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Abstract

We establish some statistical properties of the hyperbolic times for a class of
nonuniformly expanding dynamical systems. The maps arise as factors of area
preserving maps of the unit square via a geometric baker’s map type construction,
exhibit intermittent dynamics, and have unbounded derivatives. The geometric
approach captures various examples from the literature over the last thirty years.
The statistics of these maps are controlled by the order of tangency (linked to a
single parameter α where 0 < α < ∞) that a certain “cut function” makes with
the boundary of the square. Previously, a direct Young tower construction has been
used to obtain optimal correlation decay rates of O(n−1/α) for Hölder observables
and all values of the parameter α. A CLT is obtained when 0 < α < 1.

The asymptotics of a natural hyperbolic time for this family of maps are anal-
syed via the same Young tower. By using a large deviations result of Melbourne
and Nicol, we prove that the first hyperbolic time is integrable if and only if the
parameter satisfies 0 < α < 1. Furthermore, within this restricted range of pa-
rameters, concentration inequalities recently established by Chazottes and Gouëzel
imply sharp O(n−1/α) bounds on the tail distribution of first hyperbolic times. As
shown by Alves, Viana and others, knowledge of the tail distribution of the hyper-
bolic times leads to upper bounds on the rate of decay of correlations and derivation
of a CLT. Comparing to the results obtained directly for this family of maps, the
latter estimates via hyperbolic times are suboptimal, even over the restricted range
of parameters 0 < α < 1.

Let f : X → X be a dynamical system which is expanding on average, but not neces-
sarily uniformly with every time-step. Amongst the important questions to ask about f
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are: is there an invariant SRB-probability measure? how quickly do correlations between
observables decay under iteration by f? does a central limit theorem hold? are these
properties stable to perturbations of f? When f is uniformly expanding the answers to
these questions are well understood (see eg [8, 20]), but the situation for non-uniformly
expanding f is more delicate. Difficulties arise from the fact that orbits of f may experi-
ence periods of local contraction as well as expansion (for example, quadratic maps [9]),
rapidly varying derivatives near singularities leading to unbounded distortion (eg [6]), or
indifferent fixed points [25].

The theory of hyperbolic times has proved useful for analysing the statistical properties of
non-uniformly expanding maps [2, 3, 4, 6, 24]. The idea was introduced in [1] to handle
specific non-uniformly expanding families (Alves-Viana maps [24] and certain quadratic
maps [15]), and has since been developed for various non-uniformly expanding and par-
tially hyperbolic classes [4]. Gouëzel [17] has used hyperbolic times to show that the
Alves-Viana maps exhibit stretched exponential decay of correlations. Alves, Luzzatto
and Pinheiro [6] prove polynomial decay of correlations (and a CLT) for a class of non-
uniformly expanding maps by using hyperbolic times and a Young tower construction.
Further results are obtained in [5] for one-dimensional families. A survey paper discussing
many of these ideas is found in [2].

Roughly speaking, hyperbolic times are defined as follows1: Given an orbit {fkx} of
a point x ∈ X, an integer n > 0 is a hyperbolic time for x if for all 1 ≤ l ≤ n the
cumulative derivative Πk=n−1

k=n−l |Df(f l(x))| grows exponentially in l. In addition, if the
map has a nonempty set S of singular points we require the distance from fn−l(x) to S
to be bounded below by an exponential in l, essentially an exponential escape condition.
These exponential rates are to be chosen uniformly for x ∈ X. Note that for uniformly
expanding maps with bounded distortion both conditions automatically hold and every
n is a hyperbolic time.

Therefore, the idea is to choose certain times at which the accumulated expansion and
escape from the singular set mimic the uniformly expanding case even though there may
have been times along the way where these properties failed. In this way, many good
statistical properties can be recovered.

There are at least two important statistics associated with hyperbolic times: their long-
run frequency of occurrence, and the distribution of first hyperbolic times. Obtaining
precise quantitative control of the distribution of hyperbolic times can be an important
step [6, 5] in further analysis of statistical properties of the map, including the above-
mentioned rates of decay of correlation and CLT.

In [3] a map F on the interval [−1, 1] is introduced that has positive density of hyperbolic
times, but for which the first hyperbolic time fails to be integrable. F has a number of
special properties (symmetry, preservation of Lebesgue measure, and a pair of indifferent
fixed points with quadratic tangencies). In this paper we present a class of interval maps Cα
(parametrised by2 α ∈ (0,∞)) which arise as nonuniformly expanding one-dimensional
factors of geometrically derived generalized baker’s transformations (GBTs) [10]. Each
map in Cα has an indifferent fixed point (IFP) at 0, and in fact the map F in [3] is conjugate

1The exact definition is detailed in equation (7) in Section 2.
2And certain continuous functions on [0, 1].
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to a certain map f1 ∈ C1. Each f ∈ Cα has a positive long-run frequency of hyperbolic
times (by an argument from [4]), and integrability of first hyperbolic times holds when
α ∈ (0, 1). However, as α increases through 1 this integrability is lost (Theorem 1). In
this way, α = 1 appears as a transition point for our families Cα.

