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Abstract. Ulam’s method is a rigorous numerical scheme for approximating invariant densities
of dynamical systems. The phase space is partitioned into connected sets and an inter-set transition
matrix is computed from the dynamics; an approximate invariant density is read off as the leading
left eigenvector of this matrix. When a hole in phase space is introduced, one instead searches for
conditional invariant densities and their associated escape rates. For Lasota-Yorke maps with holes
we prove that a simple adaptation of the standard Ulam scheme provides convergent sequences of
escape rates (from the leading eigenvalue), conditional invariant densities (from the corresponding
left eigenvector), and quasi-conformal measures (from the corresponding right eigenvector). We also
immediately obtain a convergent sequence for the invariant measure supported on the survivor set.
Our approach allows us to consider relatively large holes. We illustrate the approach with several
families of examples, including a class of Lorenz-like maps.
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1. Introduction. Dynamical systems T̂ : I → I typically model complicated
deterministic processes on a phase space I. The map T̂ induces a natural action on
probability measures η on I via η 7→ η ◦ T̂−1. Of particular interest in ergodic theory
are those probability measures that are T̂ -invariant; that is, η satisfying η = η ◦ T̂−1.
If η is ergodic, then such η describe the time-asymptotic distribution of orbits of η-
almost-all initial points x ∈ I. In this paper, we consider the situation where a “hole”
H0 $ I is introduced and any orbits of T̂ that fall into H0 terminate. The hole induces
an open dynamical system T : X0 → I, where X0 = I \H0. Because trajectories are
being lost to the hole, in many cases, there is no absolutely continuous T -invariant
probability measure2. One can, however, consider conditionally invariant probability
measures [28], which satisfy η ◦ T−1(I) · η = η ◦ T−1, where 0 < η ◦ T−1(I) < 1 is
identified as the escape rate for the open system.

We will study T̂ drawn from the class of Lasota-Yorke maps: piecewise C1 ex-
panding maps of the interval, such that |DT̂ |−1 has bounded variation. The hole
H0 will be a finite union of intervals. In such a setting, because of the expanding
property, one can expect to obtain conditionally invariant probability measures that
are absolutely continuous with respect to Lebesgue measure [5, 33, 22]. Such con-
ditionally invariant measures are “natural” as they may correspond to the result of
repeatedly pushing forward Lebesgue measure by T̂ . In the next section we will dis-
cuss further conditions due to [22] that make this precise: (i) how much of phase
space can “escape” into the hole, and (ii) the growth rate of intervals that partially
escape relative to the expansion of the map and the rate of escape. These conditions
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also guarantee the existence of a unique absolutely continuous conditionally invariant
probability measure (accim). This accim ν and its corresponding escape rate ρ are
the first two objects that we will rigorously numerically approximate using Ulam’s
method. Existence and uniqueness results for subshifts of finite type with Markov
holes were previously established by Collet, Mart́ınez and Schmitt in [8]; see also
[6, 7, 17].

One may also consider the set of points X∞ ⊂ I that never fall into the hole
H0. A probability measure λ on X∞ can be defined as the n → ∞ limit of the ac-
cim ν conditioned on Xn. The measure λ will turn out to be the unique T̂ -invariant
measure supported on X∞ which is absolutely continuous with respect to µ, the quasi-
conformal measure3 for T with escape rate ρ. We will also rigorously numerically
approximate µ and thus λ. Robustness of these objects with respect to Ulam dis-
cretizations is essentially due to a quasicompactness property, and a significant part
of the paper is devoted to elaborating on this point.

Our main result, Theorem 3.2, concerns convergence properties of an extension of
the well-known construction of Ulam [32], which allows for efficient numerical estima-
tion of invariant densities of closed dynamical systems. The Ulam approach partitions
the domain I into a collection of connected sets {I1, . . . , Ik} and computes single-step
transitions between partition sets, producing the matrix

P̂ij =
m(Ii ∩ T̂−1Ij)

m(Ij)
. (1.1)

Li [21] demonstrated that the invariant density of Lasota-Yorke maps can be L1-
approximated by step functions obtained directly from the leading left eigenvector of
P̂ . Since the publication of [21] there have been many extensions of Ulam’s method
to more general classes of maps, including expanding maps in higher dimensions
[10, 26], uniformly hyperbolic maps [12, 14], nonuniformly expanding interval maps
[27, 15], and random maps [13, 18]. Explicit error bounds have also been developed,
eg. [25, 13, 4].

We will show that in order to handle open systems, the definition of P̂ above need
only be modified to P , having entries

Pij =
m(Ii ∩X0 ∩ T̂−1Ij)

m(Ij)
. (1.2)

In analogy with the closed setting, one uses the leading left eigenvector to produce
a step function that solves an eigenequation, from which we can easily recover an
approximation to the accim ν. However, in the open setting, the leading eigenvalue
of P also approximates the escape rate ρ of ν, and the right eigenvector approximates
the quasi-conformal measure µ. Note that for closed systems, ρ = 1 and µ = m.

The literature concerning the analysis of Ulam’s method is now quite large. Early
work on Ulam’s method for Axiom A repellers [14] showed convergence of an Ulam-
type scheme using Markov partitions for the approximation of pressure and equilib-
rium states with respect to the potential − log |detDT̂ |Eu |. These results apply to
the present setting of Lasota-Yorke maps provided the hole is Markov and projec-
tions are done according to a sequence of Markov partitions. Bahsoun [1] consid-
ered non-Markov Lasota-Yorke maps with non-Markov holes and rigorously proved

3See Definition 2.3 for the precise meaning, and [22] for a proof of uniqueness.
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an Ulam-based approximation result for the escape rate. Bahsoun used the pertur-
bative machinery of [20], treating the map T as a small deterministic perturbation
of the closed map T̂ . In contrast, we apply the perturbative arguments of [20] di-
rectly to the open map, considering the Ulam discretization as a small perturbation
of T . The advantage of this approach is that we can obtain approximation results
whenever the existence results of [22] apply. The latter make assumptions on the
expansivity of T (large enough), the escape rate (slow enough), and the rate of gen-
eration of “bad” subintervals (small enough). From these assumptions we construct
an improved Lasota-Yorke inequality that allows us to get tight enough constants to
make applications plausible. Besides estimating the escape rate, we obtain rigorous
L1-approximations of the accim and approximations of the quasi-conformal measure
that exploit quasicompactness and converge weakly to µ. We can treat relatively large
holes.

An outline of the paper is as follows. In Section 2 we introduce the Perron-
Frobenius operator L, formally define admissible and Ulam-admissible holes, and
develop a strong Lasota-Yorke inequality. Section 3 introduces the new Ulam scheme
and states our main Ulam convergence result. Section 4 discusses some specific ex-
ample maps in detail. Proofs are presented in Section 5.

2. Lasota-Yorke maps with holes. The following class of interval maps with
holes was studied by Liverani and Maume-Deschamps in [22].

Definition 2.1. Let I = [0, 1]. We call T̂ : I 	 a Lasota-Yorke map if T̂ is
a piecewise C1 map, with finite monotonicity partition 4 Z, there exists Θ̂ < 1 such
that ‖DT̂−1‖∞ ≤ Θ̂, and ĝ := |DT̂ |−1 has bounded variation.

The transfer operator for the map T̂ is the bounded linear operator L̂, acting on
the space BV of functions of bounded variation on I, defined by

L̂f(x) =
∑

T̂ (y)=x

f(y)ĝ(y).

