset \BbbR d. We will need to use the following concept of directional metric subregularity,
which we introduce only in the special case of constraint mappings.

Definition 2.12 (directional metric subregularity [11, Definition 1]). Let g :
\BbbR n \rightarrow \BbbR d, C \subset \BbbR d, and \=x \in S := g - 1(C). We say that the set-valued constraint
mapping x\rightrightarrows g(x) - C is metrically subregular at (\=x,0) in direction u \in \BbbR n or that
the metric subregularity constraint qualification (MSCQ) holds at \=x in direction u if
there exist \kappa , \delta , \rho > 0 such that

dist(x,S)\leq \kappa dist(g(x),C) \forall x\in \=x+ V\delta ,\rho (u).(2.16)
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2634 BENKO, GFRERER, YE, ZHANG, AND ZHOU

The infimum of all \kappa for which there are \delta , \rho > 0 satisfying (2.16) is called the sub-
regularity modulus. In the case u = 0, we simply say that the constraint mapping is
metrically subregular at (\=x,0) or that MSCQ holds at \=x.

If g is continuously differentiable, then by [12, Theorem 2.6], a sufficient condition
for MSCQ at \=x in direction u is the condition

\nabla g(\=x)T y\ast = 0, y\ast \in NC(g(\=x);\nabla g(\=x)u) =\Rightarrow y\ast = 0.(2.17)

Asking (2.17) to be satisfied for all nonzero u\in \BbbR n corresponds to the so-called first-
order sufficient condition for metric subregularity (FOSCMS), which implies MSCQ
at \=x. If in addition the graph of the constraint mapping is a closed cone, then the
metric subregularity holds locally if and only if it holds globally.

Proposition 2.13 ([13, Lemma 3]). Let g : \BbbR n \rightarrow \BbbR d, C \subset \BbbR d, and assume that
\{ (x, y)\in \BbbR n \times \BbbR d | g(x) - y \in C\} , the graph of the constraint mapping x\rightrightarrows g(x) - C,
is a closed cone. Then 0\in S, and if MSCQ holds at 0, then there is some \kappa > 0 such
that (2.16) holds for all x.

In the following proposition, we collect the basic results about tangents, normals,
and second-order tangents to set S.

Proposition 2.14. Let g : \BbbR n \rightarrow \BbbR d be continuously differentiable, let C \subset \BbbR d

be a closed set, and consider \=x \in S := g - 1(C). Suppose that the constraint mapping
x\rightrightarrows g(x) - C is metrically subregular at (\=x,0) in direction \=u \in \BbbR n. Then there is a
neighborhood U of \=u such that for every u\in U , one has

TS(\=x)\cap U =\nabla g(\=x) - 1
\bigl( 
TC(g(\=x))

\bigr) 
\cap U, TTS(\=x)(u) =\nabla g(\=x) - 1

\bigl( 
TTC(g(\=x))(\nabla g(\=x)u)

\bigr) 
,

(2.18a)

NS(\=x;u)\subset \nabla g(\=x)TNC(g(\=x);\nabla g(\=x)u), NTS(\=x)(u)\subset \nabla g(\=x)TNTC(g(\=x))(\nabla g(\=x)u).
(2.18b)

Additionally, if g is twice continuously differentiable and u\in TS(\=x)\cap U , one has

T 2
S(\=x;u) = \{ p\in \BbbR n | \nabla g(\=x)p+\nabla 2g(\=x)(u,u)\in T 2

C(g(\=x);\nabla g(\=x)u)\} 

and, denoting the subregularity modulus by \kappa ,

dist(p,T 2
S(\=x;u))\leq \kappa dist(\nabla g(\=x)p+\nabla 2g(\=x)(u,u), T 2

C(g(\=x);\nabla g(\=x)u)) \forall p\in \BbbR n.

Moreover, if there exists a subspace L\subset \BbbR d such that

TTC(g(\=x))(\nabla g(\=x)u) +L\subset TTC(g(\=x))(\nabla g(\=x)u) and \nabla g(\=x)\BbbR n +L=\BbbR d,(2.19)

then

\widehat NTS(\=x)(u) =\nabla g(\=x)T \widehat NTC(g(\=x))(\nabla g(\=x)u).

The subregularity assumption as well as the existence of the subspace L satisfying
(2.19) with u= \=u are fulfilled particularly under the following directional nondegener-
acy condition:

\nabla g(\=x)T y\ast = 0, y\ast \in spanNC(g(\=x);\nabla g(\=x)\=u) =\Rightarrow y\ast = 0.(2.20)
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SECOND-ORDER VARIATIONAL ANALYSIS 2635

Proof. By Definition 2.12, there exists a neighborhood U of \=u such that x \rightrightarrows 
g(x) - C is metrically subregular at \=x in every direction u\in U with the same modulus.
Thus, the estimate for the directional limiting normal cone comes from [2, Theorem
3.1]. In [19, Proposition 5], one can find all the statements regarding the second-order
tangents as well as the first formula in (2.18a), which means that, locally around
any u \in U , the set TS(\=x) has the same preimage structure as S. By [19, Lemma 1],
however, we infer that the corresponding constraint mapping u\prime \rightrightarrows \nabla g(\=x)u\prime  - TC(g(\=x))
is metrically subregular at (u,0), and so the remaining two estimates for TTS(\=x)(u) and
NTS(\=x)(u) are results of the standard, nondirectional calculus. Moreover, the formula
for the regular normal cone is from [16, Theorem 4].

Note that the nondegeneracy condition (2.20) is clearly stronger than FOSCMS,
so it obviously implies MSCQ at \=x in direction \=u.

Let us now show that the subspace \scrL ( \widehat TC(g(\=x);\nabla g(\=x)\=u)) satisfies (2.19) with
u = \=u. The first property follows immediately from Proposition 2.6. By the nonde-
generacy, we get

\BbbR d =
\bigl( 
ker\nabla g(\=x)T \cap spanNC(g(\=x);\nabla g(\=x)\=u)

\bigr) \bot 
=\nabla g(\=x)\BbbR n +\scrL ( \widehat TC(g(\=x);\nabla g(\=x)\=u)),

and (2.19) follows.

For more information about the directional nondegeneracy (2.20), we the reader
refer to [3, section 2.4], where this condition was first introduced for convex polyhedral
set C. Particularly, [3, Example 2.15] clarifies that for a nonzero direction, it is a
strictly milder assumption than the standard nondegeneracy [5, Formula 4.172], which
corresponds to the case \=u = 0. We will further utilize directional nondegeneracy in
sections 4 and 5 in the case of polyhedral set C, showing that under (2.20), all the four
sets in (2.18b) actually coincide (see Theorem 4.1) and certain directional multipliers
are unique (see Corollary 5.8).

2.5. Generalized support function and second subderivative. In this final
preliminary part, we recall the definitions of the lower generalized support function
and state some basic properties.

Definition 2.15 (lower generalized support function [19]). Given a nonempty
closed set S \subset \BbbR n, we define the lower generalized support function to S as the mapping
\^\sigma S :\BbbR n \rightarrow \=\BbbR by

\^\sigma S(z
\ast ) := lim inf

\~z\ast \rightarrow z\ast 
inf
z
\{ \langle \~z\ast , z\rangle | \~z\ast \in NS(z)\} = lim inf

\~z\ast \rightarrow z\ast 
inf
z
\{ \langle \~z\ast , z\rangle | \~z\ast \in \widehat NS(z)\} \forall z\ast \in \BbbR n.

If S = \emptyset , then we define \^\sigma S(z
\ast ) := - \infty for all z\ast .

It was shown in [19] that, in general, \^\sigma S(z
\ast )\leq \sigma S(z

\ast ) for all z\ast , and the equality
holds when S is convex. If S = z+K is a translation of a cone K, we get the following
formula, which will come in handy in section 5.

Proposition 2.16. For every nonempty closed cone K \subset \BbbR n (not necessarily
convex) and every z \in \BbbR n, we have

\^\sigma z+K(z\ast ) =

\Biggl\{ 
\langle z\ast , z\rangle if z\ast \in NK(0),

\infty otherwise.

Particularly, dom \^\sigma z+K =NK(0).
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2636 BENKO, GFRERER, YE, ZHANG, AND ZHOU

Proof. First, note that since K is assumed to be a cone, for all q \in K, we have

\widehat Nz+K(z + q) = \widehat NK(q) = \widehat NK(\alpha q) = \widehat Nz+K(z + \alpha q) \forall \alpha > 0,(2.21a)

\langle z\ast , q\rangle = 0 \forall z\ast \in \widehat NK(q).(2.21b)

We shall show that \^\sigma z+K(z\ast ) < \infty if and only if z\ast \in NK(0), and in this case, we
have \^\sigma z+K(z\ast ) = \langle z\ast , z\rangle . If \^\sigma z+K(z\ast ) <\infty , then there exist sequences z\ast k \rightarrow z\ast and

qk \in K with z\ast k \in \widehat Nz+K(z+ qk) for all k such that \^\sigma z+K(z\ast ) = limk\rightarrow \infty \langle z\ast k, z+ qk\rangle . By
(2.21a), we have z\ast k \in \widehat Nz+K(z + qk) = \widehat NK(qk) and hence \langle z\ast k, qk\rangle = 0 by (2.21b). It
follows that

\^\sigma z+K(z\ast ) = lim
k\rightarrow \infty 

\langle z\ast k, z\rangle = \langle z\ast , z\rangle .

