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Abstract. In this article we study a piecewise linear discretization schemes
for transfer operators (Perron-Frobenius operators) associated with interval

maps. We show how these can be used to provide rigorous pointwise approx-

imations for invariant densities of Markov interval maps. We also derive the
order of convergence of the approximate invariant density to the real one in

the L∞-norm. The outcome of this paper complements rigorous results on L1

approximations of invariant densities [15] and recent results on the formulae
of escape rates of open dynamical systems [18]. We implement our compu-

tations on two examples (one rigorous and one non-rigorous) to illustrate the

feasibility and efficiency of our schemes
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1. Introduction

Although this article is about the approximation of invariant densities for interval
maps, it is intimately related to what are commonly termed open dynamical systems
or maps with ‘holes’ [7]. Open dynamical systems have become a very active area of
research. In part, this is due to their connection to metastable dynamical systems
[11, 12] and their applications in earth and ocean sciences [6, 20]. Corresponding
to invariant measures for closed dynamics, in open dynamical systems, long-term
statistics are described by a conditionally invariant measure and its related escape
rate, measuring the mass lost from the system per unit time [8].

In their recent article [18], Keller and Liverani obtained precise escape rate for-
mulae for Lasota-Yorke maps with holes shrinking to a single point. These formulae
depend, pointwise, on the invariant density of the corresponding closed system. Un-
fortunately, explicit formulae of invariant densities for Lasota-Yorke maps are, in
general, unavailable. Thus, to complement the result of [18], it is natural to consider
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2 Rigorous Approximations In The L∞-Norm

numerical schemes which provide rigorous and computable pointwise approxima-
tions of invariant densities.

In the literature, rigorous approximation results are available in the L1-norm [15],
the L∞-norm [3] and in the BV -norm, the space of function of bounded variation,
[13, 9], for example. None of these methods are well-suited to our problem. For
example L1 approximations cannot provide the pointwise information necessary
for application of the formulae of [18] (see Section 7 in [1]). Convergence schemes
in the L∞-norm and BV -norm cannot provide a computable error bound as the
constant in their approximation error depends on the invariant density itself, which
is a priori unknown.

By rigorous and computable approximation we mean the following. Assume
we are given a transformation τ (typically, a formula) and an error tolerance, for
example ∆ := 10−2. We choose a suitable discretization scheme for the transfer
(Frobenius-Perron) operator associated to τ and we are asked to determine an
explicit level of discretization ε such that the approximate invariant density f∗ε for
the discretize operator at level ε satisfies

(1.1) ‖f∗ − f∗ε ‖∞ ≤ ∆

Here f∗ is the invariant density for τ . We emphasize that we assume the continuous
density f∗ is unknown throughout this calculation. By computable we mean that,
at each step, one can determine via an algorithm, within a finite number of steps,
each quantity necessary to determine1 f∗ε and to guarantee Inequality (1.1).

One novelty of our approach is that we will need to consider two different dis-
cretization schemes in order to carry out this task, both based on binned discretiza-
tion of the state space. The results in this paper enable us to compute the number
of bins m, with ε = m−1, and the associated approximate density, as usual denoted
f∗m which achieves the tolerance ∆, uniformly.

The first ingredient in our analysis uses a natural piecewise linear discretization
scheme and the abstract perturbation result of [17]. The two Banach spaces involved
in our computation are L∞, and the space of Lipschitz continuous functions on the
unit interval. The same Banach spaces were used in [10] to provide a computer-
assisted estimate on the rate of decay of correlations. However, the discretization
scheme which was used in [10] is the traditional Ulam method. Ulam’s method
does not fit in our setting since it does not preserve the regularity of the space
of Lipschitz continuous functions. The idea of our method is to first prove an
appropriate Lasota-Yorke inequality for transfer operators associated with Markov
interval maps, then to construct a discretized transfer operator which preserves the
regularity of the space of Lipschitz continuous functions and which is close, in some
suitable norm, to the original transfer operator. Although, neither the original
transfer operator nor its discretized counterpart is a contraction in the L∞-norm2,
we obtain quasi-compactness of the original transfer operator, thanks to the result

1Of course, the efficiency of such an algorithm is an important issue. For our purpose, we will

be satisfied with algorithms that can be implemented in standard mathematical software on a
personal computer. Beyond that, we do not specifically address computational efficiency in this

article
2Unlike the L1 setting where the norm of the transfer operator is automatically ||L||1 ≤ 1,

here we can only show that |L| ≤M , where M is typically greater than or equal to 1.
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of [14]. We use the general setting of [17] which allows the study of perturbations
of transfer operators which are not necessarily contractions on either Banach space.
With this machinery, we can compute an explicit upper bound on the norm of the
resolvent, bounded away from the spectrum, of the transfer operator associated
with the map. Once an upper bound on the norm of the resolvent is computed, we
use a second discretization scheme, whose associated finite rank operator is Markov,
to compute an approximate invariant density with the pre-specified error tolerance
∆.

The reason for using two different discretizations in our method is the following:
The first discretization has the projection property. This property is essential in
the proofs related to the computation of an an explicit upper bound on the norm of
the resolvent. Moreover, it produces reasonable constants3 which are needed when
using the perturbation result of [17]. However, this natural discretization leads to
a non-Markovian finite rank operator. The lack of the Markov property makes the
(theoretical) rate of convergence slow. Thus, at the next stage, we use a different
discretization, which lacks the projection property4, but produces a finite rank
operator which is Markov. With this Markov scheme we will obtain a computable
rate of convergence which is of order m−1 lnm.