Definition 2.2. Let T̂ : I 	 be a Lasota-Yorke map. Let H0 ( I be a finite
union of closed intervals, and let X0 = I \ H0. Let T : X0 → I be the restriction
T = T̂ |X0

. Both T and the pair T0 = (T̂ ,H0) are referred to as open Lasota-Yorke
maps (or briefly, open systems), and their associated transfer operator is the bounded
linear operator L : BV 	 given by

L(f) = L̂(1X0f).

For each n ≥ 1, let Xn =
⋂n
j=0 T̂

−jX0. Thus, Xn is the set of points that have not

escaped by time n. Also, we denote by Tn the function T̂n|Xn−1 . One can readily
check that

Ln(f) = L̂n(1Xn−1
f).

Definition 2.3. Let T be an open Lasota-Yorke map. A probability measure ν
supported on X0 ⊂ I which is absolutely continuous with respect to Lebesgue measure
is called an absolutely continuous conditional invariant measure (accim) for T if there
exists a function of bounded variation h such that 1X0 ·h = dν

dm and Lh = ρh for some
0 < ρ ≤ 1.

4Throughout this paper, a monotonicity partition Z refers to a partition such that for every
Z ∈ Z T̂ |Z has a C1 extension to Z̄.
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A probability measure µ on I which satisfies µ(Lf) = ρµ(f) for every function of
bounded variation f : I → R, with ρ as above, is called a quasi-conformal measure for
T .

Remark 2.4. We choose to display h as opposed to 1X0h in the upcoming figures,
because our numerical method directly discretises the eigenequation Lh = ρh. Further,
the value of h outside X0 illustrates the amount of mass that escapes the open system
in one step. For convenience of notation, and despite the fact that the support of h
may intersect H0, we will refer to h as the accim as well.

Remark 2.5. It is usual to define ν to be an accim if ν(A) = ν(T̂−nA∩Xn)
ν(Xn)

for every n ≥ 0 and Borel measurable set A ⊂ I. This definition and the one in
Definition 2.3 are indeed equivalent; see [22, Lemma 1.1] for a proof. The same
lemma shows that if µ is a quasi-conformal measure for T , then µ is necessarily
supported on X∞ =

⋂
n≥0 X̄n. It is also usual to require µ to satisfy µ(Lf) = ρµ(f)

for continuous functions only. We will see this makes no difference in our setting, as
this weaker requirement implies the stronger one in the previous definition.

2.1. Admissible holes and quasi-invariant measures. As in the work of
Liverani and Maume-Deschamps [22], we impose some conditions on the open system
in order to be able to analyze it. Let us fix some notation.

Let (T̂ ,H0) be an open Lasota-Yorke map, which we also refer to as T . For each
n ≥ 1, let Dn = {x ∈ I : Ln1(x) 6= 0}, and let D∞ :=

⋂
n≥1Dn. In what follows, we

assume that D∞ 6= ∅.
For each ε > 0 (not necessarily small), we let Gε = Gε(T ) be the collection

of finite partitions of I into intervals such that Zε ∈ Gε(T ) if (i) the interior of
each A ∈ Zε is either disjoint from or contained in X0, and (ii) for each A ∈ Zε,
varA

(
1X0 |DT−1|

)
< ‖DT−1‖∞(1 + ε). Since H0 consists of finitely many intervals,

this condition is possible to achieve, as the work of Rychlik [29, Lemma 6] shows. We
call Gε the collection of ε-adequate partitions (for T ). The set of elements of Zε whose
interiors are contained in X0 is denoted by Z∗ε . Next, the elements of Z∗ε are divided
into good and bad. A set A ∈ Z∗ε is good if

lim
n→∞

inf
x∈Dn

Ln1A(x)

Ln1(x)
> 0.

We point out that it is shown in [22] that the limit above always exists, as the sequence
involved is increasing and bounded, and it is clearly non-negative. The set A is called
bad when the limit above is 0. We let

Zε,g = {A ∈ Z∗ε : A is good}, and

Zε,b = {A ∈ Z∗ε : A is bad}.

Finally, two elements of Z∗ε are called contiguous if there are no other elements of
Z∗ε in between them (but there may be elements of Zε that are necessarily contained
in H0). We let ξε = ξε(T ) be the infimum over ε-adequate partitions for T of the
maximum number of contiguous elements in Zε,b.

In a similar manner, we let G(n)ε = G(n)ε (T ) be the collection of finite partitions of

I into intervals such that Z(n)
ε ∈ G(n)ε if (i) the interior of each A ∈ Z(n)

ε is either dis-

joint from or contained in Xn−1, and (ii) for each A ∈ Z(n)
ε , varA |1Xn−1(DTn)−1| <

‖(DTn)−1‖∞(1+ ε). The partitions Z∗(n)ε ,Z(n)
ε,g ,Z(n)

ε,b are defined analogously. We de-
note by ξε,n = ξε,n(T ) the infimum over ε-adequate partitions for Tn of the maximum

number of contiguous elements in Z(n)
ε,b ; so ξε = ξε,1.
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The following quantities are relevant in what follows:

ρ = ρ(T ) := lim
n→∞

inf
x∈Dn

Ln+11(x)

Ln1(x)
,

Θ̃ = Θ̃(T ) := exp
(

lim
n→∞

1

n
log ‖(DTn)−1‖∞

)
,

ξ̃ε = ξ̃ε(T ) := exp
(

lim sup
n→∞

1

n
log(1 + ξε,n)

)
,

αε = αε(T ) := ‖DT−1‖∞(2 + ε+ ξε). (2.1)

Definition 2.6 (Admissible holes). Let T̂ : I 	 be a Lasota-Yorke map, and
ε > 0. We say that H0 ⊂ I is:

• an ε-admissible hole for T̂ if D∞ 6= ∅ and ξ̃εΘ̃ < ρ,
• an admissible hole for T̂ if it is ε-admissible for ε = 1.5

• an ε-Ulam-admissible hole for T̂ if D∞ 6= ∅ and αε < ρ.
The main result of Liverani and Maume-Deschamps [22] is concerned with the

existence of the objects we intend to rigorously numerically approximate. Relevant
quasicompactness properties of L are made explicit as follows.

Theorem 2.7 ([22, Theorem A & Lemma 3.10]). Assume (T̂ ,H0) is an open
system with an admissible hole. Then,

1. There exists a unique absolutely continuous conditionally invariant measure
(accim) ν = 1I\X0

hm for (T̂ ,H0).

2. There exists a unique quasi-conformal measure µ for (T̂ ,H0), such that

µ(Lf) = ρµ(f)

for every f ∈ BV . Furthermore, this measure is atom-free, and satisfies the
property that

µ(f) = lim
n→∞

inf
x∈Dn

Lnf(x)

Ln1(x)

for every f ∈ BV , and ρ = µ(L1).
3. The measure λ = hµ is, up to scalar multiples, the only T invariant measure

supported on X∞ and absolutely continuous with respect to µ.
4. There exist κ < 1 and C > 0 such that for any function of bounded variation

f , ∥∥∥Lnf
ρn
− hµ(f)

∥∥∥
∞
≤ Cκn‖f‖BV .

Remark 2.8. It follows readily from the proof of Theorem 2.7 [22] that the same
conclusion can be obtained if the hypothesis of H0 being an admissible hole is replaced
by H0 being an ε-admissible hole for some ε > 0.