Moreover, by (2.21a), we have z\ast k \in \widehat NK(\alpha kqk) for \alpha k := 1/(k(\| qk\| + 1)). Taking
the limit as k goes to \infty , we obtain z\ast \in NK(0). Conversely, let z\ast \in NK(0), and
consider sequences qk \in K and z\ast k \in \widehat NK(qk) such that qk \rightarrow 0 and z\ast k \rightarrow z\ast . Then

z\ast k \in \widehat NK(qk) = \widehat Nz+K(z + qk) by (2.21a) and \langle z\ast k, qk\rangle = 0 by (2.21b). Hence, by
Definition 2.15, we obtain that

\^\sigma z+K(z\ast )\leq lim inf
k\rightarrow \infty 

\langle z\ast k, z + qk\rangle = \langle z\ast , z\rangle <\infty .

Definition 2.17 (second subderivative [41, Definition 13.3]). Let \varphi : \BbbR n \rightarrow \=\BbbR ,
\varphi (z) be finite and z\ast \in \BbbR n. The second subderivative of \varphi at z for z\ast is a function
defined by

d2\varphi (z;z\ast )(w) := lim inf
t\downarrow 0

w\prime \rightarrow w

\varphi (z + tw\prime ) - \varphi (z) - t\langle z\ast ,w\prime \rangle 
1
2 t

2
\forall w \in \BbbR n.

According to [41, Example 13.8], if \varphi is twice differentiable at z and z\ast =\nabla \varphi (z),
one has

d2\varphi (z;z\ast )(w) =wT\nabla \varphi 2(z)w.

By definition, the second subderivative of the indicator function \delta S of a set S at z \in S
for z\ast is

d2\delta S(z;z
\ast )(w) = lim inf

t\downarrow 0
w\prime \rightarrow w

\delta S(z + tw\prime ) - \delta S(z) - t\langle z\ast ,w\prime \rangle 
1
2 t

2
= lim inf

t\downarrow 0,w\prime \rightarrow w
z+tw\prime \in S

 - 2\langle z\ast ,w\prime \rangle 
t

.(2.22)

The second subderivative of the indicator function is extended-real-valued and, by
definition, a function of the direction w. However, when dealing with second-order
optimality conditions, it also makes sense to consider its dependence on z\ast . In the
following proposition, we will investigate the set of all (z\ast ,w) such that d2\delta S(z;z

\ast )(w)
is finite and the relationship between d2\delta S(z;z

\ast )(w) and the support function of the
second-order tangent set \sigma T 2

S(z;w)(z
\ast ) as well as with the lower generalized support

function \^\sigma T 2
S(z;w)(z

\ast ). It turns out that the directional proximal normal cones are

useful in characterizing the points where d2\delta S(z;z
\ast )(w) is finite.
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SECOND-ORDER VARIATIONAL ANALYSIS 2637

Proposition 2.18. Consider a closed set S \subset \BbbR n, z \in S and a pair (w,z\ast ) \in 
\BbbR n \times \BbbR n. The following statements hold:

(i) If w \not \in TS(z) or \langle z\ast ,w\rangle < 0, then d2\delta S(z;z
\ast )(w) =\infty .

(ii) For w \in TS(z), we have d2\delta S(z;z
\ast )(w)> - \infty if and only if z\ast \in \^\scrN p

S (z;w).

(iii) If d2\delta S(z;z
\ast )(w) is finite, then z\ast \in \widehat Np

S(z;w).
(iv) We have

d2\delta S(z;z
\ast )(w)\leq  - \sigma T 2

S(z;w)(z
\ast )\leq  - \^\sigma T 2

S(z;w)(z
\ast )

if and only if w \in TS(z) and \langle z\ast ,w\rangle \geq 0 or T 2
S(z;w) = \emptyset .

Proof. (i) The statement follows from the definition of tangent cone and (2.22).
(ii) In order to show the if-part of the statement, let w \in TS(z), and consider

z\ast \in \^\scrN p
S (z;w). Then we can find some \delta > 0, \gamma > 0 such that

\langle z\ast , z\prime  - z\rangle \leq \gamma \| z\prime  - z\| 2 \forall z\prime \in (z + V\delta ,\delta (w))\cap S.(2.23)

On the other hand, by (2.22), we can also find sequences tk \downarrow 0,wk \rightarrow w such that z+

tkwk \in S and d2\delta S(z;z
\ast )(w) = limk\rightarrow \infty 

 - 2\langle z\ast ,wk\rangle 
tk

. Since wk \rightarrow w, for all k sufficiently

large, we have tkwk \in V\delta ,\delta (w). By (2.23), we have \langle z\ast , tkwk\rangle \leq \gamma t2k\| wk\| 2, from which
we obtain the desired inequality

d2\delta S(z;z
\ast )(w) = lim

k\rightarrow \infty 

 - 2\langle z\ast ,wk\rangle 
tk

\geq lim
k\rightarrow \infty 

 - 2\gamma \| wk\| 2 = - 2\gamma \| w\| 2 > - \infty .

In order to show the only if-part, assume on the contrary that w \in TS(z) and z\ast \not \in 
\^\scrN p
S (z;w). Then there are sequences tk \downarrow 0 and wk \rightarrow w such that zk := z + tkwk \in S

and

limsup
k\rightarrow \infty 

\langle z\ast , zk  - z\rangle 
\| zk  - z\| 2

= limsup
k\rightarrow \infty 

\langle z\ast ,wk\rangle 
tk\| wk\| 2

=\infty .

If w \not = 0, then the contradiction

\infty = limsup
k\rightarrow \infty 

2\langle z\ast ,wk\rangle 
tk

\leq limsup
t\downarrow 0,w\prime \rightarrow w
z+tw\prime \in S

2\langle z\ast ,w\prime \rangle 
t

= - d2\delta S(z;z
\ast )(w)

follows. In the case when w = 0, after possibly passing to a subsequence, we can
assume that \| wk\| < 1

k and \langle z\ast ,wk\rangle /(tk\| wk\| 2) > k3 holds for all k. Defining \~tk :=
tk\| wk\| k, \~wk := wk/(k\| wk\| ), we have zk = z + \~tk \~wk \in S, \~tk \downarrow 0, and \~wk \rightarrow 0, and
therefore we obtain once more the contradiction

d2\delta S(z;z
\ast )(0) = lim inf

t\downarrow 0,w\prime \rightarrow 0
z+tw\prime \in S

 - 2\langle z\ast ,w\prime \rangle 
t

\leq lim inf
k\rightarrow \infty 

 - 2\langle z\ast , \~wk\rangle 
\~tk

=lim inf
k\rightarrow \infty 

 - 2\langle z\ast ,wk\rangle 
k2tk\| wk\| 2

\leq lim inf
k\rightarrow \infty 

 - k= - \infty .

The above arguments show that z\ast \in \^\scrN p
S (z;w).

(iii) If d2\delta S(z;z
\ast )(w) is finite, then by statement (i), we must have w \in TS(z)

and \langle z\ast ,w\rangle \geq 0. It then follows by statement (ii) that z\ast \in \^\scrN p
S (z;w). Since

d2\delta S(z;z
\ast )(w) =  - \infty as \langle z\ast ,w\rangle > 0, by definition, we obtain \langle z\ast ,w\rangle = 0. Thus,

z\ast \in \widehat Np
S(z;w), and the third assertion is shown.
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2638 BENKO, GFRERER, YE, ZHANG, AND ZHOU

(iv) According to [19, Proposition 6], we know  - \sigma T 2
S(z;w)(z

\ast )\leq  - \^\sigma T 2
S(z;w)(z

\ast ) for
all z\ast . Hence, it remains to show

d2\delta S(z;z
\ast )(w)\leq  - \sigma T 2

S(z;w)(z
\ast )(2.24)

if and only if w \in TS(z) and \langle z\ast ,w\rangle \geq 0 or T 2
S(z;w) = \emptyset . For necessity, if T 2

S(z;w) = \emptyset ,
then  - \sigma T 2

S(z;w)(z
\ast ) = \infty , and hence (2.24) holds. Let w \in TS(z). If \langle z\ast ,w\rangle > 0,

then (2.24) follows from d2\delta S(z;z
\ast )(w) =  - \infty , while if \langle z\ast ,w\rangle = 0, then it holds by

[29, Proposition 3.2]. We prove the sufficiency by contradiction. Suppose that (2.24)
holds but T 2

S(z;w) \not = \emptyset and either w /\in TS(z) or \langle z\ast ,w\rangle < 0. In this case, we must
have d2\delta S(z;z

\ast )(w) = \infty by statement (i). On the other hand, since T 2
S(z;w) \not = \emptyset ,

 - \sigma T 2
S(z;w)(z

\ast )<+\infty . Hence, d2\delta S(z;z
\ast )(w)> - \sigma T 2

S(z;w)(z
\ast ), contradicting (2.24).

3. Second-order optimality conditions for (GP). Recall the general prob-
lem

min f(x) s.t. g(x)\in C(GP)

from the introduction. At a feasible point \=x of (GP), the critical cone is defined as

\scrC (\=x) := \{ u\in \BbbR n | \nabla g(\=x)u\in TC(g(\=x)),\nabla f(\=x)u\leq 0\} ,

and the generalized Lagrangian L\alpha :\BbbR n \times \BbbR m \rightarrow \BbbR with \alpha \geq 0 is given as

L\alpha (x,\lambda ) := \alpha f(x) + g(x)T\lambda ,

where for \alpha = 1, we get the standard Lagrangian L := L1. To study optimality
conditions for (GP), we define various multiplier sets as follows, where u \in \scrC (\=x)
denotes a critical direction:

\Lambda (\=x;u) := \{ \lambda \in NC(g(\=x);\nabla g(\=x)u) | \nabla xL(\=x,\lambda ) = 0\} (directional M-multipliers),

\Lambda s(\=x;u) := \{ \lambda \in \widehat NTC(g(\=x))(\nabla g(\=x)u) | \nabla xL(\=x,\lambda ) = 0\} (directional S-multipliers),

\Lambda p(\=x;u) := \{ \lambda \in \widehat Np
C(g(\=x);\nabla g(\=x)u) | \nabla xL(\=x,\lambda ) = 0\} (directional proximal multipliers).