As becomes clear in our proof of Theorem 1, the non-integrability is entirely due to lower
bounds on the first hyperbolic time which are determined by escape statistics from the
neighbourhood of the IFP(s). These same escape statistics are then used to provide upper
bounds on the first hyperbolic times in Theorem 3, completing the analysis and providing
sharp estimate on tail asymptotics for hyperbolic times for the range 0 < α < 1. While
precise statements are given in Theorems 1 and 3, if m denotes Lebesgue measure and
h(x) denotes the first hyperbolic time on an orbit beginning at x then for some C < ∞,
1
C
n−1/α ≤ m{x : h(x) ≥ n} ≤ C n−1/α.

In [5, 6] hyperbolic times asymptotics are used to estimate correlation decay rates and
to establish CLT’s for nonuniformly hyperbolic systems. When applied to our family Cα,
these results imply upper bounds on correlation decay rates of O(n−1/α+1); these fail to be
sharp: a direct computation via Young towers yields O(n−1/α) rates, as detailed in [11].
The range of parameters in our family leading to a CLT is similarly underestimated by
the hyperbolic times analysis (α < 1/2 compared to α < 1 for the direct computation).
Remark 3 at the end of Section 1 provides a comparative analysis of these two approaches.

In summary, we present a geometric family of maps Cα where the distribution of the tail
of the first hyperbolic time can be determined (sharply) by a single parameter α. The
general purpose machinery of hyperbolic times enables analysis of statistical properties
for our maps (such as CLTs and bounds on correlation decay rates), and we compare
these with optimal results.

The class Cα is presented in Section 1, hyperbolic times are reviewed and lower bounds are
derived in Section 2 and sharp upper bounds are established (via a large deviations result
of Chazottes and Gouëzel [12] on a suitable Young tower [25]) in Section 3. In Section 4
we discuss our results in the context of the existing literature on hyperbolic times. Some
technical estimates are placed in an appendix (Section 5).

Notation: We write f(n) = O(g(n)) to mean there is a constant C < ∞ such that
f(n) ≤ C g(n) and f(n) � g(n) to mean f(n) = O(g(n)) and g(n) = O(f(n)).

1 Generalized baker’s transformations and Cα
The generalized baker’s construction [10] defines a large class of invertible, Lebesgue-
measure-preserving maps of the unit square S = [0, 1] × [0, 1]. Specifically, a two-
dimensional map B on S is determined by a measurable cut function φ on [0, 1] satisfying
0 ≤ φ ≤ 1. The graph y = φ(x) partitions the square S into upper and lower pieces and

the line {x = a}, where a =
∫ 1

0
φ(t) dt, partitions the square into a ‘left half’ [0, a]× [0, 1]

and a ‘right half’ [a, 1]× [0, 1]. The generalized baker’s transformation (GBT) B maps the
left half into the lower piece and the right half into the upper piece in such a way that:

• Vertical lines in the left (right) half are mapped affinely into vertical ‘half lines’
under (over) the graph of the cut function φ.
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Figure 1: The GBT

• B preserves two-dimensional Lebesgue measure.

• The factor action f of B restricted to vertical lines is (conjugate to) a piecewise
monotone increasing, Lebesgue-measure-preserving interval map on [0, 1] with two
monotonicity pieces [0, a] and [a, 1].

The action of a typical GBT is presented in Figure 1.

When φ ≡ 1/2 the map is the classical baker’s transformation where the action on vertical
lines is an affine contraction and the map f is x→ 2x (mod 1). On the other hand, every
measure-preserving transformation T on a (nonatomic, standard, Borel) probability space
with entropy satisfying 0 < h(T ) < log 2 is measurably isomorphic to some generalized
baker’s transformation on the square S (see [10]).

In order to proceed, we establish some notation. Each GBT B has a skew-product form
B(x, y) = (f(x), g(x, y)) where

g(x, y) =

{
φ(f(x)) y x ≤ a,
y + φ(f(x)) (1− y) x > a,

and

{
x =

∫ f(x)

0
φ(t) dt x ≤ a,

1− x =
∫ 1

f(x)
(1− φ(t)) dt x > a,

(1)

defines f implicitly.

Furthermore, by construction the vertical lines {x = 0}, {x = 1} are mapped into them-
selves by B so that 0, 1 are fixed points of f . If φ is continuous then f is differentiable on
both (0, a) and (a, 1) and

df

dx
=

{
1

φ(f(x))
x < a

1
1−φ(f(x))

x > a.
(2)

Since φ(t) ∈ [0, 1] for each t ∈ [0, 1], df
dx
≥ 1, so f is expanding, each branch of f is

increasing, and may have infinite derivative at preimages of places where φ(t) ∈ {0, 1}.
We will call f the expanding factor of B. Note also that if φ is a decreasing function
then df

dx
is increasing on (0, a) and decreasing on (a, 1).
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Lemma 1 (Properties of GBTs) Let f be defined by (1). Each x ∈ [0, 1] has two
preimages under f : xl < a and xr > a and moreover

(i) For every x ∈ [0, 1],

xl =

∫ x

0

φ(t) dt and xr − a =

∫ x

0

1− φ(t) dt = x− xl; (3)

(ii) dxl
dx

= φ and dxr
dx

= 1− φ Lebesgue almost everywhere;

(iii) Lebesgue measure m is f–invariant.

Proof: See appendix. �

A class Cα of expanding factors of GBTs

Let α ∈ (0,∞). Maps f ∈ Cα arise as expanding factors of GBTs whose cut functions φ
satisfy

• φ is continuous and decreasing function on [0, 1] with 0 ≤ φ ≤ 1.