To close this section, we present a lemma concerning admissibility of different
holes, obtained by enlarging an initial hole H0 to Hm := I \Xm. This broadens the
applicability of Theorem 3.2 because enlarging the holes may reduce the number of

5This is the choice made in [22].
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contiguous bad intervals, and also reduce the variation remaining on the domain of
the open Lasota-Yorke map without decreasing the expansion.

Lemma 2.9 (Enlarging holes). Let T0 = (T̂ ,H0) be an open system with an ε-
admissible hole, and for each m ≥ 0, let Hm := I \Xm. Then, for each m ≥ 0, Tm :=
(T̂ ,Hm) is an open system with an ε-admissible hole. Furthermore, let ρ(Tm), h(Tm)
and µ(Tm) be the escape rate, accim and quasi-conformal measures of Tm, respectively.
Then we have the following.

1. ρ(Tm) = ρ(T0),
2. L̂m(h(Tm)) = ρ(T0)mh(T0), and
3. µ(Tm) = µ(T0).

The proof of Lemma 2.9 is presented in §5.3.

3. Ulam’s method for Lasota-Yorke maps with holes.

3.1. The Ulam scheme. In the case of a closed system T̂ , the well-known Ulam
method introduced in [32] provides a way of approximating the transfer operator
with a sequence of finite-rank operators L̂k defined as in e.g. [21], each coming from
discretizing the interval I into k bins (which may or may not be of equal length). The
only requirements are that each bin is a non-trivial interval, and that the maximum
diameter of the partition elements, denoted by τk, goes to 0 as k goes to infinity. We
call such a k-bin partition Pk. The operator L̂k preserves the k−dimensional subspace
span{χj : χj = 1Ij , Ij ∈ Pk}. The matrix P̂k defined in the introduction represents

the action of L̂k on this space, with respect to the ordered basis (χ1, . . . , χk) [21].
In the case of an open system (T̂ ,H0), one can still follow Ulam’s approach to

define a discrete approximation Lk to the transfer operator L. For a function f ∈ BV ,
the operator is defined by Lk(f) = πk(Lf) = πkL̂(1X0

f), where πk is given by the
formula

πk(f) =

k∑
j=1

1

m(Ij)

(∫
χj f dm

)
χj .

The entries of the Ulam transition matrix Pk representing Lk in the ordered basis
(χ1, . . . , χk) are

(Pk)ij =
m(Ii ∩X0 ∩ T̂−1Ij)

m(Ij)
.

(When the partition Pk is uniform6, the transition matrices P̂k defined in (1.1) are
stochastic, and Pk are substochastic, the loss of mass being a consequence of the
presence of a hole.) Since the entries of Pk are non-negative, an extension of the
Perron-Frobenius theorem applies and provides the existence of a non-negative eigen-
value 0 ≤ ρk ≤ 1 of maximal absolute value for Pk, with associated left and right
eigenvectors with non-negatives entries; see e.g. [3]. In general, these may or may not
be unique. Non-negative left eigenvectors pk of Pk induce densities on I according to
the formula

hk =

k∑
j=1

[pk]jχj ,

6That is, m(Ii) = m(Ij), ∀i, j.
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(where we adopt the convention that a vector x can be written in component form as
x = ([x]1, . . . , [x]k). Non-negative right eigenvectors ψk of Pk induce measures µk on
I according to the formula

µk(E) =

k∑
j=1

[ψk]jm(Ij ∩ E).

We conclude the section with the following.
Lemma 3.1. Let Pk be the matrix representation of Lk = πk ◦ L with respect to

the basis {χj}. If Pkψk = ρkψk then the measure µk corresponding to ψk satisfies
µk(Lkπkϕ) = ρkµk(ϕ) for every ϕ ∈ L1(m).

Proof. Let ϕ ∈ L1(m) and put ϕk = πkϕ. Then,

µk(ϕ) =

∫
ϕdµk =

k∑
j=1

∫
Ij

ϕdm [ψk]j =

k∑
j=1

∫
Ij

πkϕdm [ψk]j

=

k∑
j,j′=1

∫
Ij

ϕk dm (Pk)jj′ [ψk]j′(ρk)−1 =

k∑
j′=1

∫
Ij′

Lkϕk dm [ψk]j′(ρk)−1

= (ρk)−1
∫
Lkϕk dµk = ρk

−1µk(Lkϕk),

where the last equality in the second line follows from the fact that Pk is the matrix
representing Lk in the basis {χj}, and acts on densities by right multiplication (i.e.
if p is the vector representing the function ϕk, then pTPk is the vector representing
Lkϕk).

3.2. Statement of the main result. The main result of this paper is the
following. Its proof is presented in §5.2.

Theorem 3.2. Let T̂ : I 	 be a Lasota-Yorke map with an ε-Ulam-admissible
hole H0. Let h ∈ BV be the unique accim for the open system (T̂ ,H0), and µ the
unique quasi-conformal measure for the open system supported on X∞, as guaranteed
by Theorem 2.7. Let ρ be the associated escape rate. For each k ∈ N, let ρk be the
leading eigenvalue of the Ulam matrix Pk. Let hk be densities induced from non-
negative left eigenvectors of Pk corresponding to ρk. Let µk be measures induced from
non-negative right eigenvectors of Pk corresponding to ρk. Then,

(I) For k sufficiently large, ρk is a simple eigenvalue for Pk. Furthermore,

lim
k→∞

ρk = ρ,

and there exists η ∈ (0, 1) 7 such that |ρk − ρ| ≤ O(τk
η), where τk is the

maximum diameter of the elements of Pk.
(II) limk→∞ hk = h in L1(m).

(III) limk→∞ µk = µ in the weak-* topology of measures. Furthermore, for every
sufficiently large k, supp(µ) ⊆ supp(µk).

We will also establish a relation between admissibility and Ulam-admissibility of
holes.

Lemma 3.3 (Admissibility and Ulam-admissibility). If H0 is an ε-admissible hole
for T̂ , there is some n ∈ N such that Hn−1 := I \Xn−1 is ε-Ulam-admissible for T̂n.

7In fact, any η <
log ρ/β
− log β

with ρ > β > αε is valid.
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The proof of this lemma is presented in §5.4. This result, together with Lemma 2.9,
broadens the scope of applicability of Theorem 3.2 by allowing to (i) replace the map
by an iterate (Lemma 3.3), or (ii) enlarge the hole in a dynamically consistent way
(Lemma 2.9). It also ensures that several examples in the literature can be treated
with our method; in particular, all the examples presented in [22].

Remark 3.4. In the case of full-branched maps (see §4.1 for a precise definition),
the value of αε in (2.1) can be replaced by ‖DT−1‖∞(1 + ε+ ξε), and still obtain the
conclusions of Theorem 3.2. Essentially this is because, taking the usual approach of
considering T bi-valued at the endpoints of the monotonicity partition, in the full-
branched case, one can regard g as continuous on monotonicity intervals, and hence
find a finite partition Z ′ε such that for every A ∈ Z ′ε, varA(g) ≤ ε‖DT−1‖∞. This is
instead of the bound varA(g) ≤ (1 + ε)‖DT−1‖∞, which is used in Lemma 5.1, just
before Equation (5.3).

4. Examples. To illustrate the efficacy of Ulam’s method, beyond the small-hole
setting, we present some examples of Ulam-admissible open Lasota-Yorke systems.
We start with the case of full-branched maps in §4.1, and treat some more general
examples, including β-shifts, in §4.2. We then analyze Lorenz-like maps. They provide
transparent evidence of the scope of the results for open systems, as well as closed
systems with repellers. They also illustrate how the admissibility hypothesis may be
checked in applications.

