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1 Introduction

This paper is motivated by a financial application: the robust calculation of
an underlying price distribution of a financial asset, given market observations
on the price of options based on that asset. This is the so-called risk-neutral
density on prices.

Breeden and Litzenberger ([1], 1978) observed that the risk-neutral density is
proportional to the second derivative of the market price of the correspond-
ing option with respect to its strike price. Of course, in practice one has only
partial information (in fact, a discrete sample) of this function. Nevertheless,
there have been a number of investigations attempting to use these samples
of market data to estimate the second derivative, and hence to compute ap-
proximations to the risk-neutral density (see Shimko ([2], 1993) for example).
Clearly, such an approach is highly sensitive to the type of interpolation scheme
employed.

Buchen and Kelley ([3], 1996) investigated the use of the Maximum Entropy
Principle (MEP) as a natural, non-parametric method for extrapolating from
observed market data so-as to estimate the underlying price density. Avel-
laneda et. al. ([4], 1997) and Avellaneda ([5], 1998) also discuss this method.
The key motivation for using MEP is that the entropy objective leads to a den-
sity that is maximally noncommittal with respect to missing or unknown data
(in a sense that can be made precise in many cases; see Jaynes ([6], 1982)).

Borwein et. al. ([7], 2003) look carefully at the foundations for MEP calcula-
tions in this context, showing that the mathematical theory of convex duality
can be used to justify these computations rigorously. The duality theory also
provides efficient computational approaches for the MEP optimization based
on a finite-dimensional global optimization, provided the assumption of strict
convexity is satisfied by the observed market data. Conversely, their analysis
shows that constructing MEP densities given non-convex, or even non-strictly-
convex price data is impossible since no traditional MEP solution exists in the
presence of such constraints.

An important consequence of the traditional MEP approach is that the re-
sulting risk-neutral density is expressed as the exponential of some real-valued
function over the given price domain (typically, the nonnegative real line) im-
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plying that arbitrarily high asset prices can arise. Another contribution of
Borwein et. al. ([7], 2003) was to provide a rigorous extension of MEP to the
case of an a priori compactly supported price interval.

The purpose of this paper is to start where Borwein et. al. left off, developing
a rigorous MEP approach that can accommodate more complex price domains
than simply unbounded or bounded intervals. We explain precisely how this
phenomenon is linked to the convexity property in the market price data and
how to derive consistent MEP densities for data that lies at the boundary:
convex, but not-strictly-convex market data. These boundary cases arise when
dealing with real (noisy) data where the theoretical strict convexity condition
may be violated: see Remark 3.3 below, Buchen and Kelley ([3], 1996 – for
numerical examples of this phenomenon), and Guo ([8], 2001 – where convex
smoothing methods are proposed to address this issue). Specific regularisation
strategies for maximum entropy approaches to S&P500 data are employed
by He et. al ([9], 2008). Recent articles by Neri and Schneider ([10], 2012)
and Rodriguez and Santosa ([11], 2012), for example, show that the goal of
obtaining robust maximum entropy estimates from realistic financial data con-
tinues to be an active, productive and challenging area of research in financial
mathematics.

At first glance, the loss of strict-convexity appears at odds with traditional
pricing theory in the sense that arbitrage free pricing is deemed to be equiv-
alent to the existence of a strictly positive risk-neutral density. However, in
the absence of strict convexity in the market data, our analysis details pre-
cisely the way in which arbitrage free pricing must be achieved by risk neutral
measures. Further discussion may be found in Remark 3.4.

In the next section we set up the problem and introduce the MEP approach
in detail. The MEP density is the solution to an (infinite-dimensional) con-
strained optimization problem given a (finite) set of market observations. We
introduce the notion of impossible price intervals given a set of market obser-
vations in Section 3; the complement of the union of these intervals contains
the support of every consistent price density. We call this the reduced domain
(see Definition 3.1). Restricting our optimization problem to functions sup-
ported on the reduced domain, we obtain necessary and sufficient conditions
for existence of a fully supported risk-neutral density (constraint qualifica-
tion). In Section 4 we use convex duality to reformulate our problem as a
finite-dimensional optimization problem in the case of a bounded reduced do-
main. Because the dual (maximization) problem is concave and smooth, it
suffices to solve (finitely many) equations for the vanishing of the gradient of
the objective. These equations also imply strong duality, provided the con-
straint qualification derived in Section 3 holds. In Section 4.2 we explain the
connection between our geometric approach and the topologically motivated
constraint qualification given in Borwein et. al. ([7], 2003).

In Section 4.3 we adapt the arguments above for the case of an unbounded
reduced domain, obtaining strong duality in the context of suitable paired
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Köthe spaces (see Dieudonne ([12], 1951) for background). We also derive the
important conjugation through the integral property as a consequence of results
of Maréchal ([13], 2001). Finally, in Section 5 we summarize our findings and
suggest directions for future work.

2 Consistent Market Data and Impossible Prices

2.1 Notation and Definitions

Let us begin by defining the problem. Let m prices 0 ≤ k1 < k2 < · · · < km
be given in the interval I = [0,K[ with observed market prices d1, d2, . . . dm
for European call options at corresponding strike price ki and expiration time
T > 0 (fixed for this problem). We allow either K < ∞ or K = ∞. For
simplicity we assume the real rate of interest over the time interval [0, T ] is
zero, so no discounting is necessary in the calculation of the prices di from the
ki and T . Henceforth, we regard T as fixed, and suppress it in the notation for
market data. Let p = p(x) be a probability density on prices x ∈ I which is
consistent with these market observations. More precisely, for i = 1, 2, . . .m,
let

ci(x) :=

{
0 for x < ki,
(x− ki) for x ≥ ki, x ∈ I.

(1)

Then, to be consistent, the distribution p, given the data, must satisfy

d0 := 1 =

∫
I

p(x) dx,

di :=

∫
I

ci(x)p(x) dx, for i = 1, 2, . . .m.

(2)

We say that {ki; di} is a set of consistent market data if and only if there
exists a density p on I such that Equations (2) hold. Given consistent data,
a non-negative p ∈ L1(I) is called a consistent price density given the
market data if and only if it satisfies Equations (2). In this article we will
use the MEP to systematically choose such a consistent price density, thereby
approximating the presumed underlying risk-neutral measure.

The mathematical problem is formulated as follows:

Define

φ(t) :=

 t ln t for t > 0,
0 for t = 0,
+∞ for t < 0.

(3)
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Assume first that K < ∞ so that I = [0,K[ is a bounded interval. Then the
functions ci ∈ L∞ and for each p ∈ L1(I) we can define Ap ∈ Rm+1 by

(Ap)0 =

∫ K

0

p(x) dx,

(Ap)i =

∫ K

0

ci(x)p(x) dx, for i = 1, 2, . . .m.

(4)

The optimization problem to be solved is

(P )

{
Minimize

∫K
0
φ(p(x)) dx

Subject to p ∈ L1(I), Ap = (d0, d1, . . . dm)T = (1, d1, . . . dm)T .