• there is a constant c0 and a C1 function g0 on (0, 1) such that near t = 0

φ(t) = 1− c0 t
α + g0(t)

where dg0
dt

= o(tα−1);

• either φ(1) > 0 or there are constants c1 ∈ (0,∞), α′ ≤ α and a C1 function g1 on
(0, 1) such that near t = 1

φ(t) = c1 (1− t)α′ + g1(1− t)

where dg1
dt

= o(tα
′−1).

It follows from these conditions that φ is C1 on (0, 1) and therefore each f ∈ Cα has two
piecewise increasing C2 branches fl, fr with respect to the partition into intervals (0, a)
and (a, 1) (where a = a(φ)). The branch fl has continuous extension to [0, a] (similarly
for fr and [a, 1]) and f ′r(x)→∞ as x→ a+.

Near x = 0 each f ∈ Cα has the formula

f(x) = x+
c0

1 + α
x1+α + o(x1+α),

giving an indifferent fixed point (IFP) at 0. If φ(1) = 0 then f also has an IFP at x = 1,
and the order of tangency of the graph of f near 1 is O((1 − t)1+α′). For maps with
IFPs at both 0 and 1 where the order of tangency is higher at 1 than 0, the conjugacy
φ(t) 7→ 1 − φ(1 − t) will put the higher order tangency at 0. There is thus no loss of
generality in assuming that the “most indifferent” point is at x = 0. In case φ(1) > 0,
equation (2) shows that the fixed point at 1 is hyperbolic.

5



Example 1 [Alves-Araújo map F ]. See [3]. Let φ(t) = 1− t. Then α = α′ = 1 = c0 =
c1 and g0 = g1 = 1. Then

f1(x) :=

{
1−
√

1− 2x x < 1/2,√
2x− 1 x > 1/2.

In [23], Rahe established that the map B is Bernoulli (using techniques from [16, 14]).
Moreover, f1 ∈ C1 is conjugate (by an affine scaling [0, 1] → [−1, 1]) to a map presented
in [2, 3] which has non-integrable first hyperbolic time. Despite this, f1 exhibits polyno-
mial decay of correlations for Hölder observables with rate O(1/n) [11]. �

Example 2 [Symmetric case]. Let φ(t) = 1 − (2t)α/2 for t ∈ [0, 1/2] and φ(t) =
1− φ(1− t) for t ∈ [1/2, 1]. Then φ is symmetric (and α = α′); let the expanding factor
of the corresponding GBT be denoted by fα. Then fα has indifferent fixed points at 0
and 1 with tangency of order (1 + α); moreover df

dx
→ ∞ as x → 1

2
. In [11] it is shown

that Hölder continuous functions have correlation decay rate O(n−1/α) under fα for all
α ∈ (0,∞). The paper [13] obtains similar results for a conjugate class of maps on [−1, 1].
Theorem 1 and Theorem 3 below imply that the first hyperbolic time is integrable if and
only if α < 1, showing that the map f1 emerges as an interesting transition point in the
class Cα.

Remark 1 The class of examples discussed here actually have a rather long history in
the mathematical physics literature. For other examples see [19, 18, 22, 26, 7].

A useful dynamical partition

To analyse f ∈ Cα we make a convenient partition of [0, 1]. First, observe that since f 2 has
four 1–1 and onto branches, f admits a period-2 orbit {x0, y0} where 0 < x0 < a < y0 < 1.
Next, for each n > 0 let xn = f−1(xn−1) ∩ (0, a) and x′n = f−1(xn−1) ∩ (a, 1). Then

0 · · · < xn+1 < xn < · · · < x0 < a and a < · · · < x′n < · · · < x′2 < y0 < 1.

Defining yn = f−1(yn−1) ∩ (a, 1) and y′n = f−1(yn−1) ∩ (0, a) allows a similar partitioning
of (x0, a) and (y0, 1) (note that x′1 = y0 and y′1 = x0). Put

Jn = (xn+1, xn), In = (x′n+1, x
′
n), J ′n = (yn, yn+1), I ′n = (y′n, y

′
n+1).

These intervals partition [0, 1] from left to right as

0 · · · Jn · · · J0 x0 I
′
1 · · · I ′n · · · a · · · In · · · I1 y0 J

′
0 · · · J ′n · · · 1

with
Ik

f→ Jk−1
f→ · · · J0

f→ (∪lIl ∪ I ′l)
(and similarly for the J ′· , I

′
· intervals). See Figure 2.
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Figure 2: A map f with indifferent fixed points at 0, 1 and a 2-cycle {x0, y0}.

Lemma 2 For f ∈ Cα, and the notation established above.

(i) xn �
(

1
n

)1/α
;

(ii) m(Jk) � ( 1
k
)1+1/α;

(iii) for x ∈ Ik, df
dx
� k;

(iv) m(Ik) � ( 1
k
)2+1/α;

(v) for x ∈ Ik, dist(x, a) �
(

1
k

)1+ 1
α .

When φ(1) = 0, similar estimates hold for the ·′ intervals with α replaced by α′.

Proof: For parts (i)–(iv) see [11, Lemma 1]; for part (v) see appendix. �

Remark 2 When f ∈ Cα and φ(1) > 0 the fixed point at 1 is hyperbolic. The corre-
sponding decay rates for m(I ′k),m(J ′k) are exponential, and (iii) does not hold. Some of
the estimates and statements below can be modified in this latter case3.