4.1. Full-branched maps. In the next examples, we will use the following
notation. Given a Lasota-Yorke map with holes, (T̂ ,H0) with monotonicity partition
Z, we let Zh = {Z ∈ Z : Z ⊆ H0}, Zf = {Z ∈ Z : Z ∩ H0 = ∅, T (Z) = I} and
Zu = {Z ∈ Z : Z 6∈ Zh ∪ Zf}. Thus, the elements of Zf are precisely the ones
contained in X0 that are full branches for T , and those of Zu are the remaining ones.

Definition 4.1. A full-branched map with holes, (T̂ ,H0), is a Lasota-Yorke map
with holes, such that Zu = ∅.

For piecewise linear maps, the situation is rather simple.

Lemma 4.2. Let T0 = (T̂ ,H0) be a piecewise linear full-branched map with holes.
Then, for every ε > 0 the following holds: ξε(T0) = 0,

ρ(T0) = 1− Leb(H0), and

αε(T0) = max
Z∈Zf

Leb(Z)(1 + ε).

Proof. If T0 is a piecewise linear full-branched map, then each interval Z ∈ Zf is
good. Therefore ξε(T0) = 0. Also,

L0(1)(x) =
∑

y∈Z∈Zf ,T0(y)=x

1

|DT0(y)|
=
∑
Z∈Zf

Leb(Z) = 1− Leb(H0),

which yields the first claim. The second statement follows from Remark 3.4 and the
fact that supx∈Z∈Zf

1
|DT0(x)| = maxZ∈Zf Leb(Z).

In fact, in the piecewise linear, full branched setting, a direct calculation shows
that Lebesgue measure is an accim for the open system. For perturbations of these
systems, explicit estimates of ρ and αε are not generally available. However, we have
the following bounds.
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Lemma 4.3. Let T0 = (T̂ ,H0) be a full-branched map with holes. Then, for
every ε > 0, there exists some computable m ∈ N such that ξε(Tm) = 0, where Tm :=
(T̂ ,Hm) is obtained from T0 by enlarging the hole, as in Lemma 2.9. Furthermore,

ρ(Tm) = ρ(T0) ≥ inf
x∈I

∑
y∈Z∈Zf ,T0(y)=x

1

|DT0(y)|
=: ρ0 and

αε(Tm) ≤ sup
x∈Z∈Zf

1

|DT0(x)|
(1 + ε) =: αε,0.

An immediate consequence is the following.

Corollary 4.4. In the setting of Lemma 4.3, if ρ0 > αε,0, then Hm is ε-Ulam

admissible for T̂ . In this case, Lemma 2.9 allows one to approximate the escape rate,
accim and quasi-conformal measure for T0 via Theorem 3.2 applied to Tm.

Proof. [Proof of Lemma 4.3] First, let us note that for any map with Zf 6= ∅, we
have that D∞ 6= ∅, as the map has at least one fixed point outside the hole. If m is
sufficiently large, each interval Z ∈ Z(m) is either (i) contained in Hm−1, and thus not
in Z∗(m) or (ii) Tm0 (Z) = I and varZ(ĝ1Xm) < ‖ĝ1Xm‖∞(1 + ε). In the latter case, Z
is a good interval for T0, because µ0(Z) = ρ−m0 µ0(Lm0 1) ≥ ρ−m0 ‖DTm0 ‖−1∞ µ0(I) > 0.
Since good intervals for T0 and for Tm coincide (see beginning of proof of Lemma 2.9),
we get that ξε(Tm) = 0.

Furthermore,

ρ(T0) = ρ(T0)µ0(1) = µ0(L0(1)) ≥ inf
x∈I
L0(1)(x) = inf

x∈I

∑
y∈Z∈Zf ,T0(y)=x

1

|DT0(y)|
.

The bound on αε(Tm) follows directly from Remark 3.4.

The following is an interesting consequence of Lemmas 4.2 and 4.3.

Corollary 4.5. Let (T̂ ,H0) be a piecewise linear full-branched map with holes,
and at least two full branches. Thus, Leb(H0) < 1−maxZ∈Zf Leb(Z). Then, if ε > 0

is sufficiently small, H0 is ε-Ulam-admissible for any full-branched map (Ŝ,H0) that
is a sufficiently small C1+Lip perturbation of (T̂ ,H0) (where the C1+Lip topology is
defined, for example, by the norm given by the maximum of the C1+Lip norms of each
branch). In particular, Theorem 3.2 applies.

Proof. The statement for (T̂ ,H0) follows from Lemma 4.2. For perturbations,
the statement follows from Lemma 4.3, by observing that the quantities ρ0 and αε,0,

as well as the variation of 1/|DT̂ | on each interval depend continuously on T̂ , with
respect to the C1+Lip topology.

Corollary 4.5 can apply to maps with arbitrarily large holes, as the next example
shows.

Example 4.6 (Arbitrarily large holes). Let δ > 0, H0 = [δ, 1− δ], and

Tδ(x) =

{
δ−1x if x < δ,

δ−1(1− x) if 1− δ ≤ x ≤ 1.

Then, Leb(H0) = 1− 2δ < 1− δ = 1−maxZ∈Zf Leb(Z) and the hypotheses of Corol-
lary 4.5 are satisfied. Thus, Ulam’s method converges for sufficiently small C1+Lip

perturbations of Tδ that are full-branched.

Remark 4.7.
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(I) It is worth noting that if in Example 4.6 the hole is enlarged to [δ, 1], neither
the hypotheses of Corollary 4.5 nor the results of [22] apply. This corresponds
to a degenerate setup where the survivor set consists of a single point. In this
case, the Ulam method could still be implemented. The leading left eigenvectors
would successfully approximate an accim, which is uniform with escape rate δ.
However, the corresponding measures induced from the right eigenvectors would
converge in the weak-* topology of C(I) to an (invariant) atomic measure at
0, instead of to a quasi-conformal measure, as the partition is refined. This
simple example illustrates that there are obstacles to applying Theorem 3.2 if
the hypotheses are weakened.

(II) Example 4.6 displays the potential misalignment between statistical and topo-
logical features of open dynamical systems: as δ is varied, the maps Tδ are all
topologically conjugate to one another, yet each δ has a unique natural escape
rate (as δ → 1/2 these rates approach 0). Nonetheless, each map also supports
an uncountable number of accims for each ρ ∈ (0, 1) [9, §3], but the densities of
these measures do not have bounded variation, and are therefore undetectable
by our methods.

Other examples of this type may be found in [1] and [2]. Bahsoun [1] established
rigorous computable bounds for the errors in the Ulam method, which allowed him
to find rigorous bounds on the escape rate for open Lasota-Yorke maps. Bose and
Bahsoun [2] related the escape rate to the Lebesgue measure of the hole. Both results
rely on the existence of Lasota-Yorke type inequalities, relating BV and L1(m) norms.
Such inequalities may be obtained by exploiting the full-branched structure of the
map.

Example 4.8 (Bahsoun [1]). Let

T̂ (x) =

{
2.08x if x < 1

2 ,

2− 2x if x ≥ 1
2 .

In this case, Corollary 4.5applies. In fact, Leb(H0) = .08
4.16 and 1−maxZ∈Zf Leb(Z) =

1/2. We note that ρ controls the rate of mass loss, which is slower than 4.08/4.16,
while αε is related to the relaxation rate on the survivor set.