In Section 2 we set up our notation and assumptions. We also recall known
results on Markov interval maps which are needed in the sequel. In Section 3 we
provide a Lasota-Yorke inequality of the space of Lipschitz continuous functions. In
Section 4 we present our two discretization schemes and prove results about their
regularity properties when acting on the space of Lipschitz continuous functions.
In Section 5 we present the perturbation result of [17] as a sequence of steps which
are necessary for rigorous computations and in Section 6 we apply the perturbation
result to our problem. The main challenge of this paper lies in this section where
we design an algorithm which enables one to rigorously compute an upper bound
on the norm of the resolvent of the continuous transfer operator. The resolvent
estimate can then be used to obtain a rate of convergence Cm−1 lnm in Section
7, where C is a computable constant. In Section 8 we implement the algorithm of
Section 6 on a specific Markov interval map. Numerical results are reported for all
critical constants. In particular, we compute the number of bins (m = 5 × 106)
that guarantee approximation of f∗ by f∗m within tolerance ∆ = 10−2. Section 9
contains a discussion of an alternate projection based (non Markov) scheme and
in general, on efficiency of both piecewise linear discretization schemes for uniform
approximation.

2. Assumptions and Notation

2.1. Function spaces. Let (I,B, λ) denote the measure space where I := [0, 1], B
is Borel σ-algebra and λ is Lebesuge measure on I. Let Lp = Lp(I) = Lp(I,B, λ)
for 1 ≤ p ≤ ∞. Let CLip(I) denote the space of Lipschitz continuous functions on
I. We equip CLip(I) with the norm

|| · || = Lip(·) + | · |,

3This is very important from computational point of view. In particular, smaller constants
means that less time will be spent on the computer to produce the desired computation.

4Thus, we could not use the Markov discretization right from the beginning.



4 Rigorous Approximations In The L∞-Norm

where Lip(·) is the Lipschitz constant of a function and | · | is its L∞ norm. The
Arzelà-Ascoli theorem implies that the unit ball of || · || is | · |-compact5

2.2. Markov maps of the unit interval. Let τ : I → I be a measurable trans-
formation. We assume that there exists a partition P of I, P = {ci}qi=0 such that

(1) for each i = 1, . . . , q, τi := τ|(ci−1,ci) is monotone, C1+Lip and it extends to

a C1 function on [ci−1, ci];
(2) (τ−1

i )′ : [τ(ci−1), τ(ci)] → [ci−1, ci] is a Lipschitz continuous function for
each i.

(3) there exits a number α0 such that 1
|τ ′i |
≤ α0 < 1;

(4) for each i, j = 1, . . . , q, if τ((ci−1, ci)) ∩ (cj−1, cj) 6= ∅, then τ((ci−1, ci)) ⊇
(cj−1, cj);

(5) there exists a k0 ≥ 1 such that τk0 is piecewise onto.

Let Lτ : L1 → L1 denote the transfer operator (Perron-Frobenius) [2] associated to
τ :

Lτf(x) =
∑

y=τ−1x

f(y)

|τ ′(y)|
.

2.3. Results implied by the assumptions on τ . Assumptions (1)-(5) imply (see

[4]) that Lτ : CLip
loc (I) → CLip

loc (I), the space of locally Lipschitz functions (relative
to the Markov partition P) and Lτk : CLip(I) → CLip(I) whenever k ≥ k0. Fur-
thermore, τ admits a unique absolutely continuous probability measure dν = f∗dλ
equivalent to Lebesgue, with f∗ ∈ CLip(I) and uniformly bounded away from zero
([4] Theorem 0.1). Further properties of the system (τ, ν) are as follows:

(1) The system is Bernoulli ([4] Theorem 0.3) hence τ is mixing with respect
to ν.

(2) The eigenvalue 1 is a simple eigenvalue for the operator Lτ acting on either

of the Banach spaces L2(I, ν) or CLip
loc (I).

(3) 1 is the only eigenvalue of unit modulus for the operator Lτ acting on either
Banach space.

A useful regularity estimate playing a critical role in the proof of Theorem 0.1 in
[4] is the following:

(2.1) B0 := sup
n≥k0

Lip(Lnτ 1) <∞

3. Lasota-Yorke inequality on CLip(I)

Lemma 3.1. For all n ≥ 1

|Lnτ | ≤M,

where M = B0 + 1.

Proof. Since each function Ln1 is nonnegative on I with unit L1−norm, it follows
that |Ln1| ≤ 1 + Lip(Ln1). The result now follows from (2.1). �

We now fix a k ≥ k0 such that α = Mαk0 < 1. Let T := τk and L = Lkτ be the
transfer operator associated to T . We also set P0 = {ai}li=0 to be the partition of
I which consists of the intervals of monotonicity of T .

5See [8] for this and other basic properties about the Banach space CLip(I).
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Remark 3.2. By the mixing property of (τ, ν) τ and T have the same unique invari-
ant density f∗. While our goal is to provide a rigorous approximation of the density
f∗ for τ in the L∞ norm, we will achieve this goal by working with T instead of τ .

Lemma 3.3. We have the following Lasota-Yorke-type inequality for L : CLip(I)→
CLip(I) and

Lip(Lf) ≤ αLip(f) +B1|f |,
where B1 := Lip(Lkτ1) (= Lip(L1)).

