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Abstract It is well known that open dynamical systems can admit an uncountable
number of (absolutely continuous) conditionally invariant measures (ACCIMs) for
each prescribed escape rate. We propose and illustrate a convex optimisation based
selection scheme (essentially maximum entropy) for gaining numerical access to
some of these measures. The work is similar to the Maximum Entropy (MAXENT)
approach for calculating absolutely continuous invariant measures of nonsingular
dynamical systems, but contains some interesting new twists, including: (i) the nat-
ural escape rate is not known in advance, which can destroy convex structure in
the problem; (ii) exploitation of convex duality to solve each approximation step
induces important (but dynamically relevant and not at first apparent) localisation
of support; (iii) significant potential for application to the approximation of other
dynamically interesting objects (for example, invariant manifolds).

1 Introduction

Classical dynamical systems concerns the existence and stability of invariant sets
under the action of a transformation 7 : X — X. Depending on the setting, X may be
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a measure space, a topological space (with or without a metric structure), a differen-
tiable manifold, a Banach space, and so on. In each case, orbits defined by iterative
application of T remain in X. For an open dynamical system, 7 is defined only on
asubset A C X, and there are x € A for which T'(x) ¢ A. Such x are said to escape.

Open dynamical systems may be studied in their own right (the paper of Demers
and Young [12] gives a summary of important questions), or may be used to study
metastable states in closed dynamical systems. In the latter case, a subset A C X is
metastable if T(A) \ A is in some sense small relative to A. Work on making this pre-
cise dates at least to 1979, when Pianigiani & Yorke [22] introduced conditionally
invariant measures (see Section 1.2 below) and used them to study metastability in
expanding interval maps?. More recently, Homburg and Young [19] made produc-
tive use of conditionally invariant measures to analyse intermittent behaviour near
saddle-node and boundary crisis bifurcations in unimodal families. Many authors
have continued to obtain results connecting escape rates and metastable behaviour
of closed systems; see, for example, [1, 2, 13, 16, 18, 20].

One of the interesting challenges is to find conditionally invariant measures
which model the escape statistics of orbits distibuted according to some “natural”
initial measure m on A. In closed dynamical systems there may exist a unique er-
godic invariant measure  which is absolutely continuous (AC) with respect to m.
Via Birkhoff’s ergodic theorem, such p describe the orbit distibution of large? sets
of initial conditions. By contrast, an open system may support uncountably many
AC conditionally invariant measures (ACCIMs) [12, Theorem 3.1], so ascribing
dynamical significance on the basis of absolutely continuity alone does not make
sense. Recently, progress has been made in a variety of settings, identifying AC-
CIMs whose densities arise as eigenfunctions of certain quasicompact conditional
transfer operators acting on suitable Banach spaces. Such ACCIMs may be con-
sidered “natural” (see [12] for discussion), giving a well-defined escape rate from
A. See, for example, [6] for dynamics on Markov towers; [9, 10] for interval maps
modelled by Young towers; [7, 8] for expanding circle maps and subshifts of fi-
nite type; [21] for interval maps with BV potentials. Extending these techniques to
higher-dimensional settings such as billiards and Lorentz gas is an area of much
current interest [11].

This chapter develops a new class of computational methods for the explicit ap-
proximation of conditionally invariant probability measures on A. Our ideas use
convex optimisation: the criteria for conditional invariance are expressed as a se-
quence of moment conditions over L' (integration against a suitable set of L™ test
functions), and the principle of maximum entropy (MAXENT) is used to select
(convergent) sequences of approximately conditionally invariant measures. The en-
tropy maximisation is solved via standard convex duality techniques, although at-
tainment in the dual problem may necessitate a non-obvious (but dynamically mean-
ingful) reduction of the domain on which the maximisation is done. The required

2 The motivation in [22, p353] went beyond interval maps, including preturbulent phenomena in
the now famous Lorenz equations, and metastable structures in atmospheric and other fluid flows
and complex systems.

3 In the sense of positive m-measure.
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steps are achievable for piecewise constant test functions (similar in spirit to Ulam’s
method [15] but with a completely different mathematical foundation). The chapter
is structured as follows: first, we introduce notation for our study of open systems
and formulate the ACCIM problem (and its uncountable multiplicity of solutions)
via conditional transfer operators; next, the MAXENT problem is set up and anal-
ysed; the Ulam-style test functions are introduced in Section 3, and the domain re-
duction and some numerical examples are given to illustrate the method; we finish
with some concluding remarks.

1.1 Nonsingular open dynamical systems

Let (X,m) be a measure space. We consider the dynamics generated by a transfor-
mation on a subset of X which fails to be forward invariant; such a dynamical
system is called open and may or may not support any recurrent behaviour. Let
A C X be measurable and let 7 : A — X be a measurable transformation where

Hy :=T(A)\ A is a measurable subset of X (called the hole); and
m(ANT'Hy) > 0; and

m(E) > 0 whenever m(T~'E) > 0 and E is a measurable subset of X; and

T is locally finite-to-one (for each x €A, T~ '(x) = {x_1 €A : T(x_;) =x} is
either empty or finite).

Definition 1. Let m|4 denote the restriction of the measure m to A. We call*
(T,A,m|,) satisfying the above conditions a nonsingular open dynamical system.