For u = 0, we speak of just M-, S-, and proximal multipliers, which we denote by
\Lambda (\=x) := \Lambda (\=x; 0), \Lambda s(\=x) := \Lambda s(\=x; 0), and \Lambda p(\=x) := \Lambda s(\=x; 0), respectively. For every
u\in \scrC (\=x) and every \lambda \in \Lambda p(\=x)\subset \widehat Np

C(g(\=x))\subset \widehat NC(g(\=x)) = (TC(g(\=x)))
\circ , we have

0\leq  - \nabla f(\=x)u= \lambda T\nabla g(\=x)u\leq 0

implying that \lambda T\nabla g(\=x)u= 0. Hence, by virtue of Proposition 2.9, the relations

\Lambda p(\=x)\subset \Lambda p(\=x;u)\subset \Lambda s(\=x;u)\subset \Lambda (\=x;u)

hold, and the inclusions become equalities provided that C is convex by (2.5). In
general, we only have the inclusion \Lambda p(\=x) \subset \Lambda s(\=x), but they are equal for many
nonconvex and nonpolyhedral sets important in applications, e.g., the second-order
cone complementarity set [44] and the semidefinite complementarity cone [10].

Recall first the following second-order necessary optimality condition for (GP).
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SECOND-ORDER VARIATIONAL ANALYSIS 2639

Theorem 3.1 ([19, Theorem 2 and Corollary 5]). Let \=x be a local optimal solution
for problem (GP). Then for every critical direction u \in \scrC (\=x), the following necessary
optimality conditions hold:

(i) Suppose the constraint mapping x\rightrightarrows g(x) - C is metrically subregular at (\=x,0)
in direction u. Then there exists a directional M-multiplier \lambda \in \Lambda (\=x;u) such
that

\nabla 2
xxL(\=x,\lambda )(u,u) - \^\sigma T 2

C(g(\=x);\nabla g(\=x)u)(\lambda )\geq 0.(3.1)

(ii) Suppose that the directional nondegeneracy condition

\nabla g(\=x)T y\ast = 0, y\ast \in spanNC(g(\=x);\nabla g(\=x)u) =\Rightarrow y\ast = 0

holds. Then \Lambda s(\=x;u) = \Lambda (\=x;u) = \{ \lambda 0\} is a singleton, and the second-order
condition

\nabla 2
xxL(\=x,\lambda 0)(u,u) - \sigma T 2

C(g(\=x);\nabla g(\=x)u)(\lambda 0)\geq 0

holds.

We now derive second-order sufficient optimality conditions for (GP). We state
our result in terms of the following notion introduced by Penot [35].

Definition 3.2 (essential local minimizer of second order). A point \=x is said to
be an essential local minimizer of second order for problem (GP) if \=x is feasible and
there exist \varepsilon > 0 and \delta > 0 such that

max\{ f(x) - f(\=x),dist(g(x),C)\} \geq \varepsilon \| x - \=x\| 2 \forall x\in \BbbB (\=x, \delta ).

Theorem 3.3. Let \=x be a feasible point of problem (GP). Suppose that for every
u\in \scrC (\=x)\setminus \{ 0\} , there is \alpha \geq 0 and \lambda \in \BbbR m such that

\nabla xL
\alpha (\=x,\lambda ) = 0,(3.2a)

\nabla 2
xxL

\alpha (\=x,\lambda )(u,u) + d2\delta C(g(\=x);\lambda )(\nabla g(\=x)u)> 0.(3.2b)

Then \=x is an essential local minimizer of second order.

Proof. By contradiction, if \=x is not an essential local minimizer of second order,
then there exists a sequence xk converging to \=x such that

f(xk) - f(\=x)\leq o(\| xk  - \=x\| 2),(3.3a)

dist(g(xk),C)\leq o(\| xk  - \=x\| 2).(3.3b)

Let tk := \| xk  - \=x\| and uk := (xk  - \=x)/tk. We assume without loss of generality that
uk is converging to u. From (3.3a), it readily follows that \nabla f(\=x)u\leq 0 and

lim inf
k

 - f(xk) - f(\=x)
1
2 t

2
k

\geq 0.(3.4)

By (3.3b), there exists rk \in \BbbR d such that \| rk\| \rightarrow 0 and g(xk) + t2krk \in C. By Taylor's
expansion, since xk = \=x+ tkuk, we have

vk :=
g(xk) + t2krk  - g(\=x)

tk
=

\nabla g(\=x)tkuk + o(tk) + t2krk
tk

=\nabla g(\=x)uk +
o(tk)

tk
+tkrk \rightarrow \nabla g(\=x)u.
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2640 BENKO, GFRERER, YE, ZHANG, AND ZHOU

Moreover, g(\=x) + tkvk = g(xk) + t2krk \in C, and so \nabla g(\=x)u \in TC(g(\=x)) follows. Thus,
u \in \scrC (\=x) \setminus \{ 0\} , and the assumption of the theorem yields the existence of \alpha \geq 0
and \lambda \in \BbbR m satisfying (3.2a) and (3.2b). Using (2.22), (3.4), \| rk\| \rightarrow 0, and (3.2a),
however, we obtain

d2\delta C(g(\=x);\lambda )(\nabla g(\=x)u) = lim inf
t\downarrow 0,v\prime \rightarrow \nabla g(\=x)u

g(\=x)+tv\prime \in C

 - \langle \lambda , v\prime \rangle 
1
2 t

\leq lim inf
k

 - tk\langle \lambda , vk\rangle 
1
2 t

2
k

= lim inf
k

 - \langle \lambda , g(xk) + t2krk  - g(\=x)\rangle 
1
2 t

2
k

\leq lim inf
k

 - \alpha f(xk) - f(\=x)
1
2 t

2
k

+ lim inf
k

 - \langle \lambda , g(xk) - g(\=x)\rangle 
1
2 t

2
k

\leq lim inf
k

 - L
\alpha (xk, \lambda ) - L\alpha (\=x,\lambda )

1
2 t

2
k

= lim inf
k

 - 
\nabla xL

\alpha (\=x,\lambda )(tkuk)+
1
2\nabla 

2
xxL

\alpha (\=x,\lambda )(tkuk, tkuk)+o(t
2
k)

1
2 t

2
k

= lim inf
k

 - \nabla 2
xxL

\alpha (\=x,\lambda )(uk, uk) = - \nabla 2
xxL

\alpha (\=x,\lambda )(u,u),

which contradicts (3.2b). This completes the proof.

Additional requirements on \lambda are hidden in conditions (3.2a) and (3.2b).

Proposition 3.4. Let \=x be a feasible point of problem (GP), let u \in \scrC (\=x) be a
critical direction, and let \alpha \geq 0, \lambda \in \BbbR m satisfy conditions (3.2a) and (3.2b). Then
\alpha and \lambda are not both zero, and \lambda \in \widehat Np

C(g(\=x);\nabla g(\=x)u). Particularly, if \alpha \not = 0, then
\~\lambda := \lambda /\alpha \in \Lambda p(\=x;u), and conditions (3.2a) and (3.2b) hold with \~\alpha := 1 and \~\lambda .

Proof. Note that \alpha and \lambda cannot be simultaneously zero because otherwise

\nabla 2
xxL

\alpha (\=x,\lambda )(u,u) = d2\delta C(g(\=x);\lambda )(\nabla g(\=x)u) = 0,

contradicting (3.2b). Since d2\delta C(g(\=x);\lambda )(\nabla g(\=x)u) >  - \infty , we conclude that \lambda \in 
\^\scrN p
C(g(\=x);\nabla g(\=x)u) by Proposition 2.18(ii) and \langle \lambda ,\nabla g(\=x)u\rangle \leq 0 by (2.4). Mean-

while, \lambda satisfies \nabla xL
\alpha (\=x,\lambda ) = 0, i.e., \alpha \nabla f(\=x) + \nabla g(\=x)T\lambda = 0, implying that

\langle \lambda ,\nabla g(\=x)u\rangle =  - \alpha \nabla f(\=x)u \geq 0 due to u \in \scrC (\=x). Thus, \langle \lambda ,\nabla g(\=x)u\rangle = 0, and we
get

\lambda \in \^\scrN p
C(g(\=x);\nabla g(\=x)u)\cap \{ \nabla g(\=x)u\} \bot = \widehat Np

C(g(\=x);\nabla g(\=x)u).

Since \widehat Np
C(g(\=x);\nabla g(\=x)u) is a cone, it also contains \lambda /\alpha if \alpha \not = 0. Thus, dividing

(3.2a)--(3.2b) by \alpha yields the last claim, taking into account (2.22).