3In particular, {1} is no longer an exceptional point; see the definition in Section 2.
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Assumption 1 For the remainder of the paper we assume that φ(1) = 0 so that f also
has an IFP at 1 with tangency of order (1 − t)1+α′ where α′ ≤ α. Consequently, the
estimates in parts (i), (ii), (iv) and (v) of Lemma 2 reveal decay of the sets Ik, Jk which
is no faster than for I ′k, J

′
k.

Remark 3 Below we use a Young-tower built under the first-return time function to the
set ∆0 := ∪∞l=1Il ∪ I ′l to prove upper bounds on the distribution of first (σ, δ)-hyperbolic
times hσ,δ for certain (σ, δ). Indeed, for f ∈ Cα (α < 1), and any α′′ ∈ (α, 1), m{hσ,δ >
n} = O(n−1/α′′). The reason for this distribution is that points in Jl (whose Lebesgue
measure ≈ l−1−1/α) require approximately l iterates to achieve enough expansion to be a
hyperbolic time. Thus, m{hσ,δ > n} =

∑
l>nm{hσ,δ = l} . lγ−1/α for any γ > 0. Similar

bounds are used in [6] to prove decay of correlation results by building a Young tower ∆′

whose tail set decays in the same way as the distribution of hσ,δ; the resulting4 decay of
correlations are O(n1−1/α′′)—close to the typical rate for maps with indifferent fixed points
with tangencies of O(x1+α). Interestingly, direct calculations in [11] where a first-return
tower is built over ∆0 give decay of correlations for Hölder observables with rate O(n−1/α)
for maps in Cα. The same computations give a CLT for the entire range 0 < α < 1. These
improved asymptotics are due to the fact that orbits of f experience very rapid expansion
when they pass near a, giving partial compensation for return from the neighbourhoods of
{0, 1}, something that is not accounted for by the hyperbolic times analysis.

2 Hyperbolic times and sets of exceptional points

Non-uniformity of expansion is expressed relative to a certain (finite) set S ⊆ [0, 1] of
exceptional points. The notation here is precisely as in [4, 3, 2]. Each f is locally C2 on
[0, 1] \ S, and must satisfy a non-degeneracy of the following type: there exist constants
B > 1, β > 0 such that such that for every x ∈ [0, 1] \ S we have

1

B
dist(x,S)β ≤

∣∣∣∣ dfdx
∣∣∣∣ ≤ B dist(x,S)−β (4)

and if y, z ∈ [0, 1] \ S and |y − z| ≤ dist(z,S)
2

then∣∣∣log | df
dx
|
∣∣
x=y
− log | df

dx
|
∣∣
x=z

∣∣∣ ≤ B

dist(z,S)β
|y − z|. (5)

dist(·,S) is used to denote the usual Euclidean distance to the set S (since f is one-
dimensional there is no need to impose a separate Lipschitz condition on (df/dx)−1).

Lemma 3 Under the conditions of Assumption 1, for f ∈ Cα set β = 1. Then there
exists a B > 1 so that S = {0, a, 1} satisfies conditions (4) and (5). Hence S is a
non-degenerate set of exceptional points for f .

In case φ(1) > 0 then only x = 0 and x = a are required to be exceptional points.

Proof: See appendix. �

4And when 0 < α < 1
2 , a central limit theorem holds [6, Theorem 2].
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Hyperbolic times

Let S be a non-degenerate exceptional set, β > 0 as in (4) and (5) and fix 0 < b <
min{1/2, 1/(4β)}. Let constants 0 < σ < 1 and δ > 0 be given and define a truncated
distance function

distδ(x,S) :=

{
dist(x,S) if dist(x,S) ≤ δ,
1 if dist(x,S) > δ.

(6)

As in [2, 3, 6], n is called a (σ, δ)-hyperbolic time for x ∈ [0, 1] \ S if for all 1 ≤ l ≤ n

n−1∏
j=n−l

∣∣( df
dx
◦ f j

)
(x))−1

∣∣ ≤ σl and distδ(f
n−l(x),S) ≥ σbl. (7)

Although orbits escape subexponentially from S and the rate of growth of derivatives
along orbits is not uniform, the essential properties of uniformly expanding maps are
captured at hyperbolic times. Since the invariance (and ergodicity [10]) of Lebesgue
measure is already at our disposal, establishing the long-run positive density (in time) of
hyperbolic times is relatively straightforward.

Lemma 4 Let f ∈ Cα. Put K := −
(∫ a

0
log(φ(f(x))) dx+

∫ 1

a
log(1− φ(f(x))) dx

)
where

φ is the cut function for f . Then for every ε > 0 and for every σ ∈ (e−K , 1), there exists
a δ > 0 such that for almost every x ∈ [0, 1]

limN→∞
1
N

∑N−1
j=0 log( df

dx
(f j(x))−1 < log σ < 0

limN→∞
1
N

∑N−1
j=0 − log distδ(f

j(x),S) ≤ ε.