Note we have chosen to minimize the negative of the usual entropy functional.
This is simply a mathematical convenience, and of no consequence since we
are mainly interested in p rather than the value of the problem.

In terms of the optimization problem (P ), the market data will be consistent if
and only if the feasibility set is non-empty, and every element of the feasibility
set will be a consistent probability density, given the market data. By choosing
p satisfying (P ) we obtain a MEP approximate risk-neutral density
consistent with market data {ki; di}. In the next sections we will solve
this problem by way of Lagrangian duality with respect to the the spaces L1

and Rm+1. If strong duality can be established, one expects the optimal density
to take the form

p(x) ∼ expϕ(x) > 0 (5)

(where ϕ is a real-valued function over the specified price interval I). The
positivity of p is inextricably linked with the strict convexity of market data.

When K =∞ the setup above needs to be modified since the linear mapping A
in (4) is well defined only on a proper subspace of L1. Indeed, for p ∈ L1[0,∞[,
only when

∫∞
0
|p(x)|x dx < ∞ is each product ci(x)p(x) integrable. The set

of such p forms a dense proper subspace of L1, so the formal primal-dual
optimization must be carried out with respect to a set of paired vector spaces
in the sense of Rockafellar ([14], 1968). Details required for this setting are
presented in the last part of Section 3 and in Section 4.3.

2.2 On Impossible Prices

Suppose {ki; di} is a set of consistent market data. A measurable set B ⊆ I
is a set of impossible prices (given the market data {ki; di}) if and only if
Equation (2) implies

∫
B
p(x)dx = 0. We say that B is the set of impossible

prices if and only if it is a maximal set of impossible prices up a set of measure
zero1.

1 B is a set of impossible prices such that if B′ is another set of impossible prices then
ν(B′ \B) = 0, where ν denotes Lebesgue measure on I.
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Let us review an illustrative example suggested by Borwein et. al. ([7], 2003).

Example 2.1 Let m = 2. Suppose 0 = k1 < k2 < K and d1 − d2 = k2. Then
any consistent probability density p must satisfy

k2 = d1 − d2 =

∫
I

(c1 − c2)(x)p(x) dx.

Since 0 ≤ (c1 − c2)(x) ≤ k2 − k1 = k2 with (c1 − c2)(x) = k2 if and only

if x ≥ k2 we conclude that
∫ k2
0
p(x) dx = 0. Hence B = [0, k2] is a set of

impossible prices given this data. Provided d1 lies in the interval k2 < d1 < K,
one can find a probability density p on [k2,K[ such that d1 =

∫
I
xp(x) dx.

Such a choice of p will automatically satisfy Equation (2) since

∫
I

c2(x)p(x) dx =

∫ K

k2

(x− k2)p(x) dx = d1 − k2 = d2.

Hence the market data will be consistent. However, every consistent density
on the price x of the asset at time T must a priori assign the value zero to all
prices lower than k2. It follows that MEP solution(s) to the optimization (P )
cannot be obtained through application of the theory of convex duality and
expression (5).

Once again, provided k2 < d1 < K, one can in fact construct a consistent prob-
ability density fully supported on [k2,K[, hence [0, k2] is the set of impossible
prices2. As a consequence of the computations to follow, we will show that
all MEP optimal solutions to this problem will be fully supported on [k2,K[.
While apparently unusual, this situation is compatible with conventional ar-
bitrage pricing theory: a trading strategy which sells an option at strike k1 for
price d1 and purchases an option at strike k2 for price d2 generates a claim
depending on final price xT of the underlying asset ofd1 − d2 if xT < k1,

d1 − d2 − (xT − k1) if k1 ≤ xT < k2,
0 if xT ≥ k2.

Since d1− d2 = k2 > 0 in the first case and d1− d2− (xT − k1) = k2− xT > 0
in the second, if both options are consistently priced, the absence of arbitrage
opportunities dictates that there must be no net profit from this strategy.
Hence xT ≥ k2 almost surely. We remark that this situation is not unrealistic:
for example, if the underlying asset was a preferred share, due to pay a dividend
of k2 on day T + 1, the market price xT can be reasonably assumed to exceed
k2.

2 It is also easy to see that if d1 = k2 or d1 = K there can be no price density p on [0,K[
consistent with this data.
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Example 2.2 (Derive MEP solutions for Example 2.1) Suppose that
k1 = 0, k2 = 1, K = 2 and, given d1 ∈ (1, 2) let d2 = d1 − 1. Sample optimal
solutions are:

d1 = 1.1 ⇒ p(x) = exp(2.30217− 9.99544 (x− 1)) 1[1,2[(x),
d1 = 1.5 ⇒ p(x) = exp(0) 1[1,2[(x),
d1 = 1.9 ⇒ p(x) = exp(−7.69327 + 9.99544 (x− 1)) 1[1,2[(x),

(all constants to six significant figures). The computations leading to these
results will be will be made in the sections to follow.

3 Consistent Data, Feasibility and Impossible Price Intervals

3.1 The Bounded Case (K <∞)

We now determine impossible price sets of the form [0, k1[, [ki, ki+1[ or [km,K[
for a given set of consistent market data. Indeed, we will show there exists a
probability density p satisfying Equation (2) and which is strictly positive on
the complement of the union of these intervals; as in the simple example just
discussed, the union of the intervals we find will be the set of impossible prices.

Consistency of market data can be reformulated in terms of strict convexity
of the graph of the market price d against strike price k. To use this charac-
terization, some additional notation is convenient.

Notation. For a given sequence

k0 := 0 ≤ k1 < k2 < · · · < km < km+1 := K <∞,

define a family of hat functions {h1, . . . , hm+1} on [0,K[ by linear interpo-
lation of the following values:

h1(kj) =

{
1 if j = 0, 1,

0 otherwise,
and for i > 1 hi(kj) =

{
1 if i = j,

0 otherwise.

It is easy to check that

h1 = 1− c1−c2
k2−k1 , hm = cm−1−cm

km−km−1
− cm

K−km , hm+1 = cm
K−km ,

and hi = ci−1−ci
ki−ki−1

− ci−ci+1

ki+1−ki

for the remaining i. Let B be the (m+ 1)× (m+ 1) matrix such that

h(x) := (h1(x), . . . , hm+1(x))T = B c(x) (6)

where c(x) = (1[0,K[, c1(x), . . . , cm(x))T . Clearly,

supp(hi) =]ki−1, ki+1[∩[0,K[
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where supp(f) := {x ∈ [0,K[ : f(x) > 0} denotes the support of a non-
negative function f relative to [0,K[. Note that

m+1∑
i=1

hi(x) = 1[0,K[, (7)

and that the matrix B depends only on the strike prices ki and K. �

We begin with a simple lemma.

Lemma 3.1 Let I = [0,K[ be bounded. Suppose that {ki; di}mi=1 are consistent
market data and p is any consistent price density. Let B be given by (6), let
d = (1, d1, . . . , dm)T and put

η = (η1, . . . , ηm+1)T := B d.