4.2. Nearly piecewise linear maps with enough full branches. When non-
full branches are present, the dynamics is typically non-Markovian. Thus, even in the
piecewise linear setting there may not be direct ways to find the various objects of
interest (escape rates, accims and quasi-conformal measures) exactly. We show that
Ulam’s method provides rigorous approximations in specific systems. The following
example is closely related to [22, 6.2 & 6.3].

Lemma 4.9. Let T = (T̂ ,H0) be a piecewise linear Lasota-Yorke map with holes,
and assume Zf 6= ∅. Let cu be the maximum number of contiguous elements in Zu.

If ‖DT−1‖∞(3 + cu) < ρ, then H0 is (1 + ε)-Ulam-admissible for T̂ , for every ε > 0
sufficiently small. Thus, the hypotheses of Theorem 3.2 are satisfied.

Proof. For any map with Zf 6= ∅, we have that D∞ 6= ∅, as the map has at
least one fixed point outside the hole. Furthermore, for each Z ∈ Z, one has that
varZ(g) ≤ 2‖g‖∞, so Z is a (1 + ε)-adequate partition for T . Also, it follows from
the definition of Zg that Zf ⊆ Zg. Thus, Zb ⊆ Zu, and ξ1+ε ≤ cu. Therefore,
αε ≤ ‖DT−1‖∞(3 + ε+ cu) < ρ, provided ε > 0 is sufficiently small.

A concrete example where the previous lemma applies is that of β-shifts.
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Fig. 4.1. Ulam approximations with k = 10000 for T̂β (β = 5.9) and H0 = ∅. Top: Graph
of approximate density hk of acim. Bottom: The “quasi-conformal” measure, depicted as µk([0, x])

vs. x. Note that µk approximates Lebesgue measure on [0, 1], as (T̂β , ∅) is closed.

Example 4.10. Let β > 1, and T̂β be the β-shift, T̂β(x) = βx (mod 1). Let
H0 ⊂ I be a finite union of closed intervals, and let f be the number of full branches
of T̂β outside H0. Then, for the open system (T̂β , H0), we have that ρ ≥ f

β . Then,
the hypotheses of Lemma 4.9 are satisfied, provided f > 3 + cu. This happens, for

example, when β ≥ 5 and H0 is a single interval of the form [ [β]β , y] or [y, 1], with
[β]
β < y < 1. Also, when β ≥ 6 and H0 is a single interval contained in [ [β]β , 1];

or when β ≥ 7 and H0 is any interval leaving at least 7 full branches in X0 (recall
from Subsection 2.1 that two bad elements of Zu are contiguous if there are no good
elements of Zf ∪ Zu between them, but there may be elements of Zh in between).

We include Figures 4.1-4.3, obtained from numerical experiments for β = 5.9, and
two different choices of holes. They include approximations to the densities of accims
and cumulative distribution functions of the quasi-conformal measures for systems
with a hole, as well as the acim and conformal measure for the closed system.

Remark 4.11. Using lower bounds on ρ such as those of Lemma 4.3, one can
extend the conclusion of Lemma 4.9 as in Corollary 4.5, to cover small C1+Lip per-
turbations of piecewise linear maps that respect the partition Zh ∪ Zf ∪ Zu.
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Fig. 4.2. Ulam approximations with k = 10000 for T̂β (β = 5.9) and H0 = [ 5
5.9
, 1] (shown in

red). The computed value of ρk is 0.8475 (4 s.f.), and in fact agrees up to 11 s.f. with the exact
value for ρ (the length of X0: 5/5.9). Top: Graph of computed density hk of accim (note that the
function 1 is a fixed point of both L and πkL). Bottom: The approximate quasi-conformal measure,
depicted as µk([0, x]) vs. x. Note that µk has no support on H0.

4.3. Lorenz-like maps. Let us consider the following two-parameter family of
maps of I = [−1, 1]:

Tc,α(x) =

{
cxα − 1 if x > 0,

1− c|x|α if x < 0,
(4.1)

where c > 0, α ∈ (0, 1). When c > 2, the system is open and the hole is implicitly
defined as H0,c,α = T−1c,α(R \ [−1, 1]).

This family of maps has been studied in connection with the famous Lorenz
equations,

ẋ = σ(y − x)

ẏ = rx− y − xz (4.2)

ż = −bz + xy.
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Fig. 4.3. Ulam approximations with k = 10000 for T̂β (β = 5.9) and H0 = [0.9001, 1] (shown in
red). The computed value of ρk is 0.9086 (4 s.f.) Top: Graph of approximate density hk of accim.
Bottom: The approximate quasi-conformal measure, depicted as µk([0, x]) vs. x. Note that µk has
no support on H0.

We take a relatively standard point of view [19, 30, 16], regarding σ = 10 and b = 8/3
as fixed, and r as a parameter. The chaotic attractor discovered by Lorenz [23] at r =
28 has since been proved to exist by Tucker [31] (via computer-assisted methods). Its
formation is now well understood: A homoclinic explosion occurs at rhom ≈ 13.9265,
giving rise to a chaotic saddle. As r increases through rhet ≈ 24.0579, heteroclinic
connections between (0, 0, 0) and a symmetric pair of periodic orbits Γ± appear and
the chaotic saddle becomes an attractor Ω. The orbits Γ± disappear in subcritical
Hopf bifurcations at rHopf ≈ 24.7368 (parameter values from [11]). For r < rhet
almost all orbits are asymptotic to one of two fixed points; for rhet < r < rHopf orbits
may approach one of these fixed points, or the attractor Ω; for r > rHopf almost all
orbits are attracted to Ω.

Maps like (4.1) model this situation via the following reductions. First, solu-
tions to the ODEs (4.2) induce a flow on R3; from this, a return map to the section
Σ = {(x, y, z) : z = r − 1} may be constructed. This two-dimensional map is
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Fig. 4.4. Lorenz map Tc,α, c = 2.05, α = .6 (blue). Note that [−1, 1] ( Tc,α[−1, 1]; bounds of
the interval [−1, 1] are depicted in red (the branches of T extend beyond the red box). The chaotic
repelling set is confined to the interval between two fixed points (green).

an open dynamical system, since not all orbits return to Σ8. For ‘pre-turbulent’
r ∈ (rhom, rhet), the chaotic saddle admits a strong stable foliation; the return map to
Σ may be further reduced by identifying points on the same stable leaf, resulting in
one-dimension models. We illustrate our results with the much-studied family (4.1)
(see [16]). The discontinuity at x = 0 corresponds to the intersection of the stable
manifold of (0, 0, 0) with Σ; the exponent 0 < α < 1 is derived from the eigenvalues

of the linearization of the system at the origin, α = |λs|
λu

. The parameter c controls
how ‘open’ the map is: when c ≤ 2, the system is closed, and when c > 2, the 1-
step survivor set X0 has the form X0 = [−xc,α, xc,α], where xc,α = (2/c)1/α; this is
illustrated in red in Figure 4.4.

The escape rates of the system Tc,α for parameters 0 < α < 1, 2 < c < 3
are illustrated in Figure 4.5. Figure 4.6 (left) illustrates the cumulative distribution
functions of the quasi-conformal measures, µc,α, for c = 2.01 and various values of α.
The densities of the accims with respect to Lebesgue are illustrated in Figure 4.6 for
several α values. For α < 0.5, the densities become concentrated near the endpoints,
as the α = 0.45 plot in Figure 4.6 (right) illustrates.

The escape rate results for these one-dimensional maps can be interpreted coher-
ently with respect to the behaviour of the Lorenz system (4.2) (although the scenarios
differ according to whether α ≶ 1/2).