Let us now compare the concept of essential local minimizers with the more
common notion that the quadratic growth condition for (GP) holds at \=x; i.e., there
exist \varepsilon > 0 and \delta > 0 such that

f(x)\geq f(\=x) + \varepsilon \| x - \=x\| 2 \forall x\in \BbbB (\=x, \delta ) s.t. g(x)\in C.(3.5)

Lemma 3.5. Consider the following statements:
(i) \=x is an essential local minimizer of second order.
(ii) The quadratic growth condition holds at \=x.
Then the implication (i) \Rightarrow (ii) always holds. Conversely, if the constraint

mapping x \rightrightarrows g(x)  - C is metrically subregular at (\=x,0) in every critical direction
u\in \scrC (\=x) \setminus \{ 0\} , then the reverse implication (ii) \Rightarrow (i) is also valid.
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SECOND-ORDER VARIATIONAL ANALYSIS 2641

Proof. The validity of the implication (i) \Rightarrow (ii) follows immediately from the def-
initions. We show the second assertion by contraposition. Assume that the quadratic
growth condition and the stated constraint qualification hold, and assume on the con-
trary that there is a sequence xk \rightarrow \=x with max\{ f(xk) - f(\=x),dist(g(xk),C)\} /\| xk  - 
\=x\| 2 \rightarrow 0. By passing to a subsequence, we may assume that (xk  - \=x)/\| xk  - \=x\| con-
verges to some u, and the arguments already employed in the proof of Theorem 3.3
show that u \in \scrC (\=x) \setminus \{ 0\} . By the assumed directional metric subregularity, there is
some \kappa > 0 such that for all k sufficiently large, we can find some \~xk with g(\~xk) \in C
and \| \~xk  - xk\| \leq \kappa dist(g(xk),C) = o(\| xk  - \=x\| 2). Since f is Lipschitz continuous in a
neighborhood of \=x with some constant l, we obtain from (3.5) the contradiction

0< \varepsilon \leq lim inf
k\rightarrow \infty 

f(\~xk) - f(\=x)

\| \~xk  - \=x\| 2
\leq lim inf

k\rightarrow \infty 

f(xk) - f(\=x) + l\| \~xk  - xk\| 
(\| xk  - \=x\|  - \| \~xk  - xk\| )2

= lim inf
k\rightarrow \infty 

f(xk) - f(\=x) + o(\| xk  - \=x\| 2)
\| xk  - \=x\| 2  - o(\| xk  - \=x\| 2)

= lim inf
k\rightarrow \infty 

f(xk) - f(\=x)

\| xk  - \=x\| 2
\leq 0.

Note that Theorem 3.3 improves Mohammadi, Mordukhovich, and Sarabi [29,
Proposition 7.3] in that the set C is not required to be convex and parabolically
derivable, \alpha can be zero, we can choose different multipliers for different critical di-
rections, and the concept of local minimizer is stronger. For the sake of completeness,
we also state the following corollary.

Corollary 3.6. Let \=x be a feasible point of problem (GP). Suppose that for every
u\in \scrC (\=x)\setminus \{ 0\} , there is a directional proximal multiplier \lambda \in \Lambda p(\=x;u) such that

\nabla 2
xxL(\=x,\lambda )(u,u) + d2\delta C(g(\=x);\lambda )(\nabla g(\=x)u)> 0.

Then the quadratic growth condition (3.5) holds for problem (GP).

4. First-order variational analysis of disjunctive systems. In this section,
we begin with first-order variational analysis of the disjunctive system \Gamma := \{ x \in 
\BbbR n | G(x) \in D\} , where G : \BbbR n \rightarrow \BbbR d is continuously differentiable and D \subset \BbbR d is
polyhedral. Note that many first-order results are valid for any closed set D and were
already stated in Proposition 2.14. In the following theorem, we show that since D is
polyhedral, some results from Proposition 2.14 can be improved. Namely, under the
directional nondegeneracy (2.20), the inclusions in (2.18b) become equalities, making
all four sets equal. Note also that [41, Theorem 6.14] cannot be applied directly since
D is not regular in the sense of Clarke (cf. [41, Definition 6.4]).

Theorem 4.1. Consider a feasible point \=x\in \Gamma and a direction u\in \BbbR n and assume
that the directional nondegeneracy condition

\nabla G(\=x)T y\ast = 0, y\ast \in spanND(G(\=x);\nabla G(\=x)u) =\Rightarrow y\ast = 0(4.1)

is fulfilled. Then

N\Gamma (\=x;u) =\nabla G(\=x)TND(G(\=x);\nabla G(\=x)u) =\nabla G(\=x)TNTD(G(\=x))(\nabla G(\=x)u) =NT\Gamma (\=x)(u).

(4.2)

Proof. First note that condition (4.1) implies FOSCMS (2.17), and hence x \rightrightarrows 
G(x)  - D is metrically subregular at (\=x,0) in direction u. From [19, Lemma 3],
Proposition 2.14, and Proposition 2.11, respectively, we know that

NT\Gamma (\=x)(u)\subset N\Gamma (\=x;u)\subset \nabla G(\=x)TND(G(\=x);\nabla G(\=x)u) =\nabla G(\=x)TNTD(G(\=x))(\nabla G(\=x)u).
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2642 BENKO, GFRERER, YE, ZHANG, AND ZHOU

Thus, it remains to show \nabla G(\=x)TNTD(G(\=x))(\nabla G(\=x)u) \subset NT\Gamma (\=x)(u). Consider y\ast \in 
NTD(G(\=x))(\nabla G(\=x)u) together with sequences vk \in TD(G(\=x)) and y\ast k \in \widehat NTD(G(\=x))(vk)
with vk \rightarrow \nabla G(\=x)u and y\ast k \rightarrow y\ast . The nondegeneracy condition and Proposition 2.6
yield

\BbbR d =
\bigl( 
ker\nabla G(\=x)T \cap spanND(G(\=x);\nabla G(\=x)u)

\bigr) \bot 
=\nabla G(\=x)\BbbR n +\scrL (TTD(G(\=x))(\nabla G(\=x)u)).

Consider the d\times (n+ d) matrix

A :=
\bigl[ 
\nabla G(\=x) P

\bigr] 
,

where P is the symmetric d\times d matrix representing the orthogonal projection onto
\scrL (TTD(G(\=x))(\nabla G(\=x)u)). By the equation above, A has full row rank d, and therefore
the solution set S of the linear equation A

\bigl( 
d
r

\bigr) 
= vk  - \nabla G(\=x)u is an n-dimensional

affine subspace. Denoting by A\dagger the pseudoinverse (also known as Moore--Penrose
inverse) of A, \biggl( 

dk
rk

\biggr) 
:=A\dagger (vk  - \nabla G(\=x)u)

selects from S the solution with minimal Euclidean norm; cf. [36]. Since P 2 = P , the
vector

\bigl( 
dk

Prk

\bigr) 
is another solution, and due to the minimal norm property of

\bigl( 
dk
rk

\bigr) 
, we

obtain

\| Prk\| 2 \geq \| rk\| 2 = \| Prk\| 2 + \| (I  - P )rk\| 2,

which is only possible if (I  - P )rk = 0. Thus, we conclude that rk = Prk \in 
\scrL (TTD(G(\=x))(\nabla G(\=x)u)). Further, since vk  - \nabla G(\=x)u \rightarrow 0, we also have dk \rightarrow 0 and
rk \rightarrow 0 as k\rightarrow \infty . Hence, uk := u+dk \rightarrow u and \nabla G(\=x)uk = vk - rk \rightarrow \nabla G(\=x)u follows.

We obtain

y\ast k \in \widehat NTD(G(\=x))(vk) = \widehat NTTD(G(\=x))(\nabla G(\=x)u)(vk  - \nabla G(\=x)u)

= \widehat NTTD(G(\=x))(\nabla G(\=x)u)(vk  - \nabla G(\=x)u - rk) = \widehat NTD(G(\=x))(vk - rk)

= \widehat NTD(G(\=x))(\nabla G(\=x)uk),(4.3)

where the first and the third equalities follow from (2.12) and the second equality
comes from (2.2). Moreover, since \widehat NTD(G(\=x))(\nabla G(\=x)uk) \not = \emptyset , we must have\nabla G(\=x)uk \in 
TD(G(\=x)). Thus, taking into account uk \rightarrow u, from (2.18a), we get uk \in T\Gamma (\=x) for
sufficiently large k, and \nabla G(\=x)T y\ast k \in \widehat NT\Gamma (\=x)(uk) follows by (4.3) and [41, Theorem
6.14]. Taking limits as k\rightarrow \infty , we conclude that \nabla G(\=x)T y\ast \in NT\Gamma (\=x)(u), proving

\nabla G(\=x)TNTD(G(\=x))(\nabla G(\=x)u)\subset NT\Gamma (\=x)(u).

5. Second-order variational analysis of disjunctive systems. In this sec-
tion, we continue with second-order variational analysis of the disjunctive system
\Gamma := \{ x \in \BbbR n | G(x) \in D\} , where G is now twice continuously differentiable and D
is polyhedral. We will study the domain of the support functions and the connection
between the second-order objects d2\delta \Gamma (\=x; \cdot )(u), \sigma T 2

\Gamma (\=x;u)
(\cdot ), \^\sigma T 2

\Gamma (\=x;u)
(\cdot ) and the second

derivative \nabla 2G(\=x)(u,u). In the first part, we provide very general results, assuming
only that the constraint mapping x \rightrightarrows G(x)  - D is metrically subregular at (\=x,0)
in direction u (MSCQ holds at \=x in direction u), and in the second part, we show
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SECOND-ORDER VARIATIONAL ANALYSIS 2643

how everything gets simpler under the directional nondegeneracy (2.20) or a relaxed
version of this property.

Given a feasible point \=x\in \Gamma and a pair (u,x\ast )\in \BbbR n \times \BbbR n, we denote the set of S-
and M-multipliers associated with (\=x,x\ast ) in direction u, respectively, by

\Lambda s
x\ast (\=x;u) := \{ y\ast \in \widehat NTD(G(\=x))(\nabla G(\=x)u) | x\ast =\nabla G(\=x)T y\ast \} ,

\Lambda x\ast (\=x;u) := \{ y\ast \in NTD(G(\=x))(\nabla G(\=x)u) | x\ast =\nabla G(\=x)T y\ast \} .

Consider a direction u belonging to the linearization cone L\Gamma (\=x) defined by

L\Gamma (\=x) := \{ u\in \BbbR n | \nabla G(\=x)u\in TD(G(\=x))\} .

If MSCQ holds at \=x in direction u, then u \in T\Gamma (\=x) by Proposition 2.14, and we also
get

T 2
\Gamma (\=x;u) = \{ p\in \BbbR n | \nabla G(\=x)p+\nabla 2G(\=x)(u,u)\in TTD(G(\=x))(\nabla G(\=x)u)\} (5.1)

from Propositions 2.11 and 2.14 (see also [28, 29]).