Notice that T'(x) is defined only for x € A, and the “hole” Hy can be used to define
a survival time for each x € A:

o(x) = n if x,T(x),...T"(x) € A and T""!(x) € Hy
VT wif Th(x) €A VK € Z,.

When 7(x) = n < o, T"(x) € H; :== ANT ' (Hp) and such orbits of 7 terminate at
time 7(x) + 1. Only those x for which 7(x) = oo can exhibit recurrent behaviour.

For all that follows it is convenient to decompose A into invariant and transient
parts. Define:

e the n step survivor set as
Api={xcA:t(x)>n}={x: x,T(x),..., T"(x) €A} = Ni_, T *A.

o Ao :=N,y>0A,
o Hy=A,1\A,={x:1(x)=n—1}forl <n<oo

4 Clearly moT™! < m so that T : (A,m|a) — (X,m) is a nonsingular transformation, but
T : (A,m|a) — (X,m]|4) fails to be non-singular, as m|4 o T~ (Hy) = m(ANT~'(Hp)) > 0 while
m|a(Hp) = 0.
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Notice that if x € H,, then T*(x) € H,_ for 0 < k < n. The orbit of x “falls into the
hole” at time 7 (escapes) and is lost to the system thereafter. As well as escape from
A, we need to account for the possibility that backwards orbits may not be defined
(T : A1 — A may not be onto). Since some x € A may have no preimages in A, define
the following subsets of A:

Ko:={x : ANT 'x=0}

Ky:={x: 0#(ANT"(x)) CKo} = {x : min{k : ANT *x=0} =n+1}
K :={xo : there is no sequence {x_, };~_; such that T'(x_,) = x_(,_1), n > 0}
H. = Un>0(Hn\K°°)

Points in K. are ‘backward transient’, while points in H., are ‘forward transient’.
Lemma 1 contains some facts about the action of 7 on the various sets H,,K,. The
reader may easily verify that

Ag=Aand T(A,) CA,_

H,NH,=0ifn#m,H, CA,_yand H,NA, =0

T(Hn) c Hn—l

AN ! (Kn) C Un<nKin and Kn+1 c T<Kn)

Ur_oKn € K, and the union on the left may be finite or infinite (or even the
emptyset if T is onto A)

Any of the containments above may be strict. In order to avoid unduly messy for-
mulas, from this point on we will generally assume the range of the map 7! is
restricted to A.

Lemma 1. Let (T,A,m|4) be a nonsingular open dynamical system. If Q := Aw \ Ko
then A admits the disjoint decomposition A = K. U Q2 U Ho and

a. T_I(Unz()Kn) C Up>0K, (mod m|A);

b.T(Q)=Q;

c. T:(Hy\Kw) = (Hy—1 \ K) is onto and nonsingular (with respect to the obvious
restrictions of m);

d. Ko = U2 oK,

Proof. (a) Note that T 'K, C U<, K; (for each n > 0) and T~' Ky = 0.

(b) If x € Q then x € A, 50 T"(x) € Aw. Thus € is the set of points whose future
orbit is contained in A and has at least one backwards orbit in A.

(c) Letx € H, 1 \ K. Then there is a sequence {x_ };Z_; such that T'(x_) = x_q )
and T (x_;) = x. Clearly x_; € H, \ K.

(d) First, suppose that x ¢ U,>K,,. Then x ¢ Ky so @ # T ~'x. If T~'x C U,>(K,, then
there are Ny, ..., N; such that 7~ 'x C Ky, U-- “UKy;. Putting N = 1 +max{Mi,...,N;}
one has x € Ky, a contradiction. Thus, there is at least one x_; € T~ 'x such that
x_1 ¢ Up>0K,. The proof is completed by induction.

Example 1. LetX =R?,A=10,1]> and T'(x,y) = (2x,1/2y). Then H, = (27,2~ ("= 1] x
[0,1], Aw = {0} X [0,1]. On the other hand, K,, = [0,1] x (2=**1) 277] 50 K., =
[0,1] x (0,1]. The “recurrent set” A \ K = {(0,0)} is a fixed point (so genuinely
recurrent), and A N K. = {0} x (0, 1] is part of the stable manifold to (0,0). Notice
that H., = (0, 1] x {0} is part of the unstable manifold to (0,0).
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1.2 Escape, conditionally invariant measures and their supports

We now make precise the notion of escape rates and establish some important con-
nections with conditionally invariant measures.

Definition 2. The escape rate of a probability measure my on A is

1 1
= lim — — = lim —— . >
Pmg - r}1_r>r010 . logmg(An) }1_r>r°10 . logmo{x : t(x) >n}

(when such a limit exists). The open system (T,A,m|4) will satisfy the escape hy-
pothesis iff
m(As) = 0. (1)

Clearly, if there is an escape rate p,, > 0 then (1) holds.

Definition 3. A probability measure ( on A is a conditionally invariant measure
(CIM) iff there is & € (0, 1) such that

uw(T7'E)=au(E)  Vmeasurable E C A.
Note that if p is a CIM then
u{t>n}=p(A,) =pnANT "4, 1) = au(A,-1) = - = o" u(A) = o

Thus py = —logeand p{x : 7(x) >n} = u(A,) =e Pu", so that initial conditions
distributed according to u display geometric escape. Provided H. # 0, Lemma 1(c)
implies the existence of at least one backwards semi-orbit {x_; };>0 (with T'(x_¢) =
X_(k—1))- Demers and Young [12] point out that a CIM can be obtained as (1 —
)Yy o Olk5x_k. However, such CIMs describe only a single orbit, and it remains
an interesting challenge to find conditionally invariant measures which model the
escape statistics of the “natural” initial measure m/,4.