Proof. Let x, y ∈ I. For f ∈ CLip(I) we have

|Lf(x)− Lf(y)| = |
l∑
i=1

f(T−1
i x)

|T ′(T−1
i x)|

−
l∑
i=1

f(T−1
i y)

|T ′(T−1
i y)|

|

≤
l∑
i=1

|f(T−1
i x)− f(T−1

i y)

|T ′(T−1
i x)|

|+
l∑
i=1

| f(T−1
i y)

|T ′(T−1
i x)|

− f(T−1
i y)

|T ′(T−1
i y)|

|

≤ Lip(f)

l∑
i=1

|T
−1
i (x)− T−1

i (y)

|T ′(T−1
i x)|

|+ |f |
l∑
i=1

|(T−1
i )′(x)− (T−1

i )′(y)|

≤ αk0
l∑
i=1

1

|T ′(T−1
i x)|

Lip(f)|x− y|+ Lip(L1)|f ||x− y|

≤ αLip(f)|x− y|+B1|f ||x− y|.
�

Corollary 3.4. For f ∈ CLip(I) and for all n ≥ 1, we have

||Lnf || ≤ αn||f ||+M(1 +
B1

1− α
)|f |.

Proof. The proof follows from Lemmas 3.3 and 3.1. �

Remark 3.5. The inequality in Corollary 3.4, combined with the mixing property
of T gives the following spectral picture for L acting on CLip(I):

(1) The essential spectral radius6 of L is ρess ≤ α < 1
(2) The spectrum of L outside of the disc {ρ ≤ α} consists of a simple eigenvalue

at ρ = 1 corresponding to the unique invariant density for T (or τ).

This picture will play a critical role in what follows.

3.1. Estimates on the relevant constants. The key expression from the previ-
ous section is the inequality in Corollary 3.4. Reviewing the constants that need to
be estimated, α and B1 are easily computed directly from the definition of τ , but
the constant M , which is defined in terms of B0 may not be so straightforward.
One favourable situation is when a variational Lasota-Yorke inequality is available
for τ . In that case we can estimate M directly as follows. We assume Lτ satisfies

(3.1) V Lnτ f ≤ A0α
nV f +B‖f‖, n ≥ 1

where V (·) denotes the usual notion of variation for L1 functions and ‖ · ‖ the L1−
norm. Then we simply observe

|Lnτ | ≤ |Lnτ 1| ≤ V (Lnτ 1) + ‖Lnτ 1‖ ≤ A0α
nV 1 +B‖1‖+ 1 = B + 1

6See, for example Hennion [14] for an elegant proof of this fact.
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so we can set M := B + 1.

4. Two piecewise linear discretization schemes for L

4.1. Projection-Based Discretization. Let η = {bi}mi=0 be a partition of I into
intervals of size at most ε; i.e., mesh(η) ≤ ε. Since uniform partitions are the
first choice for numerical work, we will assume for the rest of this article that
bi−bi−1 = 1

m . Everything we do could be modified for non-uniform partitions with
only minor notational changes. Let

ϕi = χ[bi−1,bi], zi = [

∫ 1

0

ϕidλ]−1 =
1

bi − bi−1
= m and φi(x) = m

∫ x

0

ϕidλ.

For f : I → R define

Πmf =f(b0) +

m∑
i=1

φi[f(bi)− f(bi−1)]

= f(b0)(1− φ1) + f(bm)φm +

m−1∑
i=1

f(bi)(φi − φi).

Thus, Πmf is a piecewise linear function with respect to η; moreover, Πmf(bi) =
f(bi), i = 0, . . . ,m. We shall write Πm in a more compact form

Πmf =

m∑
i=0

f(bi)ψi,

where the basis ψi is a set of hat functions over η:

(4.1) ψ0 := (1− φ1) , ψm := φm and for i = 1, . . . ,m− 1 , ψi := (φi − φi+1).

Lemma 4.1. The operator Πm is a projection; i.e.,

Π2
m = Πm.

Proof. Observe that

ψi(bj) =

{
1 if i = j
0 if i 6= j

.

For f ∈ CLip(I), we have

Πm(Πmf) =

m∑
j=0

(
m∑
i=0

f(bi)ψi(bj)

)
ψj =

m∑
j=0

f(bj)ψj = Πm.

�

Remark 4.2. The projection property of Πm is going to be essential for results in
Section 6 (specifically, in the proof of Lemma 6.3).

Lemma 4.3. For f ∈ CLip(I) we have

(1) Lip(Πmf) ≤ Lip(f);
(2) |Πmf | ≤ |f |;
(3) |Πmf − f | ≤ 2εLip(f);
(4) VΠmf ≤ V f .
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Proof. For f ∈ CLip(I). We have

Lip(Πmf) = max
i

|Πmf(bi)−Πmf(bi−1)|
bi − bi−1

= max
i

|f(bi)− f(bi−1)|
bi − bi−1

≤ Lip(f),

and

|Πmf(x)| = |
m∑
i=0

f(bi)ψi(x)| ≤ |f |
m∑
i=0

ψi(x) = |f |.

To prove the third statement, let x ∈ [bi−1, bi]. Then

|Πmf(x)− f(x)| = |Πmf(x)−Πmf(bi) + f(bi)− f(x)|
≤ |Πm||f(x)− f(bi)|+ |f(bi)− f(x)| ≤ 2|f(bi)− f(x)| ≤ 2εLip(f).

Finally, we have

VΠmf =
m−1∑
i=0

|f(bi+1)− f(bi)| ≤ V f.

�

We now define a discretized version of L by:

Lm = ΠmLΠm.