5.1. Subregular systems. We begin with the main result of this section.

Theorem 5.1. Let \=x \in \Gamma and u \in L\Gamma (\=x), and suppose that MSCQ holds at \=x in
direction u with the subregularity modulus \kappa . Then the following statements hold:

(i) For every x\ast \in \{ u\} \bot , we have

d2\delta \Gamma (\=x;x
\ast )(u) = - \sigma T 2

\Gamma (\=x;u)
(x\ast ).(5.2)

(ii) We have dom\sigma T 2
\Gamma (\=x;u)

= \widehat Np
\Gamma (\=x;u) =

\widehat NT\Gamma (\=x)(u). For every x\ast \in dom\sigma T 2
\Gamma (\=x;u)

,

we have x\ast \in \{ u\} \bot , the equality (5.2) holds, and

inf
y\ast \in \Lambda x\ast (\=x;u)\cap \kappa \| x\ast \| cl \BbbB 

\langle y\ast ,\nabla 2G(\=x)(u,u)\rangle \leq d2\delta \Gamma (\=x;x
\ast )(u)(5.3a)

\leq sup
y\ast \in \Lambda x\ast (\=x;u)\cap \kappa \| x\ast \| cl \BbbB 

\langle y\ast ,\nabla 2G(\=x)(u,u)\rangle ,

d2\delta \Gamma (\=x;x
\ast )(u)\geq sup

y\ast \in \Lambda s
x\ast (\=x;u)

\langle y\ast ,\nabla 2G(\=x)(u,u)\rangle ,(5.3b)

and, moreover, there exists y\ast \in \Lambda x\ast (\=x;u) such that d2\delta \Gamma (\=x;x
\ast )(u) =

\langle y\ast ,\nabla 2G(\=x)(u,u)\rangle .
(iii) We have dom \^\sigma T 2

\Gamma (\=x;u)
\subset \{ x\ast | \Lambda x\ast (\=x;u) \not = \emptyset \} , and for every x\ast \in dom \^\sigma T 2

\Gamma (\=x;u)
,

it holds that

inf
y\ast \in \Lambda x\ast (\=x;u)\cap \kappa \| x\ast \| cl\BbbB 

\langle y\ast ,\nabla 2G(\=x)(u,u)\rangle \leq  - \^\sigma T 2
\Gamma (\=x;u)

(x\ast )(5.4)

\leq sup
y\ast \in \Lambda x\ast (\=x;u)\cap \kappa \| x\ast \| cl\BbbB 

\langle y\ast ,\nabla 2G(\=x)(u,u)\rangle ,

and there exists y\ast \in \Lambda x\ast (\=x;u) such that  - \^\sigma T 2
\Gamma (\=x;u)

(x\ast ) = \langle y\ast ,\nabla 2G(\=x)(u,u)\rangle .
Moreover, the upper bound in (5.4) is valid for all x\ast \in \BbbR n.

Proof. (i) Consider x\ast \in \{ u\} \bot . Taking into account (2.22), consider sequences
tk \downarrow 0 and uk \rightarrow u such that \=x+ tkuk \in \Gamma and

d2\delta \Gamma (\=x;x
\ast )(u) = lim

k\rightarrow \infty 
 - 2\langle x\ast , uk\rangle 

tk
= lim

k\rightarrow \infty 
 - 2\langle x\ast , uk  - u\rangle 

tk
.(5.5)
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2644 BENKO, GFRERER, YE, ZHANG, AND ZHOU

Since G(\=x+ tkuk) =G(\=x)+ tk\nabla G(\=x)uk+ 1
2 t

2
k(\nabla 2G(\=x)(u,u)+ rk)\in D with rk \rightarrow 0, we

obtain

\nabla G(\=x)uk +
1

2
tk(\nabla 2G(\=x)(u,u) + rk)\in TD(G(\=x)).

Consequently, Proposition 2.10 yields

\nabla G(\=x)2(uk  - u)

tk
+\nabla 2G(\=x)(u,u) + rk \in TTD(G(\=x))(\nabla G(\=x)u).(5.6)

From Proposition 2.14 and (5.1), we get that the mapping

\Phi (p) :=\nabla G(\=x)p+\nabla 2G(\=x)(u,u) - TTD(G(\=x))(\nabla G(\=x)u)(5.7)

satisfies

dist(p,\Phi  - 1(0))\leq \kappa dist(0,\Phi (p)) \forall p\in \BbbR n.(5.8)

By (5.6), we have  - rk \in \Phi (2(uk  - u)/tk). Hence, for every k, we can find some

pk \in \Phi  - 1(0) satisfying \| 2(uk - u)
tk

 - pk\| \leq \kappa \| rk\| and

\nabla G(\=x)pk +\nabla 2G(\=x)(u,u)\in TTD(G(\=x))(\nabla G(\=x)u),

and pk \in T 2
\Gamma (\=x;u) follows from (5.1). Thus, by definition of the support function, we

have \langle x\ast , pk\rangle \leq \sigma T 2
\Gamma (\=x;u)

(x\ast ). Moreover, by (5.5), we have

d2\delta \Gamma (\=x;x
\ast )(u) = lim

k\rightarrow \infty 
 - 2\langle x\ast , uk  - u\rangle 

tk
= lim

k\rightarrow \infty 
 - \langle x\ast , pk\rangle \geq  - \sigma T 2

\Gamma (\=x;u)
(x\ast ).

Since the opposite inequality holds by Proposition 2.18(iv), (5.2) is established.
(ii) We have already shown in Proposition 2.9 the inclusion \widehat Np

\Gamma (\=x;u)\subset \widehat NT\Gamma (\=x)(u).
Further, since u \in T\Gamma (\=x), by Proposition 2.14, we get \nabla G(\=x)u \in TD(G(\=x)), and
TTD(G(\=x))(\nabla G(\=x)u) \not = \emptyset follows. This, however, ensures that T 2

\Gamma (\=x;u) \not = \emptyset due to (5.8)
and \Phi  - 1(0) = T 2

\Gamma (\=x;u) by (5.1). Hence, \sigma T 2
\Gamma (\=x;u)

(x\ast )> - \infty holds for all x\ast \in \BbbR n. Now

let x\ast \in \widehat NT\Gamma (\=x)(u), and we first show that x\ast \in dom\sigma T 2
\Gamma (\=x;u)

. Assume on the contrary

that \sigma T 2
\Gamma (\=x;u)

(x\ast ) = \infty , and consider a sequence pk \in T 2
\Gamma (\=x;u) with \langle x\ast , pk\rangle \rightarrow \infty as

k\rightarrow \infty . By (5.1), we get

\nabla G(\=x)pk +\nabla 2G(\=x)(u,u)\in TTD(G(\=x))(\nabla G(\=x)u).(5.9)

The mapping

p\rightrightarrows \nabla G(\=x)p - TTD(G(\=x))(\nabla G(\=x)u)

is polyhedral; i.e., its graph is a polyhedral set and is therefore metrically subregular
at (0,0) by Robinson's result [37]. Since its graph is also a closed cone, Proposition
2.13 yields the existence of \kappa \prime > 0 such that for every k, we can find some \~pk with
\nabla G(\=x)\~pk \in TTD(G(\=x))(\nabla G(\=x)u) and

\| \~pk  - pk\| \leq \kappa \prime dist(\nabla G(\=x)pk, TTD(G(\=x))(\nabla G(\=x)u))\leq \kappa \prime \| \nabla 2G(\=x)(u,u)\| ,

where the second inequality follows from (5.9). Since \nabla G(\=x)\~pk \in TTD(G(\=x))(\nabla G(\=x)u),
by Proposition 2.14, we obtain \~pk \in TT\Gamma (\=x)(u), implying that \langle x\ast , \~pk\rangle \leq 0 due to x\ast \in 
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SECOND-ORDER VARIATIONAL ANALYSIS 2645

\widehat NT\Gamma (\=x)(u) = (TT\Gamma (\=x)(u))
\circ . This, however, contradicts the assumption that \langle x\ast , pk\rangle \rightarrow 

\infty as k\rightarrow \infty since the sequence \{ \~pk  - pk\} is bounded, showing x\ast \in dom\sigma T 2
\Gamma (\=x;u)

.

Consider now x\ast \in dom\sigma T 2
\Gamma (\=x;u)

. Note that in order to show that x\ast \in \widehat Np
\Gamma (\=x;u), it

suffices to prove that x\ast \in \{ u\} \bot since then we get (5.2) and Proposition 2.18(iii) gives
the claim. As we will see, however, x\ast \in \{ u\} \bot comes as a by-product of the following
arguments.

Since TTD(G(\=x))(\nabla G(\=x)u) is a polyhedral cone, it can be written as the union of
finitely many convex polyhedral cones, say, Ki, i= 1, . . . , s, and therefore

\sigma T 2
\Gamma (\=x;u)

(x\ast ) = max
i=1,...,s

sup
p
\{ \langle x\ast , p\rangle | \nabla G(\=x)p+\nabla 2G(\=x)(u,u)\in Ki\} .