The domain decomposition of Lemma 1 and the following Lemma 2 reveal that
that A decomposes into three pieces:

(i) abackwards transient part K., which cannot support any CIMs, but includes any
local basins of attraction (we will later identify numerically certain parts of K
and exclude them for computational reasons). The intuition behind this fact is
that the lack of preimages of points in K. means there is no way to “replenish”
mass which is lost to the hole;

(i) an envelope 2 = A.. \ K. for the “recurrent” piece which can support invariant
measures, but not CIMs; and

(iii) a transient part H. which is the place to look for CIMs (and includes any local
unstable manifolds).
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Lemma 2. Let (T,A,m|s) be a nonsingular open dynamical system and let Q, Ko
and H.. be as defined previously. Then

a. if W is an invariant or conditionally invariant measure on A then 1W(K,) = 0 for
all n (and n(Kw.) =0);

b. if W is an invariant measure then [1(Hw) = 0;

c. if W is a conditionally invariant measure then 1L(Q) = 0.

Proof. (a) Suppose that o T~! = o for some o € (0,1]. Then
" u(Ky) = po T "TV(K,) = woT ! (T7"K,) < u(T ™' Ko) = p1(0) = 0.

By part (d) of Lemma 1, u(Ko) = u(U,K,) <Y, u(K,) =0.

(b) If u is an invariant measure and w(H,) > 0 then by the Poincaré recurrence
theorem almost every x € H, recurs to H, infinitely often. But if x € H, then {k >
n: T*x € H,} =0, s0 u(H,) = 0. It follows that y(UH,) = 0 and hence p(H..) = 0.
(c)ByLemma 1 (b), Q C T~ (T(Q)) C T~'Q so that

H(Q) < poT H(Q) = apu(Q) < 1u(Q).
Hence u(2)=0.

Example 1 revisited. Let X = R?, A = [0,1]? and T(x,y) = (2x,1/2y). Since Q =
{0}, Kw =[0,1] x (0,1] and H.. = (0,1] x {0}, the only invariant measure is con-
centrated on the fixed point at 0 and all CIMs are concentrated on H.. (the unstable
manifold to (0,0)).

Remark 1. As suggested already, a discrete variant of the set K., arises naturally in
the numerical methods described below. When T is countable-to-one, it can occur
that K. # U,K,, =: K., but this does not alter the result of Lemma 2(a).

1.3 Conditional transfer operators and the multiplicity of ACCIMs

We complete the introduction by characterising CIMs as eigenvectors of certain
conditional transfer operators. This provides a concrete mathematical setting for
the approximation algorithms, and gives a useful technical tool for establishing the
existence of absolutely continuous CIMs.

For each k > 0 put my = m|s, (so that mg = m|4). Then T : (Apq1,mpqr1) —
(Ag,my) is a nonsingular transformation, so that my 1 o T~ <« my and a conditional
Frobenius—Perron operator £ : L' Ay, 1;my41) — L' (Ag;my) can be defined in the
usual manner:

d
4f = quf”lkﬂ] OT?I)-

Dual to .%; is the (conditional) Koopman operator Uy, : L™ (A, my) — L= (Agr1;Mpr1)
with the action
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Uy =yoT.
The relation

/(fkﬁo)wdmk:/ QUrydmy (2)
Aj Apt1

is automatic for @ € L'(Ay,1;mpi1), ¥ € L”(Ag;my). In particular, for any ¢ €
L'(A;mp) and w € L=(A;my),

| Zotota)wam= [ oUpwdm. 3)
Ag A

Lemma 3. Let (T,A,m|4) be a nonsingular open dynamical system and let L < m
be a measure such that [1(Ag) = 1. Then is a CIM with escape rate —loga if and

. d d
only if Zo(1a, ) = a 5.

Proof. Let ¢ = g—ffl. Then for E C A, one has T~'E C A; so that, using equation (3)
/E.Zo(lAl(p)dmg:/A o Uoly dm :/q)lelEdm:u(T*lE).
1

Since o [, 9dm = apu(E) = u(T'E).

Lemma 3 characterises absolutely continuous conditionally invariant measures
(ACCIMs) as those whose density functions solve a conditional transfer operator
equation: .%y(14, @) = o @. However, in contrast to the typical situation for nonsin-
gular dynamical systems, this equation may have an uncountable number of solu-
tions for each ¢ if no additional regularity is specified; see [12, Theorem 3.1] and
discussion therein. We now give a version of this result.

Theorem 1. Ler (T,A,m) be a nonsingular open dynamical system. If there is Kk > 0
such that £p1a, > k1, and m(Hw.) > 0 then for every a € (0,1) there is a CIM

which is AC with respect to m and has escape rate —log .