(a) For each i = 1, . . . , (m+ 1), ηi =
∫K
0
hi(x) p(x) dx.

(b) For each i, ηi ≥ 0 and

ηi = 0 ⇔ (ki−1, ki+1) is an impossible price interval

(interpret k0 = 0, km+1 = K, km+2 = ∞). Moreover,
∑m+1
i=1 ηi = 1 and

ηm+1 < 1.

Proof (a) Since p is a consistent price density, 1 =
∫

1[0,K[(x) p(x) dx and

di =
∫K
0
ci(x) p(x) dx for i = 1, . . . ,m. Thus d =

∫K
0

c(x) p(x) dx. Hence

η = B d = B

∫ K

0

c(x) p(x) dx =

∫ K

0

B c(x) p(x) dx =

∫ K

0

h(x) p(x) dx.

(b) Since 0 ≤ hi(x) on [0,K[ and p(x) ≥ 0, we have (hi p)(x) ≥ 0. Hence, by
part (a), ηi ≥ 0. Furthermore, ηi = 0 if and only if supp(hi) ∩ supp(p) = ∅
(modulo Lebesgue measure). In particular, ]ki−1, ki+1[= supp(hi) is an impos-
sible price interval and hi p = 0 a.e. Next,

m+1∑
i=1

ηi =

∫ K

0

m+1∑
i=1

hi(x) p(x) dx =

∫
1[0,K[(x) p(x) dx = 1,

by (7) and the fact that p is a probability density supported on [0,K[. Finally,
suppose that ηm+1 = 1. Then

∑m
i=1 ηi = 1− ηm+1 = 0 so η1 = · · · = ηm = 0.

Hence
[0, k2[, ]k1, k3[, . . . , ]km,K[

are all impossible price intervals, so supp(p) is disjoint from

∪mi=1]ki−1, ki+1[ = ]0,K[.

To avoid this contradiction, ηm+1 < 1.
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Remark 3.1 Lemma 3.1 has a simple geometric interpretation. Consider the
strike-to-market-price function D(x) over [k1, km] obtained by piecewise linear
interpolation of the market data (ki, di). For 2 ≤ i ≤ m − 1 the value of
ηi equals the slope of D over [ki, ki+1] minus its slope over [ki−1, ki] so the
specification ηi ≥ 0 implies that D is convex over the interval [ki−1, ki+1].
Extend D continuously to the interval [0,∞[ giving it slope −1 on [0, k1] and
setting D ≡ 0 on [K,∞[. The conditions in Lemma 3.1 b) require that D be
a convex function on [0,∞[ with slope starting at −1 near zero and rising to
zero on [K,∞[ (this is the sum condition). Moreover, the same arguments show
this convexity constraint on market data must hold in the presence of any risk
neutral probability and not just for absolutely continuous probabilities.

Remark 3.2 In the notation of Borwein et. al. ([7, Prop. 2] ,2003), ξi = ηi+1

for 0 ≤ i < m. The easiest way to see this is to observe that MT = B−1,
where M is in [7, Lemma 1]. In Borwein et. al. ([7], 2003), a geometrically
derived constraint qualification condition is used to write down the necessary
conditions for feasible market data (ξi ≥ 0); the sufficient conditions ηi > 0
for 0 ≤ i ≤ m allow for the solution of problem (P ) via convex duality. The
condition in Borwein et. al. ([7], 2003) immediately following Proposition 2 for
feasibility and strong duality in the case K <∞ should read

〈N−1B(d1, . . . , dm)T ,u〉 < 1− (K − km)−1 dm.

Remark 3.3 Buchen and Kelley ([3], 1996) consider the numerical solution of
the MEP problem with simulated data. They comment that noise in the data
can lead (easily) to violations of convexity of the strike-price curve, and this
causes numerical difficulties, leading to trapping at a “· · · local maximum, far
from its global maximum” [3, p154]. In fact, the vector η measures convexity,
with negative values reflecting convexity violation. The numerical maximiza-
tion procedure involves solving ∂iQ = 0 (see Equation (19) below), and when
ηi ≤ 0 the absence of solutions will cause inevitable numerical difficulties.

Remark 3.4 The value of ηi should be interpreted as the fair price for a
butterfly spread portfolio comprising a1 options at strike ki−1, a2 options at
strike ki, a3 options at strike ki+1 with a1 ci−1(x)+a2 ci(x)+a3 ci+1(x) = hi(x)
(cf. Equation (6)) (a1, a3 > 0 and a2 < 0). Since this portfolio generates a
positive pay-off for an underlying price xT ∈]ki−1, ki+1[, when ηi = 0, fair
pricing of the individual options implies that xT ∈]ki−1, ki+1[ occurs with
probability 0. Taking this reasoning further, when ηi < 0 there is no risk-
neutral probability measure (by Theorem 3.1), and an arbitrage opportunity
exists: one simply constructs the above portfolio for a guaranteed upfront profit
of |ηi|. Moreover, since the observed market data are inconsistent, there is no
risk-neutral measure, and potentially xT ∈]ki−1, ki+1[ creating a possibility of
further profit from exercising the appropriate combination of options.
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Theorem 3.1 (Necessary conditions for consistent price data) Let
{ki; di}mi=1, (di ≥ 0) be a set of consistent market data with ki < ki+1 for
each i = 1, . . . ,m− 1 and km < K <∞. Let η = B (1, d1, . . . , dm)T (where B
is as in (6)). Then the appropriate one of the following conditions holds:

(C ) if k1 > 0 then ηi > 0 implies at least one of ηi−1 or ηi+1 is also positive
for i = 2, . . . ,m and ηm+1 > 0⇒ ηm > 0;

(C’ ) if k1 = 0, then condition (C ) is augmented by η1 > 0⇒ η2 > 0.

Proof Let p be a consistent price density. Suppose first that 1 < i < m + 1.
By Lemma 3.1(b), if ηi−1 = 0 = ηi+1 then both (ki−2, ki) and (ki, ki+2)
are impossible price intervals. In particular, ]ki−1, ki+1[∩ supp(p) ⊂ {ki}, so
ηi = 0 by Lemma 3.1(a). Similarly, if ηm = 0 then ηm+1 = 0. This estab-
lishes (C). In case k1 = 0, supp(h1) =]0, k2[⊂]0, k3[=]k1, k3[ so if η2 = 0 then
supp(h1) is contained in an impossible price interval (by Lemma 3.1(b)), so

η1 =
∫K
0
h1(x) p(x) dx = 0.

According to Lemma 3.1, consistent price data may a priori exclude certain
prices in the interval I. These intervals are characterized by ηi = 0, and (C) (or
(C ′)) provides some additional clarification. It turns out that these conditions
are also sufficient for the consistency of market data and the existence of a
solution to problem (P ). In establishing these facts it is helpful to replace (P )
with an equivalent optimization problem; some additional notation is required
for this.