Taking into account that \sigma T 2
\Gamma (\=x;u)

(x\ast ) is finite, every linear program supp\{ \langle x\ast , p\rangle | 
\nabla G(\=x)p+\nabla 2G(\=x)(u,u)\in Ki\} either is infeasible, resulting in the optimal value  - \infty ,
or has a finite optimal value, and this optimal value is attained; see, e.g., [5, Theorem
2.198]. Hence, the program

max\langle x\ast , p\rangle subject to \nabla G(\=x)p+\nabla 2G(\=x)(u,u)\in TTD(G(\=x))(\nabla G(\=x)u)(5.10)

has an optimal solution \=p, and \sigma T 2
\Gamma (\=x;u)

(x\ast ) = \langle x\ast , \=p\rangle follows. The corresponding
constraint mapping is precisely \Phi from (5.7), and it is metrically subregular at (\=p,0)
by (5.8). Thus, by [17, Theorem 3], there exists a multiplier y\ast fulfilling the first-order
optimality conditions

 - x\ast +\nabla G(\=x)T y\ast = 0, \| y\ast \| \leq \kappa \| x\ast \| ,(5.11a)

y\ast \in NTTD(G(\=x))(\nabla G(\=x)u)(\nabla G(\=x)\=p+\nabla 2G(\=x)(u,u))\subset NTD(G(\=x))(\nabla G(\=x)u),(5.11b)

where in (5.11b) we used [41, Proposition 6.27(a)]. Particularly, since TD(G(\=x)) and
TTD(G(\=x))(\nabla G(\=x)u) are cones, we conclude that

\langle y\ast ,\nabla G(\=x)u\rangle = 0 and \langle y\ast ,\nabla G(\=x)\=p+\nabla 2G(\=x)(u,u)\rangle = 0.

This means, however, that \langle x\ast , u\rangle = \langle \nabla G(\=x)T y\ast , u\rangle = \langle y\ast ,\nabla G(\=x)u\rangle = 0 and

\sigma T 2
\Gamma (\=x;u)

(x\ast ) = \langle x\ast , \=p\rangle = - \langle y\ast ,\nabla 2G(\=x)(u,u)\rangle ,(5.12)

and we indeed get (5.2) as claimed. Moreover, conditions (5.11a) and (5.11b) ensure
that y\ast \in \Lambda x\ast (\=x;u), and so (5.3a) follows from (5.2).

In order to show (5.3b), consider y\ast \in \Lambda s
x\ast (\=x;u), i.e.,

y\ast \in \widehat NTD(G(\=x))(\nabla G(\=x)u) = [TTD(G(\=x))(\nabla G(\=x)u)]\circ , x\ast =\nabla G(\=x)T y\ast .

Since \=p is an optimal solution of program (5.10), it is feasible, i.e.,

\nabla G(\=x)\=p+\nabla 2G(\=x)(u,u)\in TTD(G(\=x))(\nabla G(\=x)u).

It follows that \langle y\ast ,\nabla G(\=x)\=p + \nabla 2G(\=x)(u,u)\rangle \leq 0, showing \sigma T 2
\Gamma (\=x;u)

(x\ast ) = \langle x\ast , \=p\rangle \leq 
 - \langle y\ast ,\nabla 2G(\=x)(u,u)\rangle . Again, (5.3b) follows from (5.2). Finally, by (5.2) and (5.12),
we obtain the last conclusion of (ii).

(iii) Let x\ast satisfy

\^\sigma T 2
\Gamma (\=x;u)

(x\ast ) := lim inf
\~x\ast \rightarrow x\ast 

inf
p\prime 
\{ \langle \~x\ast , p\prime \rangle | \~x\ast \in \widehat NT 2

\Gamma (\=x;u)
(p\prime )\} <\infty .
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2646 BENKO, GFRERER, YE, ZHANG, AND ZHOU

Consider the sequences x\ast k \rightarrow x\ast and pk such that x\ast k \in \widehat NT 2
\Gamma (\=x;u)

(pk) and \^\sigma T 2
\Gamma (\=x;u)

(x\ast ) =

limk\rightarrow \infty \langle x\ast k, pk\rangle . By (5.1), we have T 2
\Gamma (\=x;u) = \Phi  - 1(0), where the mapping \Phi is

given by (5.7). Since \Phi is metrically subregular with modulus \kappa at (pk,0) and
x\ast k \in \widehat NT 2

\Gamma (\=x;u)
(pk) \subset NT 2

\Gamma (\=x;u)
(pk) =N\Phi  - 1(0)(pk), [15, Proposition 4.1] yields the exis-

tence of some y\ast k satisfying \| y\ast k\| \leq \kappa \| x\ast k\| and (x\ast k, - y\ast k)\in Ngph\Phi (pk,0). Applying the
change of coordinates formula (see, e.g., [41, Exercise 6.7]) to Ngph\Phi (pk,0), we obtain

x\ast k =\nabla G(\=x)T y\ast k,(5.13a)

y\ast k \in NTTD(G(\=x))(\nabla G(\=x)u)(\nabla G(\=x)pk +\nabla 2G(\=x)(u,u))\subset NTD(G(\=x))(\nabla G(\=x)u),(5.13b)

taking into account [41, Proposition 6.27(a)] as before. Since TTD(G(\=x))(\nabla G(\=x)u) is
a cone, by (5.13b), we have \langle y\ast k,\nabla G(\=x)pk +\nabla 2G(\=x)(u,u)\rangle = 0, which together with
(5.13a) implies that

\langle x\ast k, pk\rangle = - \langle y\ast k,\nabla 2G(\=x)(u,u)\rangle .(5.14)

Since the sequence y\ast k is bounded due to \| y\ast k\| \leq \kappa \| x\ast k\| , we can assume that it converges
to some y\ast with \| y\ast \| \leq \kappa \| x\ast \| . Taking limits in (5.14), (5.13a), and (5.13b), we
obtain y\ast \in \Lambda x\ast (\=x;u) and \^\sigma T 2

\Gamma (\=x;u)
(x\ast ) =  - \langle y\ast ,\nabla 2G(\=x)(u,u)\rangle , proving (5.4). The

upper bound in (5.4) is obviously valid if \^\sigma T 2
\Gamma (\=x;u)

(x\ast ) =\infty .

Remark 5.2. Recall that by Proposition 2.11, we have

NTD(z)(w) =ND(z;w), \forall z \in D, w \in TD(z).

Applying Theorem 5.1(ii) with G being the identity mapping and \Gamma = D yields the
counterpart

\widehat NTD(z)(w) = \widehat Np
D(z;w) \forall z \in D, w \in TD(z).

Note that the bounds for the second subderivative and the lower generalized
support function have the same structure, the only difference being the range of
validity. Further note that although the inclusion dom \^\sigma T 2

\Gamma (\=x;u)
\subset \{ x\ast | \Lambda x\ast (\=x;u) \not = \emptyset \} 

holds, it might be strict in general. However, the equality can be obtained under the
directional nondegeneracy condition, as shown in Corollary 5.8(i) below.

Remark 5.3. Inspired by [29, Proposition 5.4], we further show that in (5.3b),
the supremum over \Lambda s

x\ast (\=x;u) provides a tight lower bound for d2\delta \Gamma (\=x;x
\ast )(u) from the

point of view of weak duality.
In fact,

d2\delta \Gamma (\=x;x
\ast )(u) = - \sigma T 2

\Gamma (\=x;u)
(x\ast )

=min
p

\{ \langle p, - x\ast \rangle | \nabla G(\=x)p+\nabla 2G(\=x)(u,u)\in T 2
D(G(\=x);\nabla G(\=x)u)\} 

=min
p

\langle p, - x\ast \rangle + \delta T 2
D(G(\=x);\nabla G(\=x)u)

\bigl( 
\nabla G(\=x)p+\nabla 2G(\=x)(u,u)

\bigr) 
.

The conjugate dual problem of the above minimization problem takes the form

max
y\ast 

\biggl\{ 
min
p

\langle p, - x\ast \rangle + \langle y\ast ,\nabla G(\=x)p+\nabla 2G(\=x)(u,u)\rangle  - \sigma T 2
D(G(\=x);\nabla G(\=x)u)(y

\ast )

\biggr\} 
;
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SECOND-ORDER VARIATIONAL ANALYSIS 2647

see, e.g., [5, equation (2.298)]. Note that by Proposition 2.11,

\sigma T 2
D(G(\=x);\nabla G(\=x)u)(y

\ast ) = \sigma TTD(G(\=x))(\nabla G(\=x)u)(y
\ast ) =

\biggl\{ 
0 y\ast \in \widehat NTD(G(\=x))(\nabla G(\=x)u)
+\infty otherwise.

Hence, the dual problem can be rewritten equivalently as

supy\ast \langle y\ast ,\nabla 2G(\=x)(u,u)\rangle 
s.t. x\ast =\nabla G(\=x)T y\ast , y\ast \in \widehat NTD(G(\=x))(\nabla G(\=x)u)

\Leftarrow \Rightarrow sup
y\ast \in \Lambda s

x\ast (\=x;u)

\langle y\ast ,\nabla 2G(\=x)(u,u)\rangle .

Consequently, by the weak duality [5], we have

d2\delta \Gamma (\=x;x
\ast )(u)\geq sup

y\ast \in \Lambda s
x\ast (\=x;u)

\langle y\ast ,\nabla 2G(\=x)(u,u)\rangle .

According to Theorem 5.1(ii), we observe that when the directional S- and M-
multipliers coincide, the following equality holds:

d2\delta \Gamma (\=x;x
\ast )(u) = max

y\ast \in \Lambda x\ast (\=x;u)
\langle y\ast ,\nabla 2G(\=x)(u,u)\rangle .

Now we further require thatD is convex polyhedral. Consider the critical cone defined
by K(\=x;x\ast ) := \{ u \in \{ x\ast \} \bot | \nabla G(\=x)u \in TD(G(\=x))\} . Then for any critical direction
u\in K(\=x;x\ast ), it turns out that all S- and M-multipliers coincide with the set of (nondi-
rectional) multipliers \Lambda x\ast (\=x) := \{ y\ast \in ND(G(\=x)) | x\ast =\nabla G(\=x)T y\ast \} . Consequently, in
the following corollary, by using Theorem 5.1(ii), we can recover the result [41, Exer-
cise 13.17] under a weaker condition with the metric regularity replaced by the metric
subregularity. It should be noted that the following result can also be obtained from
[29, Example 3.4 and Theorem 5.6] by specifying the general convex set considered
therein to be convex polyhedral.