Proof. There is at least one N for which m(Hy \ K-) > 0. By an inductive appli-
cation of Lemma 1(c), m(H; \ Kw) > 0. Now let yt; < m|y,\g,, be a finite measure

and put @ = % Note that 14, ¢; = 0. Next, we construct (inductively) a sequence

of integrable functions ¢, supported on Hy \ K. such that each Z5(14, @11) =
LiOr1 = O Let @ € L'(Hy \ Kooy my) be given. Assume that ¢ is bounded (the
general case follows from the bounded case by an approximation argument). On
Hp1 \ Ko put

_ QoT

1= T o1
P Ukﬁflﬂkﬂ\&o

(note that the denominator is bounded below by k1y_ \x.)- Let uj = @;m; for
j=k,k+1and E C H; \ K. Then
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i1 oT'E = @1 Ullp dm

Hip1\Keo

= Uk((pklE/"%clHkH\Kw)1Hk+]\Kwdm:/A (pklEdmZ‘U,k(E).
k

At
_ d .
Thus, @ = ﬁk“k = ﬁkukﬂ oT 1 = vfkdﬁ% = L@ry1- Using E = H; \ Ko
and Lemma 1(c), [ ¢, dm = [ @41 dm. Finally, put ¢ = ﬁ Yo, ok gy Then,
Ja, 9dm =1 and Z(14, @) = o ¢. The theorem follows from Lemma 3.

Remark 2. The proof given above is essentially the one from [12]; the different
conditions are to account for the fact that we have not imposed any topological
(or smoothness) restrictions on 7. Note that each choice of finite AC measure on
H \ K., gives a different ACCIM.

2 Convex optimisation for the ACCIM problem

We now describe a selection principle for ACCIMs based on the Shannon-Boltzmann
entropy. The first idea is to encode the criteria for being a CIM into a sequence of
moment conditions, and to search for approximate CIMs which locally resemble
the measure m. This leads to the optimisation problems (P, o), where the entropy
maximising density is sought, subject to meeting the first » moment conditions for
conditional invariance (with escape rate —log ). Then, in Section 2.2, we recall
some standard results from convex optimisation which allow the MAXENT prob-
lem (P, o) to be recast in dual form. Theorem 2 identifies a condition which is both
necessary and sufficient for solvability of the dual problem. Section 2.3 introduces
a domain reduction technique which ensures that the conditions of Theorem 2 are
met, revealing an interesting connection between the structure of the moment condi-
tions and the backwards transient sets K... The main result is Theorem 3: an explicit
formula for the solution of (P, o).

2.1 Moment formulation of the ACCIM problem
By Lemma 3, if u is an ACCIM and ¢ = % then

L(ne)=0ap,  a= | gdn=uA).
1

This is equivalent to

/A[fo(lmfp)pr]wdmzo Yy € L*(A;m), /(lAlfp)dm:a

0
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and hence, using equation (3),

/ 14, yoT —ay|edm=0 Yy e L”(A;m), odm=aq.

Ao Ay

To obtain a computationally tractable representation of these conditions, observe
that it suffices to verify for all y in a weak* dense subset of L*(A;my).

Definition 4. Let {y;}7_; C L™(A;mo) be a sequence whose span is weak* dense
and put yp = 14. Fix a € (0,1]. Then

Ty = {O§¢EL1(A;m0) : / (pdm:oc,/(,ol//odmzl7 and
Ja, Ja

“)

/A[lAleoT—alpj](pdm:O,j:1,...,n}.

are approximately conditionally invariant densities with escape rate —logc.

Notice that each .%,, 1| C .%,. If a sequence {f,, } is chosen such that each f;, € %,

weak

and f, — f» then f. € N,;~0%,. Such an f is the density of a CIM. Using
arguments similar to those leading up to Theorem 5.2 in [4], one has weak (and
indeed L") convergence of such a sequence when selecting f,, to solve

maximize H(f) s.t. f€ (Pn,a)

where H is a suitably chosen functional. We use the Shannon-Boltzmann entropy

Hf) == [ 10 log f(x)dm(x)

(where t logt is set to O when r = 0 and co when ¢ < 0). If T admits an ACCIM u for
which H (%) > —oo, then each problem (P, o) has a unique solution f,, and lim f,,
exists both weakly and in L (proofs can be adapted from [4]).

Each primal problem (P, ) is concave, admitting a solution f;, , depending on
both n and «. As we illustrate with numerical examples (Section 3.3) the role of &
is interesting, being a parameter that is tunable to produce a range of escape rates:
for o near 0, escape is rapid (with mass of the ACCIM tending to concentrate on the
first few preimages of the hole); for & near 1, escape is slow with mass concentrated
nearer to £2.

In order to identify the entropy maximising ACCIM we propose a nested ap-
proach: at the outer level, for each fixed n, optimise H(f; o) (over ¢); as an ‘inner’
step, each f;, o is computed to solve (P, ).

Remark 3. The optimisation problem (P, o) can be reformulated to remove « as a
variable. One simply replaces the jth moment condition in (4) with

5 The flexibility to tune o without impact on numerical effort is reminiscent of the use of Ulam’s
method to calculate the topological pressure of piecewise smooth dynamical systems by varying
an inverse temperature parameter [17].
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/A [lAleoT— (fa, pdm) 1//;] ¢dm=0
0

for each ;. This destroys the linearity of the constraint, and potentially the convex-
ity of the optimisation problem.

