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ABSTRACT. Linear preserver problems are questions about charac-
terising linear maps on spaces of matrices or spaces of operators (or
more generally on rings or algebras) that preserve certain properties.
We present an exposition of three such problems on preserving invert-
ibility or commutativity or rank one.
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INTRODUCTION.

What came to be called the ”linear preserver problems” are questions on
characterising linear maps on spaces of matrices or spaces of operators (or
more generally on algebras) that preserve certain properties. There has been
a great deal of research in this area, especially on spaces of matrices, with
results dating back to 1897 (see Theorem 0 below). We refer the reader to
the expository articles [LT1, LT2]. There has been also some research activity
for maps on Banach algebras, algebras of operators, abstract rings, ... etc.
Possibly the earliest result on this subject is Frobenius’ characterization, in
1897, of determinant preserving linear maps which we state presently. The
transpose of matrix z is denoted by .

THEOREM 0 (Frobenius [Fr]) Let ¢ be a determinant preserving map on the
space of all (real or complex) n X n matrices, i.e., detp(a) = det(a) for every
matriz a, then there exists invertible matrices b and ¢ with det(bc) = 1, such
that either ¢(a) = bxc for every x or ¢(a) = bz c for every x.

Three of the most appealing linear preserver problems, in my view, are
invertibility preservers, because of its connection with algebra isomorphisms
and Jordan isomorphisms, commutativity preservers, because of its connection
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with Lie isomorphisms and rank one preservers, because many others preserver
problems are reduced to it. In this expository article, we will concentrate on
these three problems. The discussion that follow will be far from encyclopedic,
and the emphasis will reflect the author’s experience.

1. INVERTIBILITY PRESERVING MAPS
AND JORDAN ISOMORPHISMS

Let A and B be algebras with identity. A linear map ¢ from A to B, is
called unital if (1) = 1 and is called invertibility preserving if ¢(a) is invertible
in B for every invertible element a € A. It is called an anti-homomorphism
if ¢(ab) = ¢(b)¢p(a) for every a and b € A, and a Jordan homomorphism
if ¢(ab+ ba) = P(a)p(d) + ¢(b)p(a) for all a and b € A, or equivalently
#(a?) = ((;5((1))2 for every a € A. As usual, a bijective anti-homomorphism (re-
spectively Jordan homomorphism) is called an anti-isomorphism (respectively
a Jordan isomorphism). It is quite obvious that every isomorphism and every
anti-isomorphism is a Jordan isomorphism. It is also quite obvious that every
isomorphism and every anti-isomorphism is unital and preserves invertibility.
Indeed [So], every Jordan isomorphism is also unital and preserves invertibility.
One may ask whether the converse is true. Is every unital invertibility preserv-
ing map a Jordan isomorphism. Such questions were raised by Kaplansky [K]
in the context of rings and of Banach algebras. It is easily seen (see Example
1.n below) that the answer to such a sweeping question is negative, and then
we may ask about sufficient conditions on the algebras to allow us to make
such a conclusion.

The earliest result along these lines is that of Dieudonné [D] for maps on
the space M, of all n x n matrices. (The article [D] deals with bijective “semi-