(8)

Proof: Apply (Birkhoff’s) Ergodic Theorem (for the ergodic system (f,m)) to the function
− log df

dx
to obtain the first estimate. For the second estimate, choose δ > 0 such that∫ 1

0
− log distδ(x,S) dx < ε and apply the Ergodic Theorem again. �

This lemma says that for a given choice of b, there is a good choice of (σ, δ) for which
there are (many) hyperbolic times for almost every x ∈ [0, 1] \ S. The two conditions
established in Lemma 4 imply that f is a non-uniformly expanding map in the sense of
Alves, Bonatti and Viana [4]. It now follows that:

Positive density of hyperbolic times [4, Lemma 5.4] For every b > 0, for every
σ ∈ (e−K , 1) there exist θ > 0 and δ > 0 (depending only on f, σ and b) so that for
almost every x ∈ [0, 1], for all sufficiently large N there exist (σ, δ)-hyperbolic times
1 ≤ n1 < . . . < nl ≤ N for x, with l ≥ θN .

Now that we have established existence of hyperbolic times, we define hσ,δ(x) to be the
first (σ, δ)−hyperbolic time for x. (If there are no (σ, δ)−hyperbolic times for x, set
hσ,δ(x) =∞.)

The Young tower partition gives simple lower bounds on hσ,δ(x). Although crude, these
lower bounds are still sufficient for our first main result, Theorem 1 below.
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Lemma 5 Let f ∈ Cα and fix σ < 1. Let b and δ > 0 be as above. Let k1 be minimal
such that σ max[0,xk1 ]∪[yk1 ,1]

df
dx
< 1. Then for x ∈ Jk ∪ J ′k (k ≥ k1), hσ,δ(x) > k − k1.

Proof: Since df
dx

is increasing on (0, a) and decreasing on (a, 1) and limk→∞
df
dx
|xk = 1 =

limk→∞
df
dx
|yk , k1 is well-defined. Now let k ≥ k1, x ∈ Jk∪J ′k and fix n with 1 ≤ n ≤ k−k1.

For each j with 0 ≤ j < n we have f j(x) ∈ Jk−j ∪ J ′k−j ⊂ [0, xk1) ∪ (yk1 , 1], so that∏n−1
j=0 |( dfdx ◦ f j(x))−1| > σn. Comparing with (7), n cannot be a (σ, δ)-hyperbolic time for

x. Since 1 ≤ n ≤ k − k1 was arbitrary, hσ,δ(x) > k − k1. �

Theorem 1 (Lower bounds on hyperbolic times) Let f ∈ Cα, with σ < 1. There is
a constant c (depending on σ) such that

m{hσ,δ ≥ n} ≥ c n−1/α

and hσ,δ(x) fails to be integrable with respect to Lebesgue measure when α ≥ 1.

Proof: Choose k1 as in Lemma 5, so hσ,δ|Jk1+n∪J ′k1+n > n. Hence

m{hσ,δ > n} ≥
∞∑

k=k1+n

m(Jk ∪ J ′k) � n−1/α

by Lemma 2 (ii). If α ≥ 1 then∫ 1

0

hσ,δ dm =
∞∑
n=1

m{hσ,δ ≥ n} =∞. �

3 Young towers, large deviations and integrability of

the first hyperbolic time when α < 1

Suitable choices of (σ, δ) make hσ,δ integrable when α < 1. To prove this we distinguish

∆0 = [x0, y0] = ∪∞j=1Ij ∪ I ′j (mod m)

as a “good” set, where expansion is very rapid and hyperbolic times are easy to control.
The derivative growth condition in (7) is satisfied for n = 1 on ∆0, but for points close
to a, the condition on distδ fails for n = 1. Controlling hσ,δ involves trading expansion
with proximity to S = {0, a, 1}, and it turns out that getting enough expansion is the
difficult part. The idea is to control derivative growth upon successive returns to ∆0.
Long excursions near {0, 1} lead to “expansivity deficits” relative to σ−n, with “expansion
recovery” by passage through J0 ∪ J ′0. This is made quantitatively precise using a large
deviations result of Chazottes and Gouëzel [12].
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Choice of σ

Choose k0 such that
∑

k≥k0 m(Jk ∪ J ′k) < m(J0 ∪ J ′0). Now choose σ = σ(k0) < 1 such
that

σ2 min
[x1,y1]

df

dx
≥ 1 and σ min

[xk0 ,yk0 ]

df

dx
≥ 1. (9)

Define

N(x) =


−1 if x ∈ J0 ∪ J ′0,

1 if x ∈ [0, xk0) ∪ (yk0 , 1],
0 otherwise.

Notice that ∫ 1

0

N dm =
∞∑

k=k0

m(Jk ∪ J ′k)−m(J0 ∪ J ′0) < 0. (10)

Lemma 6 Let f ∈ Cα, k0 ≥ 1 and put H = H(x) := min{n ≥ 0 :
∑n

k=0N ◦fk(x) < 0}.
If 0 < H <∞ then fH(x) ∈ J0 ∪ J ′0 and for all 1 ≤ l ≤ H

H−1∏
j=H−l

∣∣ df
dx
◦ f j(x)

∣∣−1
=
∣∣∣d(f l)
dx
◦ fH−l(x)

∣∣∣−1

≤ σl.