Definition 3.1 Given market data {ki; di} let η = B (1, d1, . . . , dm)T (where
B is as in Equation (6)). If each ηi ≥ 0 and (C) (or (C ′)) holds define3

I0 := I \ ∪{i : ηi=0}]ki−1, ki+1[. (8)

The set I0 is the reduced domain (as described in Section 1).

Next, define B : L1[0,K[→ Rm+1 by

(Bp)i :=

∫ K

0

hi(x) p(x) dx =

∫ K

0

(Bc(x))i p(x) dx = [BAp]i. (9)

In this notation, the constraints Ap = d are simply

Bp = BA p = B d = η.

When p is a consistent price density, Lemma 3.1 implies that supp(p) ⊆ I0 (see
Lemma 3.2 below) so the integrals defining B can be restricted to I0 without
effecting the value of Bp. It is fruitful to make this domain reduction explicit

3 In case η1 = 0, remove the interval [0, k2[ instead of ]0, k2[ so that 0 does not become
an isolated point of I0.
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in the definition of the constraints. Let η and I0 be as in Definition 3.1 (we
do not need a priori that the price data are consistent) and define the domain
reduced operator B0 : L1(I0)→ Rm+1 by

(B0p)i =

∫
I0

hi(x) p(x) dx. (10)

We now define:

(P0)

{
Minimize

∫
I0
φ(p(x)) dx

Subject to p ∈ L1(I0), B0p = η.
(11)

Example 3.1 (Example 2.1 revisited) Recall that 0 = k1 < k2 < K <∞
and d1 = d2 + k2 ∈]k2,K[. Then

B =

1 −1/k2 1/k2
0 1/k2 −(1/k2 + 1/(K − k2))
0 0 1/(K − k2)


and η = B (1, d1, d2)T = 1

K−k2 (0,K − d1, d1 − k2)T . If d1 = K or d1 = k2
then the price data is inconsistent by virtue of Lemma 3.1. If k2 < d1 < K
then η1 = 0 while η2, η3 > 0. Hence (C ′) is satisfied,

I0 = [0,K[ \ ]0, k2[

and (P0) is formulated asMinimize
∫K
k2
p(x) log p(x) dx

Subject to p ∈ L1[k2,K[,
∫K
k2

(x− k2) p(x) dx = d2,
∫K
k2
p(x) dx = 1.

Theorem 3.2 (Sufficient conditions for consistency of market data)
Let {ki, di}mi=1 be market data, and let η = B (1, d1, · · · , dm)T be such that
the conditions in Definition 3.1 hold (B is defined in (6)); let I0 be defined as
in (8). If condition (C) (or (C ′)) holds then the market data are consistent,
and any p which is feasible for (P ) has supp(p) ⊂ I0 and satisfies B0p = η.
Moreover, [0,K[ \I0 is the set of impossible prices associated to the market
data.

The proof of Theorem 3.2 is deferred until the end of Section 4.1 where it is a
simple consequence of the duality arguments required for a rigorous derivation
of the MEP solution to (P0). For now, we give two more lemmas.

Lemma 3.2 Let {ki; di}mi=1 be price data, and let η = B (1, d1, · · · , dm)T be
such that the conditions in Definition 3.1 hold (B is defined in (6)); let I0 be
defined as in (8). Then p is feasible for (P ) if and only if p is supported on I0
and is feasible for (P0). Moreover, if the market data is consistent, the values
of optimization problems (P ) and (P0) are identical.
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Proof First, note that for p ∈ L1[0,K[, Bp = η if and only Ap = d. If p is
feasible for (P ) then the latter condition holds, p is a consistent price density,
and by Lemma 3.1(b), (I \ I0) = ∪{i : ηi=0}]ki−1, ki+1[ is essentially disjoint
from supp(p). Hence p = 1I0 p almost everywhere, and

B0p =

∫ K

0

h(x) 1I0(x) p(x) dx =

∫ K

0

h(x) p(x) dx = Bp = η.

Moreover, since supp(p) ⊆ I0, we have φ(p(x)) = φ(p(x))|I0 and∫ K

0

φ(p(x)) dx =

∫
I0

φ(p(x)) dx.

Therefore, the value of (P0) is less than or equal to the value of (P ). Conversely,
if supp(p) ⊆ I0 and B0p = η then B p = B(1I0p) = B0p = η. Hence p is feasible
for (P ) and ∫

I0

φ(p(x)) dx =

∫ K

0

φ(p(x)) dx.

The value of (P ) is therefore less than or equal to the value of (P0), and the
proof is complete.

Lemma 3.3 Let {ki; di}mi=1 be price data satisfying ki < ki+1 for 1 ≤ i < m
with η and I0 as in Definition 3.1. If condition (C) (or (C ′)) is satisfied then:

(a) I0 is a non-empty union of closed intervals of the form [kl, kr] (l < r), (and
possibly [kL,K[);

(b) Given λ ∈ Rm+1 let ϕ(x) =
∑m+1
i=1 λi hi(x). Then ϕ1I0 ≥ 0 if and only if

λiηi ≥ 0 for i = 1, . . . ,m+ 1.
(c) Let ϕ be as in part (b). If ϕ1I0 ≥ 0 and 〈λ,η〉 = 0 then ϕ1I0 = 0.

Proof (a) Since I0 is obtained from [0,K[ by removing open intervals with
endpoints from {ki}, I0 is a union of closed intervals with endpoints from {ki}
(and possibly K). These intervals have non-empty interior (if x ∈]ki, ki+1[\I0,
then either ]ki−1, ki+1[ or ]ki, ki+2[ has been removed from [0,K[ in the con-
struction of I0 so at least one of {ki, ki+1} does not belong to I0; thus if
ki, ki+1 ∈ I0 then [ki, ki+1] ⊂ I0). Finally, the condition

∑m
i=1 ηi > 0 from

Lemma 3.1(b) taken together with C(′) guarantees at least one pair {ki, ki+1}
(i = 1, . . . ,m) such that [ki, ki+1[⊂ I0 (interpreting km+1 = K).
(b) First, we show that λi ηi ≥ 0 for i = 1, . . . ,m+ 1. To this end, note that ϕ
is piecewise linear with ϕ(ki) = λi (i = 1, . . . ,m). Suppose that λi < 0. Then
ϕ(ki) < 0 whereas ϕ(ki)1I0(ki) ≥ 0. Thus ki /∈ I0, so ηi = 0 and λiηi = 0.
Otherwise, λi ≥ 0 and hence λi ηi ≥ 0. The case i = m+ 1 is left as an exercise
(use ηm+1 > 0⇒ ηm > 0). The other direction is easy.
(c) Since ϕ1I0 ≥ 0 and 〈λ,η〉 = 0, part (b) implies that λiηi = 0 for
all i. If x ∈]ki, ki+1[⊂ I0 then ηi, ηi+1 > 0 (by construction of I0) so that
λi = λi+1 = 0 = ϕ(ki) = ϕ(ki+1). Hence ϕ1[ki,ki+1] = 0. It follows that
ϕ1I0 = 0.
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Remark 3.5 (Following Remark 3.1) While the condition ηi ≥ 0 implies
that the piecewise linear interpolation D of the market data must be convex,
when convexity is not strict (ie two or more consecutive segments of the inter-
polating graph have the same slope), values ηi = 0 result, and corresponding
intervals must be disjoint from the support of every consistent price density.
The situation where at least one ηi = 0 is the boundary between consistent
and inconsistent market data.