Observe that Lm is a finite rank operator whose range is contained in the space of
continuous, piecewise linear functions with respect to η. On this space, and with
respect to the basis {ψi}, the action of Lm becomes matrix multiplication7 by an
(m+ 1)× (m+ 1) matrix whose (ij)th entry is given by

mij := Lψi(bj).
By definition, for all i, the functions ψi are non-negative. Consequently, the matrix
corresponding to Lm is a non-negative matrix. However, the matrix of Lm is not
necessarily stochastic.

4.2. Markov Discretization. Another natural choice for constructing piecewise
linear approximations was used by Ding and Li [9]. In this case the goal is slightly
different, namely, to preserve the Markov structure of the transfer operator L.

Let ψi, i = 0, 1, 2, . . .m be the hat functions defined in (4.1). For f ∈ L1, we set
Ii := [bi−1, bi] and

fi := m

∫
Ii

f dx, i = 1, 2, . . .m,

the average of f over the associated partition cell. For f ∈ L1 we set

Qmf := f1ψ0 +

m−1∑
i=1

fi + fi+1

2
ψi + fmψm

While Qm fails to be a projection operator, it retains good stochastic properties8

[9]:

• Qm : L1 → L1 is a Markov operator whose range is contained in the class
of continuous, piecewise linear functions with respect to the bi.
• V Qmf ≤ V f

7All our matrices act by multiplication on the right, in keeping with the usual convention in

the literature.
8See [9] for proofs.
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Moreover, Qm has nice regularity properties when acting of the the space CLip(I)

Lemma 4.4. For f ∈ CLip(I), we have

(1) |Qmf | ≤ 2|f |;
(2) Lip(Qmf) ≤ 3

2Lip(f);

(3) |Qmf − f | ≤ 5
2mLip(f).

Proof. Let f ∈ CLip(I) and x ∈ Ii, i = 2, . . .m− 1. Then,

Qmf(x) = |fi−1 + fi
2

ψi−1(x) +
fi + fi+1

2
ψi(x)| ≤ 2|f |.

For the special cases when x ∈ I1 or in Im, the proof is similar. For the second
statement we have

Lip(Qmf) = mmax
i
|fi + fi+1

2
− fi−1 + fi

2
| = m

2
max
i
|fi+1 − fi−1|

=
m

2
max
i
|f(zi+1)− f(zi−1)|,

for some zi+1 ∈ Ii+1 and zi−1 ∈ Ii−1. Therefore,

Lip(Qmf) =
m

2
Lip(f) max

i
|zi+1 − zi−1| ≤

3

2
Lip(f).

To prove the last statement, we let x ∈ Ii and observe that

|Qmf(x)− f(x)| = |fi−1 + fi
2

ψi−1(x) +
fi + fi+1

2
ψi(x)− f(x)|

= |fi
2

+
fi−1

2
ψi−1(x) +

fi+1

2
ψi(x)− f(x)|

= |fi − f(x)

2
+
fi−1

2
ψi−1(x) +

fi+1

2
ψi(x)− (ψi−1(x) + ψi(x))

f(x)

2
|

≤ |fi − f(x)

2
|+ |fi−1 − f(x)

2
|+ |fi+1 − f(x)

2
|

≤ 1

2
[

1

m
Lip(f) +

2

m
Lip(f) +

2

m
Lip(f)] =

5

2m
Lip(f).

�

We now define a second piecewise linear Markov discretization of L by

Pm := Qm ◦ L.

Notice that Pm is a finite-rank Markov operator whose range is contained in the
space of continuous, piecewise linear functions with respect to η. The matrix rep-
resentation of Pm restricted to this finite-dimensional space and with respect to the
basis {ψi} is a (row) stochastic matrix, with entries

pij := m

∫
Ij

Lψi ≥ 0.
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5. Keller-Liverani’s theorem

In this section we present a version9 of the perturbation result of [17] which is
designed for rigorous computations. All the constants involved in the statements
below are crucial in our work.

5.1. Notation. Let (B, || · ||) be a Banach space which is equipped with a second
norm | · | such that

(5.1) | · | ≤ || · ||.

For any bounded linear operator P : B→ B, consider the set

Vδ,r(P ) = {z ∈ C : |z| ≤ r or dist(z, σ(P )) ≤ δ},

where σ(P ) is the spectrum of P with respect to (B, || · ||), and define

Hδ,r(P ) := sup{||(z − P )−1|| : z ∈ C \ Vδ,r} <∞.

Further, we define the following operator norm:

|||P || = sup
||f ||≤1

|Pf |.

5.2. Assumptions. let Pi : B → B be two bounded linear operators, i = 1, 2.
Assume that: there is a C1,M > 0 such that for all n ∈ N

(5.2) |Pni | ≤ C1M
n;

and ∃α ∈ (0, 1), α < M , and C2, C3 > 0 such that

(5.3) ||Pni f || ≤ C2α
n||f ||+ C3M

n|f | ∀n ∈ N ∀f ∈ B, i = 1, 2;

moreover, if

(5.4) |z| > α, then z is not is the residual spectrum of Pi, i = 1, 2.

5.3. Results.

Theorem 5.1. [17] Consider two operators Pi : B → B which satisfy (5.2), (5.3)
and (5.4). For10 r ∈ (α,M), let

n1 = d ln 2C2

ln r/α
e

n2 = d ln 8C3C2(C2 + C3 + 2)MHδ,r(P1)

ln r/α
+ n1

ln(M/r)

ln r/α
e.