Proof: First, for any 0 ≤ n < H,
∑n

k=0N ◦ fk(x) ≥ 0. Thus

N(fH(x)) =
H∑
k=0

N ◦ fk(x)−
H−1∑
k=0

N ◦ fk(x) < 0

and hence N(fH(x)) = −1 (since −1 is the only negative value of N). Thus,
fH(x) ∈ J0 ∪ J ′0 and

∑H−1
k=0 N ◦ fk(x) = 0. Therefore

H−1∑
j=H−l

N ◦ f j =
H−1∑
k=0

N ◦ fk −
H−l−1∑
k=0

N ◦ fk ≤ 0

for each l ≤ H. To complete the proof, apply (9) to notice that for x ∈ J0 ∪ J ′0, we have
σ df
dx
> σ−1; if x ∈ [0, 1] \ [xk0 , yk0 ] then df

dx
≥ 1 so σ df

dx
≥ σ; all other x belong to [xk0 , yk0 ]

so that σ df
dx
≥ 1. In particular, for each type of x, σ df

dx
≥ σN(x). Hence

H−1∏
j=H−l

∣∣ df
dx
◦ f j(x)

∣∣−1
= σl

H−1∏
j=H−l

∣∣σ df
dx
◦ f j(x)

∣∣−1

≤ σl
H−1∏
j=H−l

σ−N◦f
j(x) = σl σ−

∑H−1
j=H−lN◦f

j(x) ≤ σl. �
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Choice of δ

Lemma 7 Let f ∈ Cα, σ ∈ (0, 1) satisfy (9) and let b, k0 be fixed. Then there is δ > 0
such that whenever fn(x) ∈ J0 ∪ J ′0 and 1 ≤ l ≤ n,

distδ(f
n−l(x), {0, a, 1}) ≥ σbl.

Proof: Choose kb such that

x ∈ Ik ∪ I ′k (k ≥ kb) ⇒ |x− a| ≥ σb k

(note that this is always possible, since there is a constant c such that |x− a| ≥ ck−1−1/α

for all x ∈ I(′)
k ). Choose δ small enough that [a − δ, a + δ] ⊂ ∪k≥kb(Ik ∪ I ′k) and (0, δ] ∪

[1 − δ, 1) ⊂ ∪k≥kb(Jk ∪ J ′k). Let x be such that fn(x) ∈ J0 ∪ J ′0. We first show that

distδ(x, {0, a, 1}) ≥ σbn. Either (i) x ∈ I(′)
k for k ≥ kb; (ii) x ∈ J (′)

k for k ≥ kb − 1; (iii)

otherwise. In case (i), for each j < k, f j(x) ∈ J
(′)
k−j. Since fn(x) ∈ J

(′)
0 it follows that

n ≥ k. By the choice of kb and δ,

distδ(x, {0, a, 1}) ≥ |x− a| ≥ σb k ≥ σb n.

In case (ii), let y ∈ I(′)
k+1 be such that f(y) = x. Then, since | df

dx
| ≥ σ−1 ≥ σ−b on ∆0,

distδ(x, {0, a, 1}) = dist(f(y), {0, 1}) ≥ σ−bdistδ(y, a) ≥ σ−bσb(k+1) ≥ σbn.

In the final case, dist(fn−l(x), {0, a, 1}) = 1 > σb n. For l < n, f l(fn−l(x)) ∈ J0 ∪ J ′0 so
that the lemma follows from the l = n case using x′ = fn−l(x) and n′ = l. �

Theorem 2 Let f ∈ Cα, b, k0 be fixed, let σ satisfy (9) and choose δ as in Lemma 7. Let
H be as defined in Lemma 6. Then max{1, H(x)} is a (σ, δ)–hyperbolic time for x and if
hσ,δ is the first (σ, δ)–hyperbolic time then∫ 1

0

hσ,δ(x) dx ≤
∞∑
n=0

m{x : H(x) ≥ n}.

Proof: If H = 0 then x ∈ J0 ∪ J ′0 and 1 is a hyperbolic time. Otherwise, comparing (7)
with Lemmas 6 and 7 shows that H(x) is a hyperbolic time. For the integral,∫ 1

0

hσ,δ(x) dx ≤
∫ 1

0

(1 +H(x)) dx =
∞∑
n=0

m{x : H(x) ≥ n}.

�

Large deviations on a Young tower

Let ∆0 = [x0, y0], and partition (modulo sets of measure 0) according to ∆0,n = In ∪ I ′n
for n > 0. For x ∈ ∆0,n,

R(x) := min{k > 0 : fk(x) ∈ ∆0} = n+ 1

12



so we put
∆ := ∪∞`≤n=0(∆0,n × {`}) ⊂ ∆0 × Z+

and equip ∆ with the measure m∆ obtained by direct upwards translation of m|∆0 . The
tower map F : ∆ 	 is defined in the usual manner: F (x, `) = (x, `+1) for ` < R(x)−1 = n
and F (x,R(x)− 1) = (fR(x)(x), 0). It is easy to check that

m{R ≥ n} =
∑
k>n

m(Ik ∪ I ′k) � n−1−1/α (11)

so that
∑

k≥nm{R ≥ k} � n−1/α. Standard arguments5 show that branches of the map

fR have uniformly bounded distortion on ∆0, and since fR is uniformly expanding on ∆0,
the tower map F satisfies the usual regularity conditions [25, 21, 11] for maps on a Young
tower6. Since Lebesgue measure m is invariant for f , m|∆0 ◦ (fR)−1 = m|∆0 and hence
m∆ is actually F -invariant on ∆. As is usual, (f, [0, 1],m) arises as a factor of (F,∆,m∆)
via the semi-conjugacy Φ(x, `) = f `(x). Then Φ◦F = f ◦Φ, and m = Φ∗m∆ = m∆ ◦Φ−1.