2.2 Convex duality for problem (P, o)

Problems like (P, ) are never solved directly. Instead, a ‘Lagrange multipliers’ ap-
proach converts the problem to an equivalent finite-dimensional unconstrained op-
timisation. For the benefit of readers not familiar with this type of argument, we
outline the steps leading to this ‘dual formulation’. Let n, ot and {y; }}_, be fixed.
To simplify matters we assume that the test functions form a partition of unity over

A, so Y =14 =Y | Y and

0:/ [1A11A00T—a1A0]<pdm:/ (pdm—oc/ odm
Ao A Ao

follows from the corresponding conditions for v, ..., ¥,. The normalisation |, 4o @AM =
1 is thus a consequence of |, 4, @dm = o, so only one of those conditions is needed.

Definition 5. Define M : L' (A;mg) — R"*! by
(gl = [ gdm and (ig); = [ [lay;oT —aw)am
1
for j=1,...,n. Let M* : R"*! — L=(A;my) be defined by

M'A = 2o1a, + ) Aj(La yjoT — a0 y;).
j=1

Lete=[1,0,...,0]" e R""! put Q(1) := a AT e — [, exp(M*A — 1) dm and define
a dual problem:
maximise Q(A) s.t. A e R (Dp,a0)

We now outline how (D, o) is related to (P, ). First, note that
feF oMf=ae and  AT(Mf) :/M*lfdm Ve L' (A:m).
A

For every A € R"*!
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sup H(f)= sup  H(f)

JE€Tn {f: Mf=ae}
= sup [H(f)+AT(Mf—ae)]
{f : Mf=ae}
< sup [H(f)+AT(MSf - ae)]
feLl(Am)

=—aATe+ sup [/M*lfdm—(—H(f))
) A

feLl (Agsm
=—aAle+H" (ML)

= _a}LTe+/exp(M*?L —1)dm=—-Q(A)
A

where H* is the Fenchel conjugate of the convex functional —H, and the second
to last equality is a nontrivial result in convex analysis (see Rockafellar [23] and
Borwein and Lewis [3]). Observe that —Q(4) is an upper bound on H(f) for all
fe€F,and A € R™+1 5o that the (negative of) the solution to (D, o) provides an
upper bound on the solution to (P, ¢). This is called the principle of weak duality. In
fact, (D,,q) is a differentiable, unconstrained, concave maximisation problem, and
our method involves solving it.

Theorem 2 (Dual attainment). Let o, n be fixed.

a. A* solves (Dy, o) if and only if f, == exp(M*A* —1) € %, and H(f,) = —Q(A*);
b. the problem (D, o) attains its maximum if and only if

0+#A € {kerM* @ span(e)} = [M*A]" #0m-a.e.. 5)

Proof. (a) This is a standard result in dual optimisation theory, and is a consequence
of the fact that A* solves (D, ¢) iff o [e]; — [Mexp(M*A* —1)]; = gTth* =0 for
j=0,...,n.

(b) Sufficiency of (5) is established by minor modifications to the proof of The-
orem 3.3 in [5]. For necessity, suppose that ATe =0, 0 # A € {kerM*}* and
M*A < 0. Then there are ¥ > 0 and E C A such that m(E) > 0 and M*A < —x1g.
Then, for any AT € R"*! and r > 0,

oAt +14) > 0(AT) + (1 —e—Kf)/Eexp(M*ﬂ “1)dm> (A1),

Hence Q cannot attain its maximum.
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2.3 Domain reduction and dual optimality conditions

The condition (5) incorporates some important facts about ACCIMs. First, by The-
orem 1, there exist ACCIM. It follows from this that %, # @ and o e € Range(M) =
{kerM*}* (this is the reason for separating out the direction €). Second, the support
of each ACCIM must be disjoint from subsets of A associated with “bad functions”.
(This is made precise in Lemma 4 below.) A function y will be called a bad func-
tion if 14, yoT — oty < 0 (but not equal to 0 m-a.e.). If A € R"! is such that
[A]o =0 and M*A <0 (but nonzero), then y = }.}_[A]; y; is a bad function. The
condition (5) for solvability of (D, o) is equivalent to there being no bad functions
in span{y; ;?:l. We are going to show that bad functions may exist (Example 2),
but they are irrelevant to the ACCIMs (their supports are disjoint from H..; see
Lemma 2(c) and Lemma 4) and can be excised from the problems (P, ¢) and (D, o)
(Lemma 5). We call this latter procedure domain reduction.

Example 2. 1f x € U,>0K, let N(x) := min{k : T ¥(x) NAy = 0}. Note that
N(x)+1 < N(T(x)) (where N(y) = oo if y ¢ U,>0K,). Define y(x) = (a/2)N®.
Then —(o/2)y = (a/2)y — oy > yoT —ay. Hence 14, yoT —ay < 0 on
Un>0K.

Lemma 4. Let o € (0,1) and suppose that y € L(A;m) satisfies 1, yoT < a .
Then |y, om, > 0 and Y\, < 0. In particular, m(He N supp(y)) = 0.

Proof. First,letx € Hy. Then 14, (x) =0s00=14, yoT (x) < o y(x), so y|y, > 0.
Now suppose that x € Hy. Then T*~!(x) € Hj so that

0<y(T" () <ay(T"(x) < < y(x).
Thus, V| H, = 0. On the other hand, if x ¢ K., then for each k > 0 there is at least
one x_ such that T¥(x_;) = x. Then y(x) = wo T¥(x ;) < af y(x_4) < o!||y||o.
Letting k — o0, W(x) < 0.