Remark 3.6 As we shall see, the identification of I0 is also critical for success
of the convex duality techniques that we apply in the next section. Without
such a reduction, the dual functional, although easily defined (and concave)
will fail to attain a global maximum over Rm+1 and strong duality will no
longer hold. Domain reduction ‘flattens out’ this dual objective in its non-
coercive directions and thus leads to strong duality over a slightly modified
function space for the primal problem. This technique has been useful in other
contexts, for example, in approximating the invariant density for certain ex-
panding dynamical systems through variational analysis; see Bose and Mur-
ray ([15], 2007). In that context, impossible price intervals correspond to tran-
sient regions for the dynamics; such regions must be disjoint from the support
of any absolutely continuous dynamically invariant measure, an appealing par-
allel with the current analysis.

Remark 3.7 In Section 4.1, the kernel of BT0 is explicitly associated with data
where ηi = 0. Clearly, the vector η can be used to verify consistency of price
data, form any required domain reduction and to obtain explicit control of the
kernel of BT0 ; this is an essential step for the numerical solution of (P ).

3.2 Consistency, Feasibility and Impossible Price Intervals on an Unbounded
Domain

When K = ∞ the statements in Theorems 3.1 and 3.2 are essentially un-
changed. However, minor modifications are needed to notation and (some)
proofs.

Definition 3.2 When K = ∞ the hat functions {hi}m−1i=1 are defined as at
the beginning of Section 3, however

h′m :=
cm−1 − cm
km − km−1

and h′m+1 := cm.

Let B′ be the matrix such that (h1, . . . , h
′
m, h

′
m+1)T = B′(1[0,∞[, c1, . . . , cm)T

and let η′ = B′(1, d1, . . . , dm)T . If the components η′i of η′ satisfy η′i ≥ 0 for
each i, put

I0 = [0,∞[\∪{i : η′i=0}]ki−1, ki+1[
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(where ]km, km+2[ is interpreted as ]km,∞[).

The basic mappings A and B are modified as follows. Since span{c0, c1, . . . cm}
is no longer a subspace of L∞, we consider A′, the action of A restricted to

L :=

{
p ∈ L1([0,∞[) :

∫ ∞
0

x |p(x)|dx <∞
}
, (12)

a dense subspace of L1(I). For p ∈ L we have both A′p ∈ Rm+1 and

B′p := B′A′p ∈ Rm+1.

The conditions (C) and (C ′) are based on {η′i} and the map B′0 is defined in
the same way as in the K <∞ case.

With these modifications in place, the relevant optimization problems will be
denoted (P ′) and (P ′0) respectively. In particular,

(P ′0)

{
Minimize

∫
I0
φ(p(x)) dx

Subject to p ∈ L, B′0p = η′.
(13)

Observe that, for any consistent price density p,∫ ∞
0

x p(x) dx ≤
∫ km

0

km p(x) dx+

∫ ∞
km

(km + cm(x)) p(x) dx = km + dm <∞.

Hence the value and solution of any primed problem will be the same as if it
were optimized over all of L1, subject to the constraints.

Further modifications related to the two previous theorems are

– The condition in Equation (7) is replaced with
∑m
i=1 h

′
i(x) = 1 for all

x ∈ [0,∞[.
– The last sentence in Lemma 3.1(b) should be replaced with “Moreover,∑m

i=1 η
′
i = 1.” Note it is now possible to have η′m = 1 (if and only if

supp(p) is contained in [km,∞[ ). The modification to the proof is obvious.
– Theorems 3.1 and 3.2 still hold, except references to B are replaced with

B′, and I0 is possibly unbounded (as in Definition 3.2 above).
– Lemma 3.2 refers to Definition 3.2 (instead of Definition 3.1).
– Lemma 3.3 is unchanged (except that the meaning of η has changed).

Remark 3.8 The space L introduced by Equation (12) is an example of a
Köthe Space; see, for example, Dieudonne ([12], 1951). The significance of this
will become apparent when we investigate duality for the unbounded case in
Section 4.3
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Remark 3.9 (A possible technical simplification) Mathematically, one
could deal only with the unbounded domain, and obtain the finite K case
through domain reduction. One simply augments the data {ki; di}mi=1 with
(km+1, dm+1) = (K, 0) and treats the domain as [0,∞[. The resulting matrix
B′ has dimension (m+ 2)× (m+ 2), and the (m+ 2)th moment condition is

η′m+2 =

∫ ∞
K

(x−K) p(x) dx = 0,

so that [km+1,∞[= [K,∞[ is excluded from I0, guaranteeing finite support
of the optimal p. This unified approach makes comparison with the results of
Borwein et. al. ([7], 2003) less transparent, so we have not followed it.

4 Duality and Satisfaction of the Constraint Qualification

4.1 Duality for (P0) when the Reduced Domain I0 is Bounded

We proceed directly using the theory of convex duality.

First, put Φ(p) =
∫
I0
φ(p(x)) dx.

Standing assumptions throughout this section: Assume {ki; di} are such
that ki < ki+1 < K for i = 1, . . . ,m − 1, (ηi)

m+1
i=1 = η = B (1, d1, . . . , dm)T

(where B is defined by (6)), that ηi ≥ 0 for each i and condition (C(′)) holds.
Also, B and B0 are as defined by (9) and (10). �

For each λ ∈ Rm+1 define

B0
Tλ := 1I0

m+1∑
i=1

λi hi. (14)

Notice that for any p ∈ L1(I0) and λ ∈ Rm+1,∫ K

0

[B0
Tλ](x) p(x) dx =

m+1∑
i=1

λi

∫ K

0

1I0hi(x) p(x) dx = 〈λ, (B0p)〉. (15)

Thus, B0
T : Rm+1 → L∞(I0) is the dual action of B0 : L1(I0)→ Rm+1.

The Dual Functional Q and Feasibility of (P0)

Assume initially that (P0) is feasible. The Lagrangian for the primal prob-
lem (P0) is

L(p,λ) =

∫
I0

φ(p(x)) dx+

m+1∑
i=1

λi(ηi −
∫
I0

hi(x)p(x) dx)

= Φ(p) + 〈λ,η − B0p〉

(16)
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where p ∈ L1(I0) and λ ∈ Rm+1. Set

Q(λ) := inf
p
L(p,λ)

= 〈λ,η〉 − sup
p

{∫
I0

[B0
Tλ](x) p(x) dx− Φ(p)

}
= 〈λ,η〉 − Φ∗(B0

Tλ)

(17)

where Φ∗ is the Fenchel conjugate of the convex functional Φ; that is

Φ∗(g) := sup
f∈L1(I0)

{∫
I0

f(x) g(x) dx− Φ(f)

}
.