Next, lift H to the tower: put N̂(x, `) := N ◦ Φ(x, `) = N(f `(x)) and

Ĥ := H ◦ Φ = min

{
n ≥ 0 :

n∑
k=0

N̂ ◦ F k < 0

}
.

Let

N̄ =

∫
∆

N̂ dm∆ =

∫
∆

N ◦ Φ dm∆ =

∫ 1

0

Nd(Φ∗m∆) =

∫ 1

0

N dm.

Note that N̄ < 0 by (10). Put ψ := N̂ − N̄ . Then ψ has zero mean, and belongs to every
Hölder class Cβ(∆) with Lip(ψ) = 2 (since it is piecewise constant with respect to the

tower partition (see [25, 12, 11]) and |ψ(x)− ψ(x′)| = |N̂(x)− N̂(x′)| ≤ 2).

Lemma 8 (Large Deviations Estimate) Let 0 < α < 1. For every ε > 0 there is a
constant c (not independent of ε) such that

m∆

{
y ∈ ∆ : | 1

n

∑n−1
k=0ψ ◦ F k(y)| ≥ ε

}
≤ c n−1/α.

Proof: DefineK(x0, . . . , xn−1) :=
∑n−1

j=0 ψ(xj) and choose t := ε n. Sincem{y ∈ ∆0 : R(y) >

n} � n−1−1/α, the tail of the Young tower is weak–Lq in the sense of Chazottes and
Gouëzel [12, p866] with q := 1 + 1/α > 2. Applying [12, Theorem 6.1], there is a con-
stant C <∞ such that

m∆

{
y ∈ ∆ : | 1

n

∑n−1
k=0ψ ◦ F k(y)| ≥ ε

}
≤ C (ε n)−2(q−1)(nLip(ψ)2)q−1. �

5See Lemma 3 in [11] for example.
6If JF denotes the Jacobian dm∆◦F

dm∆
then log |JF | ∈ Cβ(∆), where Cβ(∆) is the class of β–Hölder

functions, defined with respect to the usual [25] separation time s.
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Remark 4 Using a result of Melbourne and Nicol [21, Theorem 3.1], a weaker version of
Lemma 8 can be obtained where the exponent −1/α in the conclusion is replaced by −1/α′′

for any α′′ > α (and ε < N̄). This estimate is sufficient to prove the integrability part
of our main result (Theorem 3), albiet with a weaker tail estimate for the first hyperbolic
time. We are grateful to an anonymous referee who pointed out the stronger estimates
that are obtained from Chazottes and Gouëzel’s result.

The large deviations estimate is enough to prove our main theorem:

Theorem 3 Let f ∈ Cα. Then the first hyperbolic time for f is integrable if and only if
0 < α < 1. Specifically, let α < 1 and b < 1 be fixed. There is a choice of (σ, δ) where
0 < σ < 1 and δ > 0 such that m{hσ,δ > n} � n−1/α.

Proof: Theorem 1 deals with the case α ≥ 1 and provides the lower tail estimate for hσ,δ.
For α < 1, ∫

hσ,δ dm =
∞∑
n=0

m{hσ,δ > n} <∞

because of the tail distribution of hσ,δ, which is established as follows. Let k0 be large
enough that N̄ is negative and choose σ to satisfy (9) and δ as in Lemma 7. Then
hσ,δ ≤ H + 1 (compare with Theorem 2). Then

m{hσ,δ > n} ≤ m{H ≥ n} = Φ∗m∆{H ≥ n} = m∆{H ◦ Φ ≥ n} = m∆{Ĥ ≥ n}. (12)

For y ∈ {Ĥ ≥ n}, ∑n−1
k=0 N̂ ◦ F k(y) ≥ 0 so that

1

n

n−1∑
k=0

ψ ◦ F k(y) =
1

n

n−1∑
k=0

(N̂ ◦ F k(y)− N̄) ≥ −N̄ .

Thus,
{Ĥ ≥ n} ⊆

{
y ∈ ∆ : | 1

n

∑n−1
k=0ψ ◦ F k(y)| ≥ −N̄

}
. (13)

By Lemma 8, there is a constant c < ∞ such that the set on the RHS of (13) has

m∆–measure bounded by c n−
1
α . �

4 Conclusions

In this paper we have undertaken a detailed study of the asymptotics of hyperbolic times
for a parameterized family fα ∈ Cα, 0 < α < ∞ of non-uniformly expanding, Lebesgue-
measure-preserving maps of the interval. These one-dimensional maps arise naturally as
the expanding factors of a class of two-dimensional generalized baker’s transformations
on the unit square.

A central result in the literature, Alves, Bonatti and Viana [4], proves that if a non-
uniformly hyperbolic map has the property that almost every x has a (uniform) positive
frequency of hyperbolic times, then it admits an absolutely continuous invariant measure.
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According to Lemma 4, each of our maps fα has this property; of course the resulting
invariant measure is already known to be Lebesgue.

Therefore our main result concerns the statistics of first hyperbolic times hα for our maps
fα and in particular how the quantities m{x : hα(x) > n} depend on n and α. We show
that this is entirely determined by the strength of the (most indifferent) fixed point for
the map fα. In particular,

• hα is integrable if and only if 0 < α < 1, corresponding to relatively fast polynomial
escape from the indifferent fixed points at x = 0, 1 within the range of our family of
maps Cα, 0 < α <∞ (Theorems 1 and 3).