• Regarding Tc,α as a map on R, for each value of α ∈ (0, 1) and c > 2 there
are two pairs of fixed points: repellors at ±yc,α ∈ (−1, 1) (illustrated in green
in Figure 4.4) and an attracting outer pair ±zc,α with |zc,α| > 1 (beyond the
domain of Figure 4.4). The inner points ±yc,α correspond to the periodic or-

8For example, the stable manifold to the fixed point (0, 0, 0) intersects Σ, and some orbits of the
flow travel directly to (0, 0, 0) after leaving Σ.
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Fig. 4.5. Numerical estimate of escape rates via open Ulam method with k = 10000 bins. Top:
coloured image of leading eigenvalue ρ10000 for a range of α and c (light for ρ near 1, dark near 0).
Bottom: ρ10000 as a function of α for c = 2.05, 2.01, 2.001.

bits Γ± from the Lorenz flow, and the outer pair correspond to the attracting
fixed points of the flow.

• At some c = c∗(α) ≤ 2 the inner and outer pairs coalesce in a saddle-node
bifurcation and for c < c∗ the only attractor is a chaotic absolutely continuous
invariant measure supported on [−1, 1].

(α > 1/2) Each Tc,α is uniformly expanding on X0 for c > 2. For c > 2 there is a
chaotic repellor in X0, and a fully supported accim on [−1, 1]. Lebesgue a.e.
orbit escapes and is asymptotic to one of the “outer fixed points”. At c = 2
the points ±xc,α = ±1 = ±yc,α become fixed points, with T ′(±1) = 2α > 1.
The open system thus ‘closes up’ as c decreases to 2; this corresponds to the
bifurcation point rhet in the Lorenz flow (where the origin connects to Γ±).
For values of c < 2, Tc,α admits an acim (which can be accessed numerically by
Ulam’s method) and the quasiconformal measure is simply Lebesgue measure.
The approach of ρk to 1 as c → 2 can be seen in Figure 4.5, and the close
agreement of µ2.01,α with Lebesgue measure can be seen in Figure 4.6 (left)
for α = 0.95.

(α < 1/2) For c > 2, Tc,α is open on [−1, 1], but the uniform expansion property fails for
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c sufficiently close to 2. Indeed, when c = 2 the fixed points at±1 are the outer
pair ±zc,α and T ′(±1) < 1. For c ∈ (c∗, 2), these attractors ±zc,α ∈ [−1, 1]
and coexist with a chaotic repellor in [−yc,α, yc,α]. Fortunately, for c > c∗
the open system Tc,α with hole I \ [−yc,α, yc,α] is a Lasota-Yorke map with
holes, because it is piecewise expanding. Corollary 4.4 shows that ε-Ulam
admissibility of the open system is implied if ε is sufficiently small and

|T ′c,α(yc,a)|−1 = sup
x∈[−yc,α,yc,α]

|T ′c,α(x)|−1 < inf Lc,α1(x).

This condition can be verified directly via elementary calculus. Thus, for
c > 2, our main theorem holds for the application of Ulam’s method to Tc,α on
[−yc,α, yc,α]. However, it is simple to extend this result to [−1, 1]: all points in
the intervals ±(yc,α, 1) escape in finitely many iterations, and corresponding
cells of the partitions used in Ulam’s method are “transient”. The leading
eigenvalue from Ulam’s method and approximate quasi-conformal measure on
[−yc,α, yc,α] agree with those computed on [−1, 1]. The approximate accims
agree (modulo scaling) between ±yc,α, the only difference is that the different
X0s lead to a different concentration of mass on preimages of the hole. The
approximated escape rates are displayed in Figure 4.5, and concentration of
accim on the hole (neighbourhoods of ±1) is evident in Figure 4.6 (right).
Note also that Figure 4.6 (left) depicts some approximate quasiconformal
measures for c = 2.01 and α < 0.45.

Remark 4.12. Recent work on Lorenz-like systems [24] has focused on Lorenz
maps with less regularity, such as piecewise C1+ε. We expect that our approach could
be extended to this setting, although some technical modifications would be necessary.

5. Proofs.

5.1. Auxiliary lemmas. Under the assumptions of Theorem 2.7, the quasi-
conformal measure µ of (T̂ ,H0) satisfies some further properties that will be exploited
in our approach. The measure µ can be used to define a useful cone of functions in
BV . For each a > 0 let

Ca = {0 ≤ f ∈ BV : var(f) ≤ aµ(f)}.

Combining the result of Lemmas 4.2 and 4.3 from [22] with the argument in the
proof of Lemma 3.7 (therein), the conditions on T imply the existence of a constant
a1 > 0 such that for any a > a1 there is an εa > 0 and N ∈ N such that

LNCa ⊆ Ca−εa . (5.1)

The values of N , a1 and εa are all computable in terms of the constants associated
with T . We present a modified version of these arguments, based on the classical
work of Rychlik [29], that specialize to the case N = 1, and allow us to improve some
of the constants involved in the estimates of [22]. Most notably, the value of αε below
is smaller than that in [22], a fact which will allow us to treat a larger class of open
systems.

Lemma 5.1. Let (T̂ ,H0) be a Lasota-Yorke map with an ε-Ulam-admissible hole.
Then, there exists Kε > 0 such that for every f ∈ BV ,

var(Lf) ≤ αε var(f) +Kεµ(|f |).
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Fig. 4.6. Open Ulam approximations for Tc,α (k = 20000). Top: cumulative distribution
functions for µ2.01,α where α = 0.45, 0.5, 0.65, 0.95. Bottom: accims for T2.01,α (same α).

Furthermore, there is a constant a1 > 0 such that for any a > a1 there is an εa > 0
such that

LCa ⊆ Ca−εa . (5.2)

Proof. We address the general case first, the particular full-branched cased will
be addressed at the end of the proof. In the general case, we recall that αε =
‖DT−1‖∞(2 + ε+ ξε).

Let Z be the monotonicity partition for T̂ . Define ĝ : I → R by ĝ(x) = |DT̂ (x)|−1

for every x ∈
(
I \
⋃
Z∈Z ∂Z

)
∪{0, 1}, and ĝ(x) = 0 otherwise. We obtain the following

Lasota-Yorke inequality by adapting the approach of Rychlik [29, Lemmas 4-6]. Let
Zε ∈ Gε. Then,

var(L̂f) ≤ var(fĝ) ≤ (2 + ε)‖DT̂−1‖∞ var(f) + ‖DT̂−1‖∞(1 + ε)
∑
A∈Zε

inf
A
|f |.

We slightly modify ĝ to account for the jumps at the hole H0, and define g : I → R
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by g = 1X0
ĝ. Now, only elements of Z∗ε contribute to the variation of L̂f , and we get

var(Lf) = var(L̂(1X0
f)) ≤ var(f(1X0

ĝ)) =
∑
A∈Z∗ε

var
A

(f(1X0
ĝ))

≤
∑
A∈Z∗ε

var
A

(f)‖1X0
ĝ‖∞ + ‖1Af‖∞ var

A
(1X0

ĝ)

≤
∑
A∈Z∗ε

var
A

(f)‖DT−1‖∞ +
(

inf
A
|f |+ var

A
(f)
)

var
A

(g).