When (P0) is feasible, the principle of weak duality holds: for every λ ∈ Rm+1

and feasible p ∈ L1(I0) we have Q(λ) ≤ Φ(p) with equality (strong duality) if
and only if p is optimal in the primal problem (P0).

Lemma 4.1 (Rockafellar [14, Corollary to Theorem 2]) Let φ : R→ R
be proper and convex and let Φ : L1(I0)→ R ∪ {±∞} be defined by

Φ(f) :=

∫
I0

φ(f(x)) dx.

Then Φ is convex and its Fenchel conjugate on L∞ is computed as

Φ∗(g) =

∫
I0

φ∗(g(x)) dx ∀g ∈ L∞(I0).

An easy calculation shows that φ∗(y) = exp(y − 1) and hence

Q(λ) = 〈λ,η〉 −
∫
I0

exp(B0
Tλ− 1) dx, ∀λ ∈ Rm+1. (18)

In particular we observe that Q is real-valued, concave and Gâteaux differen-
tiable at every point λ ∈ Rm+1 with derivative

(∂iQ)(λ) = ηi −
∫
I0

hi(x) exp
(
B0

Tλ− 1
)
dx. (19)

Note that ∂iQ(λ) = 0 for 1≤i≤m+1 if and only if B0

(
exp

(
B0

Tλ− 1
))

= η.

Example 4.1 (Example 2.1 revisited) As previously, let 0 = k1 < k2 < K
and d1 = d2 + k2 ∈]k2,K[. Then integrals in B0 are defined over [k2,K[,
η = 1

K−k2 (0,K − d1, d1 − k2)T and hence

Q(λ) = λ2 (K−d1)+λ3 (d1−k2)
K−k2 −

∫ K

k2

exp
{
λ2 − 1 + (λ3 − λ2) x−k2

K−k2

}
dx.

Clearly, kerBT0 = {(λ1, 0, 0) : λ1 ∈ R}, and Q can be maximized by solving
∇Q = 0 (since it is a concave function).
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Lemma 4.2 Suppose that λ̄ is a local maximizer for the functional Q on
Rm+1 defined by (18). Set p̄ := exp(B0

T λ̄− 1). Then

(a) p̄ ∈ L1(I0) and B0p̄ = η.

(b) p̄(x) = {
∫
I0

exp(
∑m+1
i=1 (λ̄)ihi(y)) dy}−1 exp(

∑m+1
i=1 (λ̄)ihi(x)).

(c) Φ(p̄) = 〈λ̄,η〉 − 1 <∞.
(d) Q(λ̄) = Φ(p̄). In particular, strong duality holds and p = p̄ is the unique

optimal solution of the primal optimization problem (P0).

Proof (a) Since Q is differentiable and λ̄ is finite, ∂iQ(λ̄) = 0 for each i. Hence
the function p̄ is bounded and satisfies B0 p̄ = η.
(b) By Lemma 3.2, Bp̄ = η. Hence Ap̄ = (1, d1, . . . , dm)T . In particular,∫ K

0

p̄(x) dx = 1, so p̄ =
p̄∫K

0
p̄(x) dx

.

(c) Using the formula for Φ,

Φ(p̄) =

∫ K

0

p̄(x) [B0
T λ̄− 1](x) dx =

∫ K

0

p̄(x) [B0
T λ̄](x) dx−

∫ K

0

p̄(x) dx

= 〈B0p̄, λ̄〉 − 1

by Equation (15).

(d) Since
∫K
0
p̄(x) = 1, the formula (18) for Q gives Q(λ̄) = 〈η, λ̄〉 − 1 = Φ(p̄)

as claimed. Since p̄ is feasible for (P0), the principle of weak duality holds, and

Φ(p̄) ≥ inf
{B0p=η}

Φ(p) ≥ sup
{λ}

Q(λ) ≥ Q(λ̄) = Φ(p̄)

showing that p̄ is optimal; the fact that Φ is strictly convex implies the required
uniqueness.

It remains to show that Q must attain a local maximum. In fact we will show
that Q attains a global maximum, although the presence of a kernel for B0

T

cannot be excluded (as illustrated by previous numerical example); hence,
the extrema may not be unique. This adds a slight complication to the usual
duality computations.

Lemma 4.3 Assume {ki; di} satisfy the standing assumptions, that B0
T is

defined by (14) and let Q be given by (18). Then

Rm+1 = KerB0
T ⊕ Range(B0) and η ∈ Range(B0).

Furthermore, Q is constant along hyperplanes parallel to KerB0
T .
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Proof By Equation (15),

y ∈ (Range (B0))
⊥ ⇔

∫ K

0

[B0
Ty](x) p(x) dx = 0 for every p ∈ L1(I0);

this occurs if and only if [B0
Ty] = 0 almost everywhere, so the decomposition

is established. Next, let λ ∈ KerB0
T so ϕ := B0

Tλ = 0. By Lemma 3.3(b),
ηiλi ≥ 0 and ηiλi ≤ 0 for 1 ≤ 1 ≤ m+ 1. Hence λTη = 0; that is,

η ∈
(

KerB0
T
)⊥

= Range(B0).

The last part follows from the formula for Q.

Remark 4.1 Note that an effect of reducing the domain from I to I0 is to
decrease the range of B to Range{B0} (while retaining η in the range); a
corresponding enlargement of KerB0

T thus occurs.

Since hyperplanes parallel to KerBT0 are level sets for Q, finding a maximum
for Q is equivalent to finding a maximum for Q restricted to the subspace
Range{B0}. Indeed, once the maximizing λ̄ has been found, the maximum
value for Q on Rm+1 will occur at all points along the hyperplane λ̄+KerB0

T .

Lemma 4.4 Suppose 0 6= λ ∈ Range{B0} and λ ⊥ η. Then [B0
Tλ]+ 6= 0 and

[B0
Tλ]− 6= 0.

Proof By linearity, it is enough to prove the second inequality. Suppose that
[B0

Tλ]− = 0. Then B0
Tλ ≥ 0 so that B0

Tλ = 0 by Lemma 3.3(c). Thus
λ ∈ KerB0

T ∩ Range{B0}, a contradiction to Lemma 4.3.

Lemma 4.5 The functional Q, restricted to Range{B0} is coercive.
That is, limr→∞Q(rλ) = −∞ if 0 6= λ ∈ Range{B0}.

Proof Let 0 6= λ ∈ Range{B0}. If λT η < 0 then

Q(rλ) = rλT η − Φ∗(rBT0 λ) ≤ rλT η → −∞

as r →∞. Otherwise, decompose

λ = αη + λ0

where α ≥ 0 and λ0 ⊥ η (recall that η ∈ Range{B0} by Lemma 4.3). Suppose
that λ0 6= 0. By Lemma 4.4, [B0

Tλ0]+ 6= 0 so there is a constant δ0 > 0 and
a measurable set J ⊂ I0 with m(J) > 0 such that

B0
Tλ0 ≥ δ0 1J .
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Since η has non-negative components, when r > 0,

B0
T (r αη)(x) = r α

m+1∑
i=1

1I0(x) ηi hi(x) ≥ 0

so that
B0

T (r (αη + λ0)) ≥ 0 + r δ0 1J .