If

|||P1 − P2||| ≤
(r/M)

n1+n2

8C3(Hδ,r(P1)C3 + C1

M−r )
:= ε1(P1, r, δ)

then for each z ∈ C \ Vδ,r(P1), we have

||(z − P2)−1f || ≤ 4(C2 + C3)

M − r

(
M

r

)n1

||f ||+ 1

2ε1
||f ||1.

9In [19] another version of [17] was designed for rigorous computations in the framework of

(BV, || · ||) and (L1, | · |), where the | · |-norm of both operators in the setting of [19] is smaller than

1.
10In this paper will be interested in those r ∈ (α, 1).
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Set

γ =
ln(r/α)

ln(M/α)
,

a =
8M(C2 + C3)2

M − r

(
M

r

)n1

[2C2(C2 + C3) +
C1

M − r
] +

2C1

M − r
,

b =
8M

M − r
[MC2(C2 + C3 + 2) + C3] (C2 + C3)2

(
M

r

)n1

+ 2C3,

and

ε2(P1, r, δ) :=[
1

4C3

( r

M

)n1

(
1

Hδ,r(P1)[C2(C2 + C3 + 2)M + C3] + 2C2(C2 + C3) + C1

M−r

)] 1
γ

.

If

(5.5) |||P1 − P2||| ≤ min{ε1(P1, r, δ), ε2(P1, r, δ)} := ε0(P1, r, δ)

then for each z ∈ C \ Vδ,r(P1), we have

(5.6) |||(z−P2)−1− (z−P1)−1||| ≤ |||P1−P2|||γ(a||(z−P1)−1||+b||(z−P1)−1||2).

Corollary 5.2. [17] If |||P1−P2||| ≤ ε1(P1, r, δ) then σ(P2) ⊂ Vδ,r(P1). In addition,
if |||P1−P2||| ≤ ε0(P1, r, δ), then in each connected component of Vδ,r(P1) that does
not contain 0 both σ(P1) and σ(P2) have the same multiplicity; i.e., the associated
spectral projections have the same rank.

6. Computing the decay rate for L

6.1. Applying Keller-Liverani’s theorem to L and Lm.

Lemma 6.1. Let L∗ denote either L or Lm and let f ∈ CLip(I). We have

(1) for all n ≥ 1, |Ln∗ | ≤Mn, where M = B0 + 1;
(2) for all n ≥ 1, ||Ln∗f || ≤ αn||f ||+ C3M

n|f |, where C3 = B1

M(1−α) + 1.

(3) |||(L − Lm)||| ≤ Γε, where Γ = 2 ·max{α+M,B1}.

Proof. The inequalities in the first two statements for L are dominated by those of
Lm. Therefore we prove them only for L∗ = Lm. For |f | ≤ 1, using Lemmas 3.1
and 4.3, we have

|Lmf | = |ΠmLΠmf | ≤ |L||f | ≤M.

This implies the first statement of the lemma. To prove the second statement, we
observe that

Lip(Lmf) = Lip(ΠmLΠmf) ≤ Lip(LΠmf)

≤ αLip(Πmf) +B1|Πmf | ≤ αLip(f) +B1|f |.
(6.1)

Consequently,

Lip(Lnmf) ≤ αnLip(f) + (1 + α+ · · ·+ αn−1)Mn−1B1|f |
and, for all n ≥ 1,

||Lnmf || ≤ αn||f ||+ C3M
n|f |.

Finally, using Lemma 4.3 and inequality (6.1), we obtain

|(L − Lm)f | ≤ |(L −ΠmL)f |+ |(ΠmL −ΠmLΠm)f |
≤ 2εLip(Lf) + 2εMLip(f) ≤ 2ε[(α+M)Lip(f) +B1|f |] ≤ Γε||f ||.
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�

6.2. L as a perturbation of Lm. All the constants arising in Theorem 5.1 are
(in principle) computable for the matrix representation of the finite-dimensional
operator Lm, including the number Hδ,r(Lm). Thus, using the idea of [19], we are
going to apply Theorem 5.1 with Lm as P1 and L as the perturbation P2. This
entails some a priori estimates.

Lemma 6.2. Given L, δ > 0 and r ∈ (α, 1), there exists ε3 > 0 such that for each
η with 0 < mesh(η) ≤ ε3, we have

(6.2) mesh(η) ≤ Γ−1ε0(Lm, r, δ),

and

(6.3) |||Lm − L||| ≤ ε0(Pη, r, δ).

Proof. See Lemma 4.2 of [19]11. �

In the next lemma we provide a computable upper bound on Hδ,r(Lm).

Lemma 6.3. For f ∈ (C, || · ||) with ||f || = 1 and z ∈ C \ Vδ,r(Lm) we have:

(1) ||(z − Lm)−1f || ≤ ( B1

r−α + 1)|(z − Lm)−1Πmf |+ 1
r−α + 2

r ;

(2) |(z − Lm)−1Πmf | ≤ ||(z − Lm)−1f ||+ 2
r .

Proof. We have

(z − Lm)−1 = z−1(z − Lm)−1Lm + z−1 · 1.

Then using the fact that Πm is a projection and statements (1) and (2) of Lemma
4.1, we obtain

||(z − Lm)−1(f −Πmf)|| = ||(z−1(z − Lm)−1Lm + z−1 · 1)(f −Πmf)||

= ||f
z
− Πmf

z
|| ≤ 2

|z|
||f || ≤ 2

r
.