Thus, since for every A ∈ Z∗ε , varA(g) ≤ ‖DT−1‖∞(1 + ε), one has that

var(Lf) ≤ (2 + ε)‖DT−1‖∞ var(f) +
∑
A∈Z∗ε

‖DT−1‖∞(1 + ε) inf
A
|f |. (5.3)

Now we proceed as in the proof of [22, Lemma 2.5], and observe that there exists
δ > 0 such that if A ∈ Zε,g, then

inf
A
|f | ≤ δ−1µ(1A|f |), (5.4)

whereas if A ∈ Zε,b, we let A′ ∈ Zε,g be the nearest good partition element9, and get

inf
A
|f | ≤ inf

A′
|f |+ var

I(A,A′)
(f),

where I(A,A′) is an interval that contains A and has as an endpoint xA′ ∈ A′, fixed
in advance, such that, after possibly redefining f at the discontinuity points of f ,
|f(xA′)| = infA′ |f |. Notice that either I(A,A′) ⊆ I−(A′) or I(A,A′) ⊆ I+(A′), where
I+(A′) is the union of A′+ := A′ ∩ {x : x ≥ xA′} with the contiguous elements of Zε,b
on the right of A′, and I−(A′) is defined in a similar manner. Thus,∑

A∈Zε,b

inf
A
|f | ≤ ξε var(f) + 2ξε

∑
A′∈Zε,g

inf
A′
|f |, (5.5)

where the factor 2 appears due to the fact that a single good interval could have
at most ξε bad intervals on the left and ξε bad intervals on the right. Combining
equations (5.4) and (5.5), we get∑

A∈Z∗ε

inf
A
|f | ≤ ξε var(f) + δ−1(1 + 2ξε)

∑
A′∈Zε,g

µ(1A′ |f |).

Plugging back into (5.3), we get

var(Lf) ≤ ‖DT−1‖∞(2 + ε+ ξε) var(f) + ‖DT−1‖∞(1 + ε)δ−1(1 + 2ξε)µ(|f |).

We get the first part of the lemma by choosing Kε = ‖DT−1‖∞(1 + ε)δ−1(1 + 2ξε).
For the second part, we recall that µ(Lf) = ρµ(f), so for every f ∈ Ca, we have that

var(Lf)

µ(Lf)
≤ αε

ρ
a+

Kε

ρ
.

9It is shown in [22, Lemma 2.4] that whenever (T,H0) is an open system with an admissible hole,
then Zε,g 6= ∅
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Thus, Lf ∈ Ca, provided a > Kε
ρ−αε =: a1.

Moving toward a BV,L1(Leb) Lasota-Yorke inequality, we have the following.
Lemma 5.2. Let ζ > 0 be given. Then there is a constant Bζ <∞ such that

µ(f) ≤ Bζ |f |1 + ζ var(f),

for 0 ≤ f ∈ BV (I).
Proof. Let Z(n) be the n-fold monotonicity partition for T0 where n is such that

µ(Z) < ζ
2 for all Z ∈ Z(n). This choice is possible in view of [22, Lemma 3.10].

Choose k such that every subinterval of size 1
k intersects at most two such Z. Then,

if Y is any subinterval of length 1/k, there are elements Z1, Z2 ∈ Z(n) such that
Y ⊂ Z1 ∪ Z2; hence µ(Y ) < ζ = ζ km(Y ). Now let ξ be a partition of I into
subintervals of length 1/k and put

F =
∑
Y ∈ξ

ess supY f 1Y .

Then, f ≤ F and F − f ≤
∑
Y ∈ξ VY (f)1Y , where VY (f) denotes the variation of f

inside the interval Y . Thus,

|F − f |1 ≤
∑
Y ∈ξ

VY (f)m(Y ) ≤ VI(f)/k.

We now estimate ∫
f dµ ≤

∫
F dµ =

∑
Y ∈ξ

ess supY fµ(Y )

≤
∑
Y ∈ξ

ess supY fζ

= ζ k |F |1
= ζ k |f |1 + ζ k |F − f |1
≤ ζ k |f |1 + ζ VI(f).

Putting Bζ = ζ k completes the proof.
A direct consequence of Lemmas 5.1 and 5.2 is the following.
Corollary 5.3. Let αε < α < ρ, where αε is defined in Equation (2.1). Then,

there exists K > 0 such that

var(Lf) ≤ α var(f) +K|f |1.10 (5.6)

Proof. Let ζ ′ = α−αε
Kε

, where Kε comes from Lemma 5.1. Let Bζ′ be given by
Lemma 5.2. Then, Lemma 5.1 ensures

var(Lf) ≤ αε var(f) +Kε(Bζ′ |f |1 + ζ ′ var(f))

= α var(f) +K|f |1.

10For convenience, we have dropped the ε dependence on α and K. This should cause no confusion
in the sequel, as ε is fixed throughout the section.
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Another useful result regarding the relation between the Ulam approximations
and the accim and quasi-conformal measure is the following.

Lemma 5.4. There exists n > 0 such that (Pnk )ij > 0 for all i, j satisfying
µ(Ii) > 0 and

∫
Ij
h dm > 0.

Proof. Fix i, j satisfying the hypotheses. By Theorem 2.7,

lim
n→∞

‖(Lnχi)/ρn − µ(Ii)h‖∞ = 0.

Choose nij large enough so that
∫
Ij
LNχi dm > 0 for all N ≥ nij . Because there are

a finite number of Ii and Ij we can put n = maxi,j nij and obtain
∫
Ij
Lnχi dm > 0 for

all i, j satisfying the hypotheses. Note that this implies
∫
Ij

(πkL)nχi dm > 0 because

the support of the integrand is possibly enlarged by taking Ulam projections. This
now implies (Pnk )ij > 0.

5.2. Proof of the main result. The lemmas presented in §5.1 allow us to
derive parts (I) and (II) of Theorem 3.2 via the perturbative approach from [20].
Indeed, Theorem 2.7 shows that ρ > α is the leading eigenvalue of L, and that it is
simple. Furthermore, Lk is a small perturbation of L for large k, in the sense that
sup‖f‖BV =1 |(Lk − L)f |1 → 0 as k →∞. Indeed,

sup
‖f‖BV =1

|(Lk − L)f |1 = sup
‖f‖BV =1

|(πk − Id)Lf |1 ≤ sup
‖f‖BV =‖L‖BV

|(πk − Id)f |1

≤ ‖L‖BV max
Ij∈Pk

m(Ij),

and the latter is proportional to τk, the diameter of the partition, which tends to 0
as k →∞.

Since πk decreases variation [21], Corollary 5.3 implies the uniform inequality

var(Lkf) ≤ α var(f) +K|f |1, ∀k ∈ N, (5.7)

which is the last hypothesis to check to be in the position to apply the perturbative
machinery of [20]. In particular, this implies quasicompactness and hence a spectral
decomposition of Lk acting on BV . This result ensures that for sufficiently large k,
Lk has a simple eigenvalue ρk near ρ, and its corresponding eigenvector hk ∈ BV
converges to h in L1(Leb), giving the convergence statements in (I) and (II).

In order to show (III), we consider the operator L̄k := Lk ◦ πk. In view of
Lemma 3.1, L̄∗kµk = ρkµk, and L̄khk = ρkhk. As in the previous paragraph, one can
check that L̄k is a small perturbation of L. In fact,

sup
‖f‖BV =1

|(L̄k − L)f |1 ≤ 2 max
Ij∈Pk

m(Ij) = 2τk.

Also, the Lasota-Yorke inequality (5.6) holds with L replaced by L̄k. Thus, [20,
Corollary 1] (see (iii) below) shows that for large k, ρk is the leading eigenvalue of L̄k.