Thus,

Φ∗(B0
T (rλ)) =

∫
I0

exp
(
B0

T (rλ)(x)− 1
)
dx ≥

∫
J

er δ0−1 dx = er δ0−1m(J).

Thus,

Q(rλ) = rλT η − Φ∗(B0
T (rλ)) ≤ r αηTη − er δ0−1m(J)→ −∞

as r →∞. The remaining case is when λ0 = 0 and α > 0. Let [ki, ki+1] ⊂ I0.
Put J = [ki, ki+1] and δ0 = min{ηi, ηi+1}. Then [B0

Tη] ≥ δ0 1J and the same
argument as above completes the proof.

Proof of Theorem 3.2 when I0 is bounded: The conditions in the theorem
are the standing assumptions of this section. By Lemma 4.5, Q|Range(B0) is
coercive. Since Q is also continuous and concave, it attains a global maximum
at some point λ̄ ∈ Rm+1. By Lemma 4.2, (P0) is feasible and p̄ solves (P0).
By Lemma 3.2, (P ) is feasible and is solved by p̄. �

4.2 A Topological Formulation of the Constraint Qualification

It is interesting to note that the direct calculations of the previous section
can be subsumed in general arguments based on a suitable topological con-
straint qualification. Having made the reduction to (P0) (using Lemma 3.2),
the essential step is to show that if

ηi ≥ 0 for i = 1, . . . , (m+ 1) and (C) (or (C ′)) is satisfied

then B0p = η for at least one p with
∫K
0
φ(p(x)) dx <∞. Let

B =
{
B0p : p ∈ L1(I0) and

∫K
0
φ(p(x)) dx <∞

}
.

By arguments similar to Borwein et. al. ([7], 2003), (P0) is feasible if the
following holds:

(CQ) η ∈ riB.

The “standing assumptions” of the previous section are needed to define I0
(and therefore formulate (P0) and (CQ)). It turns out that (CQ) is automat-
ically satisfied.
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Proof that (CQ) is satisfied: Let H be the (m + 1) × (m + 1) matrix whose
entries are 0 except for Hii = 1 when ηi > 0. Clearly, H is diagonal and
Hη = η.

Since
∫K
0

[B0
Tλ](x) p(x) dx = 〈λ, (B0p)〉, it follows that 〈λ,y〉 ≥ 0 for all y ∈ B

if and only if (B0
Tλ)(x) ≥ 0. By Lemma 3.3(b) and the definition of H, this

latter condition occurs if and only if (Hλ)i ≥ 0 for all i = 1, . . . , (m+ 1). The
same argument as in Borwein et. al. ([7, Proposition 2], 2003) gives

riB = H{]0,∞[m+1} =
{
x ∈ Rm+1 : xi > 0 if ηi > 0, xi = 0 if ηi = 0

}
.

It follows immediately that (CQ) is satisfied. �

4.3 Constraint Qualification for an Unbounded Domain I0

The primal problem to be solved is now (P ′0) from Equation (13) in Section 3.
The existence of a primal-dual optimal risk neutral density for unbounded
price intervals (K = ∞) is established in Theorem 4.1. The finiteness of the
problem (P ′0) is not a priori obvious, and is a consequence of direct arguments
(below) which establish the existence of a unique optimizer for Q|Range(B′0).

Naturally, we must begin with K = ∞. In the derivation of necessary con-
ditions (C(′)) one follows the arguments in the last part of Section 3 for the
identification of I0 ⊆ [0,∞[ (possibly removing ]km,∞[ if ηm+1 = 0). If the
reduced domain I0 is bounded, then the arguments of the previous section
apply. We therefore consider only the case where ηm+1 > 0. Note in particular
that Theorem 3.1 forces ηm > 0, so [km−1,∞[⊂ I0.

Recall the reduced functional domain defined by Equation (12) in Section 3
when K =∞. We reformulate this in the spirit of Köthe space as:

Γ := {1[0,∞[, x},
L :=

{
p measurable on [0,∞[ : v · p ∈ L1[0,∞[ for all v ∈ Γ

}
.

The dual space is now naturally defined as

L∗ :=
{
u measurable on [0,∞[ : v · u ∈ L1[0,∞[ for all v ∈ L

}
(20)

with a bilinear functional forming the pairing between L and L∗:

〈f, g〉 :=

∫
I0

f(x)g(x) dx, f ∈ L, g ∈ L∗.

To summarize, L and L∗ are paired Köthe spaces in the sense of Dieu-
donne ([12], 1951) or Maréchal ([13], 2001). Unfortunately L is not decompos-
able (meaning, it fails to be closed under the action u → 1T g + (1 − 1T )u
where g ∈ L∞ and T is a measurable set of finite measure). Consequently, the
key step in Section 4 that allowed conjugation through the integral, namely
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Lemma 4.1, is not applicable. However, for the specific case of the entropy ob-
jective under consideration, the conjugation step is justified by the following
result:

Proposition 4.1 (Maréchal [13, Proposition 2], 2001) Suppose L and
L∗ are paired Köthe spaces as above. If the function u∗ ∈ L∗ is such that the
function exp(u∗(x)− 1) belongs to L, then Φ∗(u∗) =

∫
φ∗(u∗(x)) dx.

We now recommence the derivation from Section 4, in particular Equation (17)
for the the dual functional Q in this setting:

Q(λ) = 〈λ,η〉 − Φ∗(B′0
T
λ),

Φ∗(u∗) := sup
u∈L

{∫
I0

u(x)u∗(x) dx− Φ(u)

}
.

The dual operator B′0
T

: Rm+1 → L∗ is derived as in Equation (15) but now
on the unbounded domain I0:∫ ∞

0

[B′0
T
λ](x)u(x) dx =

m+1∑
i=1

λi

∫ ∞
0

1I0hi(x)u(x) dx = 〈λ, (B′0u)〉

for all λ ∈ Rm+1 and u ∈ L.

In order to simplify notation, we henceforth omit the prime from the operator
B′0 (but keep the subscript, indicating reduced domain). Thus

B0
T : Rm+1 → L∗.

Note that when λm+1 > 0,

B0
Tλ = B0

T (λ1, . . . , λm, 0)T + λm+11I0 cm,

so B0
Tλ(x) diverges linearly to infinity as x → ∞ on I0. In this case an el-

ementary estimate shows that Φ∗
(
B0

Tλ
)

= ∞. If λm+1 = 0 then B0
Tλ is

compactly supported. Then it is an easy matter to choose u ∈ L (for exam-
ple, also compactly supported, with support disjoint from B0

Tλ) leading to
arbitrarily large positive values for the integral∫

I0

B0
Tλu(x)− φ(u(x)) dx = −

∫
I0

φ(u(x)) dx.