(6.4)

Now, write (z−Lm)−1Πmf = h, then h = 1
z (Lmh+Πmf). Therefore, by inequality

(6.1), we have

Lip(h) ≤ 1

|z|
(Lip(Lmh) + 1) ≤ 1

r
(αLip(h) +B1||h||1 + 1).

Hence,

(6.5) ||h|| ≤ (
B1

r − α
+ 1)|h|+ 1

r − α
.

and by (6.4) and (6.5) the first part of the lemma follows. For the proof of the
second statement, by (6.4), we have

|(z − Lm)−1Πmf | ≤ ||(z − Lm)−1Πmf || ≤ ||(z − Lm)−1f ||+ 2

r
.(6.6)

�

11Although the norms used in [19] are BV and L1, the proof of his Lemma 4.2 is valid in the
general setting of [17] and does not really depend on the norms involved.
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Now we define

H∗δ,r(Lm) := sup{( B1

r − α
+1)|(z−Lm)−1Πmf |+

1

r − α
+

2

r
: ‖v‖1 = 1, z ∈ C\Vδ,r(Lm)},

n∗2 := d
ln 8C3C2(C2 + C3 + 2)MH∗δ,r(Lm)

ln r/α
+ n1

ln(M/r)

ln r/α
e

ε1(P1, r, δ) :=
(r/M)

n1+n∗2

8C3(H∗δ,r(Lm)C3 + C1

M−r )
,

ε∗2(Lm, r, δ) :=[
1

4C3

( r

M

)n1

(
1

H∗δ,r(Lm)[C2(C2 + C3 + 2)M + C3] + 2C2(C2 + C3) + C1

M−r

)] 1
γ

,

and

ε∗0(Lm, δ, r) := min{ε∗1(Lm, r, δ), ε∗2(Lm, r, δ)}

Note that H∗δ,r(Lm) provides a computable upper bound on Hδ,r(Lm), and conse-

quently ε∗0(Lm, δ, r) provides a computable lower bound on ε0(Lm, δ, r). The critical
step is to obtain control on the separation of the point spectrum of L outside the
essential spectral radius α. More precisely, the following algorithm will compute
numbers δ = δc, α < r = rc < 1 such that δc < 1− rc and ε = εc > 0 such that for
any η with mesh(η) = εc

(1) mesh(η) ≤ (Γ)−1ε0(Lm, r, δ);
(2) B(ρ, δc) ∩B(0, rc) = ∅, where ρ is the dominant eigenvalue of Lm.
(3) If ρi 6= ρ is an eigenvalue of Lm, then ρi ∈ B(0, rc).

Thus we obtain the a spectral gap for Lm and consequently, by Theorem 5.1, a
spectral gap for L.

Algorithm 6.4. Given T and p ∈ N, then

(1) Pick δ = 1/p
(2) Set r = 1− 2δ.
(3) Choose m, the number of partition intervals.
(4) Set ε = 1

m , the mesh size of the partition.
(5) Find the matrix representation of Lm
(6) Check if ε ≤ (Γ)−1ε∗0(Lm, δ, r).

If (6) is not satisfied, feed in a larger m repeat (3)-(6); otherwise, continue.

(7) Check that B(ρ, δ) ∩ B(0, r) = ∅ and ρi ∈ B(0, r) for any eigenvalue ρi of
Lm with ρi 6= ρ.

(8) If (7) is satisfied, report δc := δ, rc := r and mc := m; otherwise, multiply
p by 2 and repeat steps (1)-(7) starting with the last m that satisfied (7).

Proposition 6.5. Algorithm 6.4 stops after finitely many steps.

Proof. The proof is similar to the proof of Proposition 1 of [1] . �
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6.3. A computable bound for the rate of decay of correlations of L. We
will benefit from Algorithm 6.4 in many directions. First it provides us with a nice
spectral picture of L; i.e., an estimate on the size of its spectral gap; moreover
it enables us to compute an upper bound on the norm of the resolvent of the
continuous (infinite dimensional) operator L bounded away from its spectrum. Such
a computable estimate was impossible to do before Algorithm 6.4.

Lemma 6.6. We have

sup{||(z − L)−1|| : z ∈ C \ Vδc,rc(Lmc)} ≤
4(C2 + C3)(M/rc)

n∗1

(M − rc)2ε∗1
:= H∗δc,rc(L),

where

ε∗1 =
(rc/M)

n∗1+n∗2

8C3(H∗δc,rc(Lmc)C3 + C1

M−rc )
,

n∗1 = d ln 2C2

ln rc/α
e,

and

n∗2 = d
ln 8C3C2(C2 + C3 + 2)MH∗δc,rc(Lmc

)

ln rc/α
+ n∗1

ln(M/rc)

ln rc/α
e.

Proof. We have εc ≤ Γ−1ε0(Lmc
, δc, rc). Therefore, by Theorem 5.1, z ∈ C \

Vδc,rc(Lmc),

||(z − L)−1|| ≤ 4(C2 + C3)(M/r)n1

(M − rc)2ε1(Lmc
, δc, rc)

≤ 4(C2 + C3)(M/r)n1

(M − rc)2ε∗1
.

Here we have used the fact that Hδc,rc(Lmc) < H∗δc,rc(Lmc) which implies that

ε1(Lmc
, δc, rc) > ε∗1. This completes the proof of the lemma. �

We now provide a computable estimate on the rate of decay of correlations of L.