• For 0 < α < 1 we establish m{hα > n} = O(n−
1
α ) which implies, by using results

from [5, 6], correlation decay for Hölder observables7 at rate O(n−
1
α

+1).

• Finally, a CLT holds in case 0 < α < 1/2, again by applying the results of [5, 6].

The conclusions which are obtained in [5, 6] depend on the construction of a suitable
Markov or Young tower via first hyperbolic times and their statistics and the analysis of
the return times on the resulting tower.

On the other hand, [11] details a specific construction of a Young tower for the maps fα
and proves an improved correlation decay rate of O(n−

1
α ) for all 0 < α <∞. It is shown

that this correlation decay rate is sharp for Hölder data. The estimates in [11] also imply
a CLT for 0 < α < 1. See Remark 3 for further discussion.

We interpret this as follows. The analysis via hyperbolic times provides a relatively
general approach to analysis of nonuniformly hyperbolic systems that leads to a particular
Young tower construction related to the hyperbolic times. It is not so surprising that
this approach does not always yield optimal results such as sharp estimates on decay
of correlation rates or the CLT. In the case of our maps fα, for example, a dedicated
tower construction in [11] can produce optimal results in the form of sharp estimates on
correlation decay by bypassing the intermediate construction of hyperbolic times.

5 Appendix

Proof of Lemma 1: (i) The first equation is immediate from Equation (1). For the second,
again use Equation (1) and write

xr = 1−
∫ 1

x

(1− φ(t)) dt = x+

∫ 1

x

φ(t) dt = x+ a−
∫ x

0

φ(t)dt = a+

∫ x

0

1− φ(t) dt

and so

xr − a =

∫ x

0

1− φ(t) dt = x− xl.

(ii) Differentiating the expressions in (i) via Lebesgue’s theorem gives:

dxl
dx

= φ and
dxr
dx

= 1− φ.
7See, for example Theorem 3 of [5].
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(iii) Apply (i) and (ii):

m(T−1[0, x]) =

∫ xl

0

1dt+

∫ xr

a

1dt =

∫ x

0

dxl
dx

dx+

∫ x

0

dxr
dx

dx =

∫ x

0

1dx = m[0, x]. �

Proof of Lemma 2 (v): For this part fix k and x ∈ Ik. Since x′n → a as n→∞,

dist(x, a) = x− a = x− xk+1 +
∞∑

j=k+1

(xj − xj+1) = a− xk+1 +
∞∑

j=k+1

m(Ij).

In fact this argument shows that
∑∞

j=k+1m(Ij) ≤ dist(x, a) ≤∑∞j=km(Ij) and both sides

are �∑∞j=k j−2−1/α � k−1−1/α. �

Proof of Lemma 3: First, note that df/dx = |df/dx| ≥ 1, and dist(z,S) < max{a, 1−a}/2
for every z, so for the lower bound in (4) holds whenever B > Bβ := ((max{a, 1−a}/2)−β.
We will establish the right hand side inequality after proving (5) For that, it suffices to
work on (0, a), since the other interval is similar. By (2), df

dx
= 1/φ ◦ f , and hence

d

dx
log

df

dx
= −

(
dφ/dx

φ2

)
◦ f.

If t ∈ Jk (k > 0) then f(t) ∈ Jk−1 so f(t) � k−1/α and (since φ is decreasing), 1 ≥
φ(f(t)) ≥ φ(x0). Moreover, dφ

dx
|x=f(t) = −α c0(f(t))α−1 + o((f(t))α−1) � −k1/α−1. Hence∣∣ d

dx
log df

dx

∣∣ � k1/α−1. If t ∈ J0 then f(t) ∈ [x0, y0] and φ(f(t)) � 1 (since φ is decreasing

and C1). If t ∈ I ′k then f(t) ∈ J ′k−1 so 1 − f(t) � k−1/α′ , φ(f(t)) � k−1 and dφ
dx
|x=f(t) �

k1/α′−1. Hence∣∣∣∣ ddx log
df

dx

∣∣∣∣ (t) �


1 t ∈ J0,
k1/α−1 t ∈ Jk(k > 0),
k1/α′+1 t ∈ I ′k,

�


1 t ∈ J0,
dist(t,S)−(1−α) t ∈ Jk(k > 0),
dist(t,S)−1 t ∈ I ′k.

(since dist(t,S)|Jk � dist(t, 0)|Jk � k−1/α and dist(t,S)|I′k � dist(t, a)|I′k � k−1/α′−1 by
Lemma 2). For any β ≥ 1 there is a constant B0 such that∣∣∣∣ ddx log

df

dx

∣∣∣∣ (t) ≤ B0 dist(t,S)−β. (14)

To complete the proof of (5) let |y− z| < dist(z,S)
2

. Then the mean value theorem gives a
t between y, z such that

log

∣∣∣∣df/dx|x=y

df/dx|x=z

∣∣∣∣ =

∣∣∣∣ ddx log
df

dx

∣∣∣∣ (t)× |y − z| ≤ B0

dist(t,S)β
|y − z|

(using 14)). But since |t − z| ≤ |z − y| ≤ dist(z,S)
2

, dist(t,S) ≥ dist(z,S)/2 so choosing

B = B0 2β completes the regularity estimate. A similar argument estimating df
dx

= 1/φ◦f
on the interval [x0, a) gives

|df/dx| = O
(

dist(x,S)−α
′/(1+α′)

)
,

giving the upper bound in (4) for any β ≥ 1. �
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