To apply Theorem 2 when K., # @ we need to ensure that the chosen test functions
{w;}i_, are unable to detect bad functions. To do this, we exploit a basis specific
domain reduction: remove from the domain A the support of any function 2 = M*A

where /2 < 0 and A € Range(M)/span{e}. Let A denote this reduced domain.

Lemma 5. In the notation of this section, suppose that A is measurable and f € F,.
Then f = f1; m-a.e.

Proof. Suppose that m(supp(f) \ A) > 0 and let A be such that A7e = 0, M*A <0
and supp(M*A) Nsupp(f) € Ag \ A has positive measure. Then, Mf = a e so that
0=AT(Mf) = Jag M2 fdm < 0, an obvious contradiction.

In view of Lemma 5, m can be replaced with /it = m|; in the definition of the
problem (P, o) without any change to the set .#,. The value of the problem is also
unchanged, since there is no contribution to H(f) from those places where f takes
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the value 0. The duality theory is now applied to the measure space (Ao, ), and the
corresponding dual problem is

maximise Q(1) := a Al e — / exp(M*A —1)dm st AR (D,q)
A

Notice that if M*A < 0 m—almost everywhere, then the domain reduction ensures
that M*A = 0 rAi—a.e. Thus, all potentially problematic A have been pushed into
kerM* (modulo 7#2). In particular, condition (5) is satisfied for the reduced domain.
The previous results can be collected in our main theorem.

Theorem 3. Let o, n be fixed and suppose that A is measurable. Then ( ﬁn,a ) attains
its maximum at finite * and f, = 1;exp(M*A* — 1) solves (B, ).

We note that M[* may have nontrivial kernel (modulo ), so the optimising A *
can be non-unique. We also make the following observations:

e the reduced domain A depends on 7, possibly & and may be very difficult to
determine for general test functions;

e assuming the escape hypothesis (1) we have A\ A C K.. (mod m) [m(A.) = 0
by (1) which together with Lemma 4 shows that supp(y) C K. (mod m) for any
bad function y; the observation follows];

e if A is overestimated then condition (5) fails and the dual optimisation problem
does not have a solution for finite A. Nevertheless it would be a simple matter
to set up the dual formulation (D, ) and seek a numerical ‘solution’ of this
infeasible optimization problem without first verifying the optimality condition
in equation (5); such a numerical approach is bound to be both unstable and
misleading. See Borwein and Lewis [3] for further discussion of this and related
issues.

Nothwithstanding these warnings, in Section 3 we show how to compute A for piece-
wise constant test functions based on a measurable partition of A.

3 A MAXENT procedure for approximating ACCIMs

Under the conditions of Theorem 1 there are many ACCIMs for each escape rate.
If at least one of these has a density with finite Shannon-Boltzmann entropy then
the solutions of a sequence of problems (P, o) will converge (in LY as n— o to
the density of an ACCIM. This, in principle, allows one to select an “entropy max-
imising” ACCIM; the entropy maximisation spreads mass as uniformly as possible,
given the condition of being a CIM. Solutions to each problem (P, o) can be calcu-
lated via convex duality, provided there are no “bad functions” (M*A which fail the
condition (5) in Theorem 2). This condition can be ensured by a basis dependent
domain reduction (Lemma 5 and Theorem 3), leading to a domain reduced dual
problem (ﬁn,a). We now make a specific choice of test functions, reminiscent of
Ulam’s method [24, 15, 14]. We identify the reduced domain A (Lemma 6), derive
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the relevant optimality equations (Lemma 7) and present a convergent fixed point
method for their solution.

3.1 Piecewise constant test functions and domain reduction

Let {y;} be obtained from a sequence of increasingly fine partitions of A. In particu-
lar, let %, be a partition of A into measurable subsets {Bj,...,B,} and put yi=1 B;-
Notice that 14 = }.}_; ; so the partition of unity assumption is satisfied (c.f. Sec-
tion 2.2). To derive and solve the optimality equations for (D,,ﬁa), notice that M*A
is a piecewise constant function, on elements of %,V {T %, H; }:

n n

M*A = 1,41 Z (A{) +;Lj — (X;Lk)lgj o TlBk + IH1 Z(—(X;Lk) lBk
k=1 k=1
= Z (AO‘F)bj_alk)lBkale/_a Z)vlemBk (6)
k=1 : =1

(note that 14, = 14714 =X & lBkalej).

Definition 6. For the partition %, form a matrix C and vector ¢ by putting
Cij=mByNT 'B)) and  cr=mH NB)  j.k=1,...n

A set Bj is reachable from By if there is n > 0 such that (C");; > 0; write k ~ j.

Remark 4. The entries of the matrix C are the same data needed to compute the
(sub)stochastic transition matrices used by Ulam’s method.

Lemma 6. Suppose that (T,A,m) is a nonsingular open dynamical system and
that m(A..) = 0. Fix ot,n and let A be the reduced domain when M* is constructed
from the partition %B,. Then A is the union of those By where either k ~ k or there
is at least one i for which i ~~ i ~ k; in particular, A is measurable.

Proof. Let AT e = 0 and suppose that M* A < 0. From equation (6), we immediately
have
Aj < ary whenCy; >0 and A >0 whenc; > 0.