Lemma 6.7. Set R := min{(1−δc+rc)/2, (ρc−δc+rc)/2}. Then for f ∈ CLip(I),∫
f = 0, we have

||Lnf || ≤ Rn+1H∗δc,rc(L)||f ||.

Proof. Let πR be the following spectral projection

πR :=
1

2πi

∫
{z∈C: |z|=R}

(z − L)−1dz.

Then for any f ∈ CLip(I)

Lf = f∗
∫
f + LπRf.

This implies that if
∫
f = 0 we have πRf = f and consequently

Lnf =
1

2πi

∫
{z∈C: |z|=R}

zn(z − L)−1dz.

Thus,

||Lnf || ≤ Rn+1 sup
|z|=R

||(z − L)−1|| ||f ||

≤ Rn+1 sup
{z∈C\Vδc,rc (Lmc )}

||(z − L)−1|| ||f || ≤ Rn+1H∗δc,rc(L)||f ||

�
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7. Rigorous approximation with fast rates

The projection-based discretization does not appear to be particularly well suited
to estimating the rate of approximation of the Perron eigenvector f∗ηm for Lm to
the invariant density f∗ for L, where ηm denotes the uniform m−cell partition.
We discuss this in a little more detail in the next section. However, we can use
the spectral estimates on L obtained via perturbations Lm combined with the
discretization scheme associated to Pm to obtain good, rigorous approximation
rates in the uniform norm.

We begin by deriving a suitable Lasota-Yorke inequality for the operator Pm.

Lemma 7.1. For f ∈ CLip(I) we have Pmf ∈ CLip(I) and

Lip(Pmf) ≤ βLip(f) + B̄1|f |,
where β = (3/2)α and B̄1 = (3/2)B1.

Proof. The proof follows from Lemma 3.3 and 4.4 �

Without loss of generality, we will assume12 β < 1.
Let13 f∗m denote the nonnegative, normalized Perron eigenfunction of Lm corre-

sponding to the eigenvalue 1. Our goal is to prove |f∗m − f∗| = O( lnm
m )

First, we find a computable upper bound on the Lipschitz norm of f∗m. Due to
the fact that |f∗m| ≥ 1, this is best done in two steps.

Lemma 7.2. f∗m and f∗ satisfiy the following estimates

(1) |f∗m| ≤ K1,
(2) |f∗| ≤ K2,

(3) Lip(f∗m) ≤ B̄1

(1−β)K1,

(4) Lip(f∗) ≤ B1

1−αK2

where K1 := B̄1

1−β + 1 and K2 := ( B1

1−α ) + 1.

Proof. For the first estimate, note that the matrix representing Pm (as determined
in Section 4.2) is stochastic and strictly positive, hence mixing. It follows that

f∗m = lim
n

Pnm1

uniformly on the interval I. But,as a consequence of Lemma 7.1 we get

Lip(Pnm1)| ≤ βnLip(1) +
B̄1

1− β
|1| = B̄1

1− β
.

Since Pnm1 is nonnegative, with unit L1− norm we find |Pnm1| ≤ 1 + B̄1

1−β . This is

the first estimate.
The second estimate is similar, using Lemma 3.1 in place of Lemma 7.1 to

obtain a uniform bound on the Lipschitz constants and L∞−norm of the iterates:
Lip(Ln1) ≤ B1

1−α and |Ln1| ≤ B1

1−α + 1. By Helley’s Theorem, we may obtain a
uniformly convergent subsequence from the sequence of iterates; the averages along
this subsequence converge uniformly to f∗, giving the second estimate.

Next, using Lemma 7.1, we obtain

Lip(f∗m) = Lip(Pmf∗m) ≤ βLip(f∗m) + B̄1|f∗m|.

12In fact we can choose k0 ≥ k so that that Mαk0 < 2/3 which makes β < 1.
13Note the difference between f∗m and f∗ηm the Perron eigenvectors for Pm and Lm respectively.
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Therefore,

Lip(f∗m) ≤ B̄1

(1− β)
|f∗m| ≤

B̄1

(1− β)
K1.

The same argument, using Lemma 3.1 and estimate (2) gives the inequality in part
(4). �

Now we state and proof of our main result, Theorem 7.3. There are certainly

many ways to proceed which lead to a convergence rate of order ln(m)
m

14. However,
different proofs will lead to different constants multiplied by this rate. Since our
target is to produce explicit computation of the error bound, we write the proof in
a way which makes the constants as small as possible.

Theorem 7.3. For any m ∈ N, we have

|f∗ − f∗m| ≤
(K2

1 +K2
2 )RH∗δc,rc(L) + 5M2

2 dln(m)/ lnR−1eK1

m
.

Proof. We have

|f∗ − f∗m| ≤ |Pnmf∗m − Lnf∗m|+ |Lnf∗m − Lnf∗|
= (I) + (II).

(7.1)

Using Lemmas 6.7 and 7.2, for any n we obtain

(7.2) (II) ≤ (K1(1 +
B̄1

1− β
) +K2(1 +

B1

1− α
))H∗δc,rc(L)Rn+1.

In (I) the problem is that we only have the weak estimate |Pnm| ≤ (2M)n. However,
we know from Lemma 3.1 that for all n ≥ 1, |Ln| ≤ M . Therefore we change the
order in (I) and benefit from Lemmas 3.1 and 7.2. So, we write

(I) = |Lnf∗m − Pnmf∗m| ≤
n∑
q=1

|Ln−q(L − Pm)Pq−1
m f∗m|

≤M
n∑
q=1

|(L − Pm)(Pq−1
m f∗m)| = M

n∑
q=1

|(I −Qm)(LPq−1
m f∗m)|

≤ 5M2

2m

n∑
q=1

|f∗m| ≤
5M2

2m
nK1.