Let Πk be the spectral projectors defined by

Πk :=
1

2π i

∮
∂Bδ(ρ)

(z − L̄k)−1 dz,

where δ is small enough to exclude all spectrum of L apart from the peripheral eigen-
value ρ. Also let

Π0 :=
1

2π i

∮
∂Bδ(ρ)

(z − L)−1 dz.



Ulam’s method for Lasota-Yorke maps with holes 21

Then, [20, Corollary 1] provides K1,K2 > 0, and η ∈ (0, 1) for which
(i) |(Πk −Π0)f |1 ≤ K1 τk

η ‖f‖BV ,
(ii) ‖Πkf‖BV ≤ K2 |Πkf |1,
(iii) For large enough k, rank(Πk) = rank(Π0).
Since ρ is simple and isolated, this setup implies that for large enough k, each Πk is
a bounded, rank-1 operator on BV :

Πk = µk(·)hk,

where each hk ∈ BV , L̄khk = ρk hk and ρk ∈ Bδ(ρ). Since hk = Πkhk we can choose
|hk|1 = 1 so that ‖hk‖BV ∈ [1,K2]. Now, let g ∈ BV . Then, by the above,

|µk(g)− µ(g)| = |(µk(g)− µ(g))hk|1 ≤ |µk(g)hk − µ(g)h|1 + |µ(g)(hk − h)|1
= |Πk(g)−Π0(g)|1 + |µ(g)| |hk − h|1 → 0, as k →∞.

Since µ and µk are in fact measures, the above is enough to show that µk → µ in the
weak-∗ topology.

In particular, there is a k0 such that µk(h) > 0 for all k ≥ k0. To show the last
claim of (III), we will show that if µk(h) > 0 then supp(µ) ⊆ supp(µk). Let ψk be a

leading right eigenvector of L̄k such that Pkψk = ρkψk and [ψk]l = µ(Il)
m(Il)

(l = 1, . . . , k).

Choose i such that µ(Ii) > 0, j such that [ψk]j =
∫
Ij
h dm =

∫
Ij
h dµk > 0 and n ≥ nij

as in Lemma 5.4. Then,

[ψk]i = ρ−n[Pk
nψk]i ≥ ρ−n[Pk

n]ij [ψk]j > 0.

This establishes that µk(Ii) > 0 and hence that supp(µ) ⊆ ∪{Ii : µ(Ii) > 0} ⊂
supp(µk), as claimed.

For the quantitative statement of (I), note that for every f ∈ BV , 0 = (L−ρI)h =
(L − ρI)Π0f , so that

(ρk − ρ)hk = (L̄k − L)hk + (L − ρ)(Πk −Π0)hk.

Hence,

|ρk − ρ| |hk|1 ≤ 2τk‖hk‖BV + (|L|1 + |ρ|)K1 τk
η ‖hk‖BV

≤ 2(τk + (1 + |ρ|)K1 τk
η)K2 |hk|1,

where K1,K2 and η are as above. This gives the error bound |ρk−ρ| ≤ O(τk
η).

5.3. Proof of Lemma 2.9. Let Lm be the transfer operator associated to Tm.
That is, Lm(f) = L̂(1Xmf). Then, Lnm(f) = L̂n(1Xm+n−1

f), and therefore,

L̂m ◦ Lnm = Lm+n
0 . (5.8)

Hence, an interval is good for T0 if and only if it is good for Tm for every m. In the
rest of this proof we will say an interval is good if it is good for either (and therefore
all) Tm.

Let Z0 = Z∨H0, where H0 is the partition of H0 into intervals, and we recall that
Z is the monotonicity partition of T̂ . Let Gε be an ε-adequate partition for T0. Then,

a partition Gε,m may be constructed by cutting each element of Gε ∨Z(m)
0 in at most

K pieces, where K is independent of m, in such a way that the variation requirement
maxZ∈Gε,m varZ(ĝ1Xm) ≤ ‖DT−1m ‖∞(1+ε) is satisfied, and thus Gε,m is an ε-adequate
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partition for Tm. Indeed, K = 2 +
⌈
‖ĝ‖∞/ essinf(ĝ)

⌉
is a possible choice. The term 2

allows one to account for possible jumps at the boundary points of Hm, as there are

at most two of them in each Z ∈ Gε ∨Z(m)
0 . The term M = d‖ĝ‖∞/ essinf(ĝ)e allows

one to split each interval Z ∈ Gε ∨ Z(m)
0 into at most M subintervals Z1, . . . , ZM , in

such a way that for every 1 ≤ j ≤M , varint(Zj)(ĝ1Xm) ≤ (1+ε)‖ĝ1Xm‖∞. The chosen
value of M is necessary to account for the possible discrepancy between ‖ĝ1X0‖∞ and
‖ĝ1Xm‖∞. (Recall also that ĝ is continuous on each int(Zj).)

Now, let b = #Z0. Then, each bad interval of Gε gives rise to at most Kbm

(necessarily bad) intervals in Gε,m. When a good interval of Gε is split, it also gives
rise to at most Kbm intervals in Gε,m. In this case some of the intervals may be bad,
but it is guaranteed that at least one of them remains good, as being good is equivalent
to having non-zero µ measure. Thus, the number of contiguous bad intervals in Gε,m
is at most Kbm(B + 2), where B is the number of contiguous bad intervals in Gε.
Therefore, ξ̃ε(Tm) = exp

(
lim supn→∞

1
n log(1 + ξε,n(Tm))

)
≤ ξ̃ε(T0).

Clearly, Θ̃(Tm) ≤ Θ̃(T0). Finally, we will show that ρ(T0) ≤ ρ(Tm). Recall that ρj
is the leading eigenvalue of Lj . Let f ∈ BV be nonzero and such that L0f = ρ0f . We
claim that Lm(1Xm−1

f) = ρ01Xm−1
f , which yields the inequality, because necessarily

1Xm−1f 6= 0. Indeed,

ρ01Xm−1f = 1Xm−1L0f = 1Xm−1Lmf = Lmf = Lm(1Xm−1f),

where the second equality follows from the fact that L0(1Hmf) is supported on
T (Hm) = Hm−1. The third one, from the fact that Lmf is supported on T (Xm) ⊆
Xm−1. The last one, because Lm(1Hm−1

f) = 0.
The first statement of the lemma follows. The relations between escape rates,

accims and quasi-conformal measures follow from comparing via Equation (5.8) the
statements of part (4) of Theorem 2.7 applied to T0 and Tm.

5.4. Proof of Lemma 3.3.
Assume H0 is an ε-admissible hole for T̂ . Then, Tn := (T̂n, Hn−1) is an open Lasota-
Yorke map. Fix Θ̃ < η < ρ so that for all n sufficiently large,

exp(
1

n
log ‖(DTn)−1‖∞) exp(

1

n
log(1 + ξε,n)) < η.

Then, ‖(DTn)−1‖∞ξε,n < ηn. By possibly making n larger, we can assume that
(2 + ε)‖(DTn)−1‖∞ < ηn, and that 2ηn < ρn. Then, ‖(DTn)−1‖∞(2 + ε+ ξε,n) < ρn.

We remark that ξε(T
n) = ξε,n(T ). Thus αε(T

n) = ‖(DTn)−1‖∞(2+ε+ξε,n). Fur-

thermore, in view of Theorem 2.7, ρ(Tn) = limm→∞ infx∈Dmn
Ln(m+1)1(x)
Lnm1(x) = µ(Ln1) =

ρn.
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