Consequently, Q(λ) = −∞ on closed half-plane λm+1 ≥ 0, Q is proper and
concave but only upper-semicontinuous and not differentiable on all of Rm+1.

On the other hand, on Rm+1
	 := {λm+1 < 0}, B0

Tλ(x) diverges linearly to

minus infinity as x→∞ on I0. It follows that exp(B0
Tλ(x)− 1) is an element

of the Köthe space L and Proposition 4.1 shows that for all such λ

Q(λ) = 〈λ,η〉 −
∫
I0

exp(B0
Tλ− 1) dx.
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Now, using the same arguments as in the bounded domain case, on Rm+1
	 , Q

is seen to be real-valued concave and Gâteaux differentiable. The analogue of
formula (19) holds for λ ∈ Rm+1

	 and appropriate versions of Lemmas 4.2–
4.4 hold with at most minor modifications to statements and proofs (replacing
L1−L∞ with L−L∗ and using primed objects where appropriate, for example).

Theorem 4.1 In the notation so far, under condition (C(′)), the problem (P ′)
with [0,K[= [0,∞[ is equivalent to finding

inf
{p∈L : A′ p=d}

Φ(p) = sup
λ∈Rm+1

〈λ,η〉 −
∫
I0

exp
(

[B0
Tλ](x)− 1

)
dx.

The dual (right-hand) problem has a unique solution λ̄ when restricted to
Range(B0)∩Rm+1

	 . Moreover, λ̄ satisfies ∂iQ(λ̄) = 0 for each i = 1, . . . ,m+1

(see Equation (19)) and the unique solution to (P ′) is p = 1I0 exp(B0
T λ̄− 1).

Proof The crucial step is to establish a version of Lemma 4.5 for the case
of unbounded I0 and λ ∈ Rm+1. Since Q(λ) is upper-semicontinuous and
bounded above by the linear function 〈λ,η〉, it suffices to establish that Q
restricted to Range(B0) has a bounded and non-empty upper level set. By
upper-semicontinuity, such a set will be compact, so that supQ|Range(B0) is
attained at a finite λ̄. Since Q(λ̄) > −∞, λm+1 < 0 so Q is differentiable at
λ̄ and satisfies ∇Q(λ̄) = 0.

Claim: For 0 6= λ ∈ Range(B0), limr→∞Q((0, . . . , 0,−2)T + rλ) = −∞.

Proof of theorem given the claim: Note that since I0 is unbounded, ηm+1 > 0.
By Lemma 3.3(b), if λ ∈ KerB0

T then λi ηi = 0 for each i. Hence

(0, . . . , 0,−2)λ = 0,

so (0, . . . , 0,−2)T ∈ (KerB0
T )⊥ = Range(B0). Let Q0 = Q((0, . . . ,−2)T ). By

the claim, for each λ̂ ∈ Range(B0) ∩ {|λ̂| = 1} there is an R > 0 such that

Q((0, . . . , 0,−2)T + Rλ̂) < Q0 − 1. Since Q is upper-semicontinuous, there is

an ε > 0 such that if |λ̂1 − λ̂| < ε and |λ̂1| = 1 then

Q((0, . . . , 0,−2)T +R λ̂1) < Q0 − 1.

Since Q is concave, for each such λ̂1, Q((0, . . . , 0,−2)T + rλ̂1) < Q0 − 1 for
all r > R. The unit sphere in Range(B0) can be covered by finitely many such
ε-neighbourhoods; thus there is an Rmax such that

Q(λ) ≥ Q0 − 1⇒ |λ− (0, . . . , 0,−2)T | ≤ Rmax.

The theorem now follows.

Proof of claim: There are several cases to consider. First, suppose that
λT η < 0. Since Φ∗(B0

T (·)) ≥ 0,

Q((0, . . . , 0,−2)T +rλ) ≤ 〈(0, . . . , 0,−2)T +rλ,η〉 = −2 ηm+1+rλTη → −∞
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as r →∞. Second, suppose that λTη ≥ 0 and λm+1 > 0. Then, by the remarks
just before the statement of the theorem, whenever rλm+1 ≥ 2

Q((0, . . . , 0,−2)T + rλ) = −∞.

Finally, suppose λTη ≥ 0 and λm+1 ≤ 0. Similar to the proof of Lemma 4.5,
decompose λ = αη + λ0 where λ0

Tη = 0 and α ≥ 0. If λ0 = 0 then α > 0
(since λ 6= 0), so 0 ≥ λm+1 = (αη + 0)m+1 = αηm+1 > 0. To avoid this
contradiction, λ0 6= 0, and by Lemma 4.4, [B0

Tλ0]+ 6= 0. In fact,

1[0,km] [B0
Tλ0]+ = [B0

Tλ0]+ 6= 0.

(To see this, note that 1[0,km] [B0
Tλ0]+ = [B0

Tλ0]+ − [(λ0)m+1 cm]+. But
(λ0)m+1 = λm+1−αηm+1 ≤ 0 so equality follows.) Hence, there is J ⊆ [0, km]
such that m(J) > 0 and 1J B0

Tλ0 ≥ δ0, for a δ0 > 0. Then

B0
T ((0, . . . , 0,−2)T + rλ) ≥ r δ0 1J ,

and, since (0, . . . , 0,−2)T + rλ ∈ Rm+1
	 ,

Q((0, . . . , 0,−2)T + rλ) ≤ α r ηTη − er δ0−1m(J)→ −∞ as r →∞.

5 Conclusions

The maximum entropy principle (MEP) was proposed by Buchen and Kelly ([3],
1996) as a way of approximating a risk neutral probability measure for the price
of a financial asset at a future time, inferred from market prices of simple op-
tions on that asset. Moment conditions are obtained from the no-arbitrage
assumption that all options have been priced consistently. On the one hand,
the absence of arbitrage opportunities implies that the options’ strike-price
curve must be convex; on the other hand, the usual process of solution of
the MEP via Lagrangian duality relies on strict convexity of this curve. Our
work elucidates the second observation, making clear the connection between
existence of a risk-neutral measure, and the applicability of the MEP. In par-
ticular, we build on work of Borwein et. al. ([7], 2003), and show how to use
the MEP when strict convexity of the data is lost.

In reality, market price data is not always convex, since it is prone to several
potential sources of inconsistency: transcription errors, incorrect or under-
determined pricing models, mistakes by a trader, imbalances between market
players in the amount of information available to be fed into the models. Any
of these mechanisms can be regarded a source of noise on otherwise consis-
tent data, leading to possible convexity violation and consequent arbitrage
opportunities.

Recent interest in applying the MEP setup to real market data (see Rodriguez
and Santosa ([11], 2012) and Neri and Schneider ([10], 2012)) has considered
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a range of strategies for regularising, projecting or otherwise perturbing non-
convex data. Our results show that at the point of crossing between consistent
to inconsistent data, the data in fact remain consistent. This insight is impor-
tant for understanding the performance of various numerical strategies, and
suggests that the idea of “convexifying” data via projection onto a feasible set
is worthy of further investigation.
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