(7.3)

Choosing n = dln(m)/ ln(R−1)e and using (7.2) and (7.3) completes the proof. �

8. Example

In this example we use the map:

(8.1) τ(x) =

{
11x
1−x for 0 ≤ x ≤ 1

12

12x− i for i
12 < x ≤ i+1

12

,

where i = 1, . . . , 11.

14To improve the rate of convergence from O( lnm
m

) to O( 1
m

), one would need Lip(f∗−Qmf∗) =

O( 1
m

). However, this cannot be obtained unless f∗ is very regular. For the class of maps under

consideration f∗ is, in general, only Lipschitz continuous and hence Lip(f∗ − Qmf∗) = O(1).

The situation is analogous to the failure to obtain rate O( 1
m

) for Ulam’s method via spectral

perturbation arguments; see [9]
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8.1. Computing H∗δc,rc(L). We will use Equation 3.1 to estimate the relevant
constants. For f ∈ BV we have

V Lτf ≤ 1/11V f + 2/11‖f‖1.
Consequently, for any n ≥ 1, we obtain

V Lnτ f ≤ (1/11)nV f + 1/5‖f‖1.
Hence α0 = 1/11, B0 = 1/5, and M = 6/5. We set T := τ . Then α = α0M = 6/55.
For f ∈ CLip(I) and any n ≥ 1

Lip(Lf) ≤ 6/55Lip(f) + 2/(11)2|f |.
We now use Algorithm 6.4 to obtain mc which allows us to compute an upper
bound on the norm of the resolvent of the continuous operator H∗δc,rc(L)15.

Table 1. The output of Algorithm 6.4 for the map in (8.1)

r 0.8 0.8
δ 0.1 0.1
ε 2× 10−4 8× 10−5

H∗δ,r(Lm) 27.2822974 27.29122985

(Γ)−1ε∗ 0.0001276212886 0.0001275730002
Loop I Fail: reduce ε Pass
Loop II Pass
Output mesh(mc) := 8× 10−5, δc := 0.1, rc := 0.8

Using this output, by Lemma 6.6, we obtain

H∗δc,rc(L) :=
4(C2 + C3)(M/rc)n1

(M − rc)2ε∗1
≤ 36366.11326.

8.2. Computing a uniform bound on the approximation error. The first
few eigenvalues of L are estimated (to 4 decimal places) by

1.0000, 0.0901, 0.0088 0.0000 + 0.0069i, 0.0000− 0.0069i

Next we compute the constants from Lemma 6.7 and Lemma 7.2:

K1 =
521

506
, K2 =

549

539
and R = 0.8500

Then in Table 8.2 we list the number of binsm and the corresponding approximation
error of |f∗ − f∗m|. The results in Table 8.2 are undoubtebly far from optimal. We

Table 2. Error := |f∗−f∗m|, vs m where f∗ is the invariant density
of the map in (8.1) and f∗m is the invariant density of Lm

m Error
106 0.068136003

5× 106 0.005192461

reiterate that efficiency in computations has not been our main focus.

15For details on how to use the computer to compute an upper bound on H∗δ,r(Lm) in the

algorithm for the discrete operator Lm see [1].
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9. Discussion on the rate of convergence of the discretization
schemes Lm

The operator Lm is not Markov and its dominant eigenvalue ρ is typically > 1.
This hinders an estimate similar to that of (I) in Theorem 7.3. In particular the
sum

∑n
q=1 Lqmf∗ηm cannot be controlled since Lqmf∗ηm = ρqf∗ηm . Thus the key trick

for obtaining rate of convergence ε ln ε−1 is unavailable for the scheme Πm (unless
it happens that ρ ≤ 1).

In principle, one can obtain rigorous, computational estimates for the scheme
Πm, through direct application of Theorem 5.1, obtaining L∞-norm estimates in
terms of the difference of the spectral projections

|Proj1 − Projρ| ≤ δc[aH∗ + bH∗2]εγc ,

where γc = ln(rc/α)
ln(M/α) < 1. From this estimate, it follows that for the map in (8.1),

to achieve an error smaller than 10−2, one would need ε < e−35.9. Needless to say,
this is not a practical approach in general.

On the other hand, one expects that the both discretization schemes should
be more efficient than indicated by the above theoretical estimates. We conclude
this article with a simple numerical example (non-rigorous) that shows the kind of
performance one should be looking for, even in the non-Markov discretization case.

Figure 1. The graphs of f∗ (blue) and f∗10 + 0.02
(red) for Πm− scheme
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Consider the following Markov interval map which is only eventually expanding:

(9.1) τ(x) =

{
2x

1−x for 0 ≤ x ≤ 1
3

1−x
2x for 1

3 < x ≤ 1
,

and whose invariant density is given by

f∗(x) =
2

(1 + x)2
.

Since the invariant density f∗ is known for this example, we can check the efficiency
of our discretization scheme Πm. Using m = 10, we plotted in Figures 1 and 2 the
graphs of f∗, f∗ηm+0.02 and f∗−f∗ηm respectively. As the figures show, our tolerance
∆ is attained with only 10 bins; the efficiency of the discretization scheme Πm in
achieving an L∞ approximation is pretty impressive.

Figure 2. The graph of f∗ − f∗10

for the Πm− scheme
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