Since C is a non-negative matrix, i ~~ k iff there is a string i = ig, i ...,i, = k such
that each Cj;, .1 > 0. Thus, by induction, if i ~~ k then there is an n > 0 such that
A < o' A;. First, if ¢, > 0 and i ~ k we infer that A; > 0. Next, since m(A«) = 0, for
every B; there is an n for which m(B; N H,) > 0. Then, since T is nonsingular, there
is B; such that C; > 0 and m(B; N H,_1) > 0. By induction, there is a k for which
i ~ k and ¢; > 0. Hence, A; > 0 for all i. Now, if k ~~ k, again use the inequality
A < a"Ag to infer that 4; < 0 and hence Ay = 0. Similarly, if i ~» i ~ k, A <
o A; = 0, so also A; = 0. Suppose that k is one of the indices identified in the
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statement of the lemma. Then (6) implies that 13 M*A =} ; A;1 BT 1B, > (; since
M*2 <0, By Nsupp(M*2) = 0. To complete the proof, let # denote those k which
fail the condition in the statement. For each such , let N(k) = max{N : (CV it >
0 3i}; N(k) may be 0. (Note that if (C¥); > 0 for N > n then there is a sequence
i =ig,i1,...,in = k for which Cj;, , > 0; this list must contain at least one repeat,
implying k ¢ #".) Note that if C;; > 0 then N(i) + 1 < N(k). Finally, for each k € %
put A; = (a/2)V®), with A = 0 for k ¢ #". Then, C;; > 0 implies A;(ct/2) > A;.
Hence 4; — aA; < —A; < 0. It follows that supp(M*A4) = Uy - B;.

Remark 5. The set A identified by the lemma is the union of all B; which are reach-
able from the strongly connected components of the directed graph implied by the
non-zero elements of the matrix C. This can be found quickly and easily.

Now, form the matrix C and vector ¢ by retaining those entries where By, is iden-
tified as belonging to A, and setting the rest to 0. These ingredients can be used to
obtain explicit formulae for the optimality conditions for (D, ¢). Using equation (6),

Q(l) =aly —Zexp(ﬁo —1 +lj — Otlk)ékj —Zexp(—l - (Xlk) Ck-
ik 3

Because O is differentiable and concave, the maximising A* is found by solving

the first order conditions 3—% = 0. The following lemma writes these conditions in a
more convenient form.

Lemma 7. Assume the conditions of Lemma 6 and let A be as given there. Let C,¢
be obtained similarly to Definition 6, but using 1 = m|; in place of m. If {x;}!_, are
positive numbers solving

lia ZjC,‘ijJrcA‘,'
X; =0 A~ —a
Y Crixy
and A satisfies e* -1 Y CA‘ijxjxi’“ = o then A :=log(x;) — A§ give the solution
to (Dy,a).

Proof. By differentiation, the optimality equations for (Dn,a) are

0=a—Yexp(o— 1+ —ad)Cy (i=0)
0= OCZjGXp().Q—l'F}.j—OC)yi)éij —):kexp().o—l+li—alk)ék,~
+oexp(—1—al)é (1<i<n).

The i = 0 equation is a normalisation. By putting x; = ¢**% for 1 < i < n the latter
equations are equivalent to

— A.. . 7a p— A . . 7a A. 7(1
0=« ZC,]xjxi ZCk,x,xk +odix; "
j k

Multiplying by x* and rearranging gives the equations in the statement of the
lemma.
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3.2 Iterative solution of the optimality equations

We now summarise the numerical method.

1. Specify o (= e™P where p is the preferred escape rate).

2. Fix a measurable partition %, = {B;}_, of A.

3. Obtain the matrix C and vector ¢ of partition overlap masses (as specified in
Definition 6).

4. Use Lemma 6 to identify A and thus form the dual problem (lA),,‘a).

5. Solve the optimality equations via Lemma 7. This can be accomplished with a
fixed point iteration: set xo = [1,...,1]7 and iterate

A A\ /(1+a)
o Z/Cinj"f'Ci
Y Crix *

X1 =%(x;)  where [P(x)];i= (

until desired accuracy is achieved.
Recover the optimal A * via Lemma 7 and solution f;, ¢ to (£, ¢) from Theorem 3.
7. (Optional) Calculate H(fn.a).

o

Sketch proof of convergence of the fixed point iteration

Assume the escape hypothesis (1).

Without loss of generality, assume that all sums in the definition of ¥ are

nonempty®. Because (Dn,a) actually has a solution, there is y* for which ¥ (y*) = y*.

For any x € R’} let

1 .
V(x):min{R : ngﬁgR,lgign}_
R ™ y;
Clearly V(x) > 1 and V(x) = 1 iff x = y*. Moreover,
V(X)X :Ciiy: +¢é
W) < (@ OEIC G
V(%)Y Cri(v7)

1/(1+a)
) <V =V 0

Together with a similar inequality involving 1/V, one has Vo ¥ < V. Thus {V o
P (x9)} is a decreasing sequence, bounded below by 1. Because V(xo) < eo, all
{x;} are confined to a closed, bounded rectangle in R"; let x, be a limit point of
{x/}. Then Vo ¥ (x,) = V(x,).

6 Note that C‘ki =0 Vk only if B; NA = 0. In this case also each C‘U = ¢; = 0 and the value of M*A
on B; is irrelevant to the solution of (P, ) (by Lemma 5). The function ¥ can be defined to be 1
on such coordinates.
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Suppose that i is such that’ [¥(x,)]; = V(x.)y;. An inductive argument (using
the equality form of (7)) shows that [X.]; = V(x.)y; and ¢ = V(x,)¢x whenever
i ~ k. Since there is at least one k with ¢, > 0 reachable from i, V(x,.) = 1. Thus
X, =y and x; — y*.