Corollary 5.4. Assume that D is convex polyhedral and that MSCQ holds at
\=x\in \Gamma =G - 1(D). Then for any x\ast \in N\Gamma (\=x) and any u\in \BbbR n, one has

d2\delta \Gamma (\=x;x
\ast )(u) = \delta K(\=x;x\ast )(u) + max

y\ast \in \Lambda x\ast (\=x)
\langle y\ast ,\nabla 2G(\=x)(u,u)\rangle .(5.15)

Proof. According to Proposition 2.14 together with [41, Theorem 6.14], we have

N\Gamma (\=x)\subset \nabla G(\=x)TND(G(\=x)) =\nabla G(\=x)T \widehat ND(G(\=x))\subset \widehat N\Gamma (\=x),

showing N\Gamma (\=x) = \widehat N\Gamma (\=x) as well as \Lambda x\ast (\=x) \not = \emptyset for x\ast \in N\Gamma (\=x). Further, by Theorem
5.1(ii), we know that\widehat Np

\Gamma (\=x) =
\widehat Np
\Gamma (\=x; 0) =

\widehat NT\Gamma (\=x)(0) =
\widehat N\Gamma (\=x) =N\Gamma (\=x).

If u /\in K(\=x;x\ast ), we claim that d2\delta \Gamma (\=x;x
\ast )(u) = \infty . Indeed, we have either

u /\in T\Gamma (\=x) or u \in T\Gamma (\=x) but \langle x\ast , u\rangle \not = 0, in which case we must have \langle x\ast , u\rangle < 0
since \langle x\ast , u\rangle \leq 0 due to x\ast \in N\Gamma (\=x) = \widehat N\Gamma (\=x) = (T\Gamma (\=x))

\circ . In either case, however,
Proposition 2.18(i) yields d2\delta \Gamma (\=x;x

\ast )(u) =\infty . Since \Lambda x\ast (\=x) \not = \emptyset as shown above, we
get supy\ast \in \Lambda x\ast (\=x)\langle y\ast ,\nabla 2G(\=x)(u,u)\rangle > - \infty , and thus (5.15) holds.

If u\in K(\=x;x\ast ), then

\Lambda x\ast (\=x;u) = \Lambda s
x\ast (\=x;u) = \{ y\ast | y\ast \in \widehat NTD(G(\=x))(\nabla G(\=x)u), x\ast =\nabla G(\=x)T y\ast \} 

= \{ y\ast | y\ast \in ND(G(\=x)), \langle y\ast ,\nabla G(\=x)u\rangle = 0, x\ast =\nabla G(\=x)T y\ast \} 
= \{ y\ast | y\ast \in ND(G(\=x)), \langle x\ast , u\rangle = 0, x\ast =\nabla G(\=x)T y\ast \} 
= \{ y\ast | y\ast \in ND(G(\=x)), x\ast =\nabla G(\=x)T y\ast \} 
=\Lambda x\ast (\=x),
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2648 BENKO, GFRERER, YE, ZHANG, AND ZHOU

where the first equality is due to the convexity of D (see (2.1)) and the fifth equality
comes from the fact that \langle x\ast , u\rangle = 0 holds automatically as u \in K(\=x;x\ast ). Since
x\ast \in N\Gamma (\=x) = \widehat Np

\Gamma (\=x) \subset \^\scrN p
\Gamma (\=x;u) and \langle x\ast , u\rangle = 0, we have x\ast \in \widehat Np

\Gamma (\=x;u). It then
follows from (5.3a) and (5.3b) that

d2\delta \Gamma (\=x;x
\ast )(u) = sup

y\ast \in \Lambda x\ast (\=x)

\langle y\ast ,\nabla 2G(\=x)(u,u)\rangle = sup
y\ast \in \Lambda x\ast (\=x)\cap \kappa \| x\ast \| cl\BbbB 

\langle y\ast ,\nabla 2G(\=x)(u,u)\rangle .

Since \Lambda x\ast (\=x) \cap \kappa \| x\ast \| cl\BbbB is a compact set, the supremum can be attained, and so it
can be replaced by the maximum. This completes the proof.

5.2. Nondegenerate systems. As we have seen in Corollary 5.4, the results
from Theorem 5.1 get considerably simpler if the set D is convex polyhedral. Here
we continue with simplifications, but we keep D arbitrary polyhedral and strengthen
the assumptions on constraints instead. We start with the condition

\nabla G(\=x)T y\ast = 0, y\ast \in spanND(G(\=x);\nabla G(\=x)u) =\Rightarrow \langle y\ast ,\nabla 2G(\=x)(u,u)\rangle = 0,(5.16)

which does not yield uniqueness of y\ast \in \Lambda x\ast (\=x;u), but it implies that the value
\langle y\ast ,\nabla 2G(\=x)(u,u)\rangle is the same for all the multipliers, making the lower and upper
bounds in (5.3a) and (5.4) equal. Since (5.16) is in general weaker than the directional
nondegeneracy condition (4.1), we refer to it as the generalized directional nondegen-
eracy condition. Moreover, we present the second-order tangent cone T 2

\Gamma (\=x;u) as a
translation of a cone.

Proposition 5.5. Let \=x \in \Gamma and u \in L\Gamma (\=x), and suppose that MSCQ holds at
\=x in direction u. Assume that the generalized directional nondegeneracy condition
(5.16) holds. Then for any x\ast , the quantity \langle y\ast ,\nabla 2G(\=x)(u,u)\rangle is the same for all
y\ast \in \Lambda x\ast (\=x;u), i.e.,

sup
y\ast \in \Lambda x\ast (\=x;u)

\langle y\ast ,\nabla 2G(\=x)(u,u)\rangle = inf
y\ast \in \Lambda x\ast (\=x;u)

\langle y\ast ,\nabla 2G(\=x)(u,u)\rangle (5.17)

and there is some p0 satisfying

\nabla G(\=x)p0 +\nabla 2G(\=x)(u,u)\in \scrL (TTD(G(\=x))(\nabla G(\=x)u)).(5.18)

For every such p0, we have the representation

T 2
\Gamma (\=x;u) = p0 +K\=x;u,(5.19)

where K\=x;u := \{ p | \nabla G(\=x)p\in TTD(G(\=x))(\nabla G(\=x)u)\} is a cone.

Proof. Consider y\ast 1 , y
\ast 
2 \in \Lambda x\ast (\=x;u). By definition, we have \nabla G(\=x)T (y\ast 1  - 

y\ast 2) = x\ast  - x\ast = 0 and y\ast 1  - y\ast 2 \in ND(G(\=x);\nabla G(\=x)u)  - ND(G(\=x);\nabla G(\=x)u) \subset 
spanND(G(\=x);\nabla G(\=x)u). It follows by (5.16) that

\langle y\ast 1  - y\ast 2 ,\nabla 2G(\=x)(u,u)\rangle = 0.

Consequently, (5.17) holds. From (5.16) and Proposition 2.6, we infer that

\nabla 2G(\=x)(u,u)\in 
\bigl( 
ker\nabla G(\=x)T \cap spanND(G(\=x);\nabla G(\=x)u)

\bigr) \bot 
\subset \nabla G(\=x)\BbbR n + \scrL (TTD(G(\=x))(\nabla G(\=x)u)),
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which yields the existence of p0 satisfying (5.18). In fact, by (5.1), we know that
p0 \in T 2

\Gamma (\=x;u).
For every p\in K\=x:u, we have

\nabla G(\=x)(p0 + p) +\nabla 2G(\=x)(u,u)\in TTD(G(\=x))(\nabla G(\=x)u) +\scrL (TTD(G(\=x))(\nabla G(\=x)u))
= TTD(G(\=x))(\nabla G(\=x)u),

showing p0 + p \in T 2
\Gamma (\=x;u) by (5.1). On the other hand, if p \in T 2

\Gamma (\=x;u), then by (5.1),
we obtain

\nabla G(\=x)(p - p0)\in TTD(G(\=x))(\nabla G(\=x)u) - \scrL (TTD(G(\=x))(\nabla G(\=x)u)) = TTD(G(\=x))(\nabla G(\=x)u),

i.e., p - p0 \in K\=x;u. This verifies T
2
\Gamma (\=x;u) = p0 +K\=x;u, and the proof is complete.

Combining Propositions 5.5 and 2.16 together yields the following result.

Corollary 5.6. Let \=x\in \Gamma and u\in L\Gamma (\=x), and suppose that MSCQ holds at \=x in
direction u. If the generalized directional nondegeneracy condition (5.16) is fulfilled,
then

d2\delta \Gamma (\=x;x
\ast )(u) = - \sigma T 2

\Gamma (\=x;u)
(x\ast ) = \langle y\ast ,\nabla 2G(\=x)(u,u)\rangle \forall x\ast \in dom\sigma T 2

\Gamma (\=x;u)
= \widehat Np

\Gamma (\=x;u),

(5.20a)

 - \^\sigma T 2
\Gamma (\=x;u)

(x\ast ) = \langle y\ast ,\nabla 2G(\=x)(u,u)\rangle = - \langle x\ast , p0\rangle \forall x\ast \in dom \^\sigma T 2
\Gamma (\=x;u)

=NK\=x;u
(0)

(5.20b)

where y\ast is an arbitrary element from \Lambda x\ast (\=x;u) and p0 is an arbitrary vector satisfying
(5.18), respectively.

Proof. Note that (5.20a) holds by Theorem 5.1(i)(ii) and Proposition 5.5. Let
x\ast \in dom \^\sigma T 2

\Gamma (\=x;u)
. Then, by Theorem 5.1(iii) and Proposition 5.5, for any y\ast \in 

\Lambda x\ast (\=x;u), we have

 - \^\sigma T 2
\Gamma (\=x;u)

(x\ast ) = \langle y\ast ,\nabla 2G(\=x)(u,u)\rangle .

Moreover, by Proposition 5.5, there exists p0 satisfying (5.18) such that T 2
\Gamma (\=x;u) =

p0 +K\=x;u. Hence, (5.20b) follows from Proposition 2.16.

Remark 5.7. Under the assumptions of Corollary 5.6, we have

d2\delta \Gamma (\=x;x
\ast )(u) = - \sigma T 2

\Gamma (\=x;u)
(x\ast ) = - \^\sigma T 2

\Gamma (\=x;u)
(x\ast ) \forall x\ast \in dom\sigma T 2

\Gamma (\=x;u)
\subset dom \^\sigma T 2

\Gamma (\=x;u)
.

Thus, whenever d2\delta \Gamma (\=x;x
\ast )(u) differs from  - \^\sigma T 2

\Gamma (\=x;u)
(x\ast ), there holds that

\sigma T 2
\Gamma (\=x;u)

(x\ast ) =\infty .

In general, we only know an inclusion

NK\=x;u
(0)\subset \nabla G(\=x)TNTTD(G(\=x))(\nabla G(\=x)u)(0) =\nabla G(\=x)TNTD(G(\=x))(\nabla G(\=x)u)

= \{ x\ast | \Lambda x\ast (\=x;u) \not = \emptyset \} .

If we strengthen (5.16) to (4.1), however, this inclusion holds with equality, the mul-
tipliers become unique, and we are also able to give an alternative representation of
the set \widehat Np

\Gamma (\=x;u).
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Corollary 5.8. Let \=x \in \Gamma and u \in L\Gamma (\=x). Under the directional nondegeneracy
condition (4.1), the following statements hold:

(i) We have dom\sigma T 2
\Gamma (\=x;u)

= \nabla G(\=x)T \widehat NTD(G(\=x))(\nabla G(\=x)u) = \widehat Np
\Gamma (\=x;u), and

for every x\ast \in dom\sigma T 2
\Gamma (\=x;u)

, the set \Lambda s
x\ast (\=x;u) is a singleton \{ y\ast 0\} and

d2\delta \Gamma (\=x;x
\ast )(u) = - \sigma T 2

\Gamma (\=x;u)
(x\ast ) = \langle y\ast 0 ,\nabla 2G(\=x)(u,u)\rangle .

(ii) We have dom \^\sigma T 2
\Gamma (\=x;u)

= \nabla G(\=x)TNTD(G(\=x))(\nabla G(\=x)u) = N\Gamma (\=x;u), and
for every x\ast \in dom \^\sigma T 2

\Gamma (\=x;u)
, the set \Lambda x\ast (\=x;u) is a singleton \{ y\ast 0\} and

 - \^\sigma T 2
\Gamma (\=x;u)

(x\ast ) = \langle y\ast 0 ,\nabla 2G(\=x)(u,u)\rangle .
Proof. Recall that (4.1) implies (2.17), which further ensures MSCQ at \=x in

direction u.
(i) It follows from Theorem 5.1 and Proposition 2.14 that

dom\sigma T 2
\Gamma (\=x;u)

= \widehat Np
\Gamma (\=x;u) =

\widehat NT\Gamma (\=x)(u) =\nabla G(\=x)T \widehat NTD(G(\=x))(\nabla G(\=x)u).

Particularly, this shows that \Lambda s
x\ast (\=x;u) \not = \emptyset . Taking into account \Lambda s

x\ast (\=x;u)\subset \Lambda x\ast (\=x;u),
the remaining claims follow from Corollary 5.6 once we prove that \Lambda x\ast (\=x;u) is a
singleton in the next step.

(ii) Note that NTTD(G(\=x))(\nabla G(\=x)u)(0) = NTD(G(\=x))(\nabla G(\=x)u) = ND(G(\=x);\nabla G(\=x)u)
by Proposition 2.11. Hence, applying Theorem 4.1 to the set K\=x;u := \{ p | \nabla G(\=x)p \in 
TTD(G(\=x))(\nabla G(\=x)u)\} at p= 0 yields

dom \^\sigma T 2
\Gamma (\=x;u)

=NK\=x;u(0) =\nabla G(\=x)TNTTD(G(\=x))(\nabla G(\=x)u)(0)

=\nabla G(\=x)TNTD(G(\=x))(\nabla G(\=x)u) =N\Gamma (\=x;u),

where the first equality comes from (5.20b) and the last equality follows from (4.2).
Let x\ast \in dom \^\sigma T 2

\Gamma (\=x;u)
=N\Gamma (\=x;u). Suppose that y

\ast 
1 , y

\ast 
2 \in \Lambda x\ast (\=x;u). Then \nabla G(\=x)T (y\ast 1 - 

y\ast 2) = 0 and

y\ast 1  - y\ast 2 \in ND(G(\=x);\nabla G(\=x)u) - ND(G(\=x);\nabla G(\=x)u)\subset spanND(G(\=x);\nabla G(\=x)u).

The nondegeneracy condition (4.1) yields y\ast 1 = y\ast 2 , which implies that the set \Lambda x\ast (\=x;u)
contains a unique element, say, y\ast 0 . Corollary 5.6 now completes the proof.

6. Application: Second-order conditions for disjunctive programs. Let
us first reiterate that our ultimate goal is to investigate problems (GP) with set C
having the complex structure (1.3). As explained, this has to be postponed until
we complete the full analysis in the forthcoming paper [4]. In this section, we only
provide a simple application of our results to the disjunctive program defined as

(DP) min f(x)

s.t. g(x)\in D,

where g is twice continuously differentiable and D is polyhedral. Several classes
of interesting mathematical programs of practical interest can be reformulated
as a (DP), including the mathematical program with equilibrium constraints
(MPEC) (cf. [21, 27, 33, 42]), the mathematical program with vanishing constraints
(cf. [1, 22, 23]), the mathematical program with switching constraints (cf. [25, 26]),
and the mathematical program with cardinality constraints (cf. [6, 7]). A discussion
on constraint qualifications of disjunctive programming can be found in [12, 28] and
references therein.

Using the second-order variational analysis of the disjunctive system, we can now
recover the second-order optimality conditions for the (DP) derived by Gfrerer in [12].
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SECOND-ORDER VARIATIONAL ANALYSIS 2651

Moreover, using the calculations for directional S- and M-multiplier sets for MPECs
in [12], we can easily obtain the corresponding second-order optimality conditions for
MPECs from Theorem 6.1.

Theorem 6.1 ([12, Theorems 3.3 and 3.17]). Let \=x be a local optimal solution
of the disjunctive program (DP). Then the following necessary optimality conditions
hold:

(i) For u\in \scrC (\=x), suppose that x\rightrightarrows g(x) - D is metrically subregular in direction
u at (\=x,0). Then there exists \lambda \in \Lambda (\=x;u) such that

\nabla 2
xxL(\=x,\lambda )(u,u)\geq 0.

(ii) For u\in \scrC (\=x), assume that the nondegeneracy condition in direction u,

\nabla g(\=x)T y\ast = 0, y\ast \in spanND(g(\=x);\nabla g(\=x)u) =\Rightarrow y\ast = 0,

is fulfilled. Then \nabla 2
xxL(\=x,\lambda )(u,u) \geq 0 holds with the unique directional S-

multiplier \lambda \in \Lambda s(\=x;u).
Conversely, suppose that \=x is a feasible solution of the disjunctive program (DP).
Suppose that for each nonzero u \in \scrC (\=x), there are \alpha and \lambda , not both equal to zero,
with \alpha \geq 0, \lambda \in \widehat Np

D(g(\=x);\nabla g(\=x)u) = \widehat NTD(g(\=x))(\nabla g(\=x)u), such that

\nabla 2
xxL

\alpha (\=x,\lambda )(u,u)> 0.

Then \=x is an essential local minimizer of second order.

Proof. To obtain the necessary optimality conditions, it suffices to calculate
\^\sigma T 2

D(g(\=x);\nabla g(\=x)u)(\lambda ) and apply Theorem 3.1. Under the assumptions, the second-
order necessary optimality condition (3.1) holds with C := D. It follows that
\^\sigma T 2

D(g(\=x);\nabla g(\=x)u)(\lambda )<\infty , which ensures that \lambda \in dom \^\sigma T 2
D(g(\=x);\nabla g(\=x)u). Taking G to be

the identity mapping in Theorem 5.1(iii), we obtain \Gamma =D and \^\sigma T 2
D(g(\=x);\nabla g(\=x)u)(\lambda ) = 0.

Hence, the necessary optimality conditions (i) and (ii) hold for (DP).
To obtain the sufficient optimality condition, it suffices to calculate d2\delta D(g(\=x);

\lambda )(\nabla g(\=x)u) and apply Theorem 3.3 with C := D. Again, applying Theorem 5.1(ii)
with G being the identity mapping, we have d2\delta D(g(\=x);\lambda )(\nabla g(\=x)u) = 0 since \lambda \in \widehat Np

D(g(\=x);\nabla g(\=x)u), and the result follows.

Note that we have only used the results from section 5 for the trivial identity
mapping. Their full potential will be seen when applied to sets of the form (1.3).

7. Concluding remarks. In this paper, we have reviewed the second-order nec-
essary optimality conditions and derived second-order sufficient optimality conditions
for the general problem (GP). Since these conditions involve some second-order objects
that need to be calculated or estimated, we have conducted second-order variational
analysis of disjunctive systems. As an illustration, we have shown that one can recover
second-order optimality conditions for disjunctive programs. In the forthcoming work
[4], using the analysis of disjunctive systems from this paper as a tool, we will develop
the variational analysis of the set given by (1.3), which will enable us to apply our
second-order optimality conditions from Theorems 3.1 and 3.3.

Acknowledgments. The authors are indebted to the anonymous referees for
their valuable suggestions that helped us to improve the original presentation of the
paper.
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