3.3 Examples

We present two simple examples to demonstrate the effectiveness of the method;
each implementation takes only a few dozen lines of MATLAB code.

Example 3 (Tent-map with slope 3). Let X =R, A = [0, 1] and put

3x x<0.5
T(x) = {3(1—x) x>05

Then, A} =1[0,1/3]U[2/3,1] and H; = (1/3,2/3). The “natural” ACCIM is Lebesgue
measure with density f, = 1, and corresponding value of a = 2/3. In this case,
K, = 0 = K., (for all n) and the survivor set 2 = A, is the usual middle thirds
Cantor set. At a selection of values of « € (0, 1) we applied the MAXENT method
using the partition based test functions {y; = 1i(;-1)/1000,j /1000)}}(;010. The results
are depicted in Figure 1. As expected, for small values of ¢, escape is rapid and the
ACCIMs are strongly concentrated on the hole H; and its first few preimages. For
o near 1, escape is slow and the ACCIMs are more strongly concentrated around
the repelling Cantor set A.; see Figure 2. The MAXENT method can be tuned to
produce a “most uniform” approximate ACCIM, and the maximal entropy solution
is in fact the constant density function, appearing at oo = 2/3.

Example 4 (A linear saddle). Let A = [—1,1]* and m Lebesgue measure on X = R?;
put 7'(x,y) = (2x,0.8y). Then K,, = [—1,1] x +(0.8"+1) 0.8"], A = {0} x [~ 1, 1]
and H., = [—1,1] x {0} \ (0,0). This linear map has a saddle-type fixed point
at (0,0). The only invariant measure is the delta measure at 0. All conditionally
invariant measures are supported on the local unstable manifold to the origin; in
this case, the segment of the x—axis contained in A. Indeed, m(H.) = 0 and there
are no ACCIMs. There are, however, many CIMs which are AC with respect to
the one-dimensional Lebesgue measure on the x-axis, and these are detected by the
numerical method. The domain reduction to A is nontrivial here, leading to a locali-
sation in support of the MAXENT approximations. Calculations were performed for
several o, with 10000 test functions being the characteristic functions of a 100 x 100
subdivision of A; in this case the set A = [~1,1] x [~0.08,0.08]. Some CIM esti-
mates are presented in Figures 3 and 4.

7 A similar argument works if 7 is such that [¥(x.)]; = ¥ /V (X.).
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Entropy of maximum entropy density with escape rate o for tent map (slope 3)
0.16 T

8.5 0.55 0.6 0.65 0.7 0.75 0.8
a

Fig. 1 Example 3. Above: (neg)entropy —H (fy,«) of slope 3 tent map ACCIMs, depending on ¢
computed via MAXENT with uniform n = 1000 subinterval partition of [0, 1]. Below: densities of
the computed ACCIMs as a function of x € [0, 1] and c.
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Approximate CIM for tent map (slope 3) «=0.5
1.6 T T T T

—

0 0.2 0.4 0.6 0.8 1
X

Approximate CIM for tent map (slope 3) «=0.9
7 T T T

h
N [
00 0.‘2 0!4 0.‘6 0.‘8 1

Fig. 2 Example 3 (compare Figure 1). Above: approximate density fj000,0.5 of slope 3 tent map;
note the concentration of mass on H; = [1/3,2/3] and its preimages. Below: approximate density
f1000,0.9 of slope 3 tent map; note the concentration of mass on the survivor Cantor set Ac,.
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Linear saddle (2,0.8); approximate CIM o=0.3

Linear saddle (2,0.8); approximate CIM o=0.45

Fig. 3 Example 4. MAXENT approximations of CIMs for for & = 0.3 (above) and o = 0.45
(below) for an open system with a simple saddle.
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Linear saddle (2,0.8); approximate CIM x=0.6

Linear saddle (2,0.8); approximate CIM x=0.75

12

y

Fig. 4 Example 4. MAXENT approximations of CIMs for for & = 0.6 (above) and a = 0.75
(below) for an open system with a simple saddle.
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4 Concluding remarks

The MAXENT approach to calculating approximate ACCIMs has a sound analyti-
cal basis (from optimisation theory), and is easy to implement. With test functions
{y;} derived from a partition of phase space, the basic dynamical inputs to the com-
putational scheme are the integrals [ y; o T y;dm (which could be estimated from
trajectory data). For each choice of test functions, feasibility of the dual optimisa-
tion problem depends on reducing the domain of the problem to exclude certain
‘backwards transient’ parts of the phase space. With test functions derived from a
partition, the resulting ‘reduced domain’ covers any recurrent set, and local unstable
manifolds.

The work reported in this chapter suggests a number of avenues of future enquiry:

are entropy-maximising ACCIMs of any particular dynamical relevance?

given that the analysis and computation of the variational approach is similar
with convex functionals other than H(-), are other choices of objective more
appropriate?

how is the quality of approximation affected by the choice of test functions { y; }?
how does the functional H(f, ) depend on « (and n)?

can dynamically interesting measures on unstable manifolds be recovered from
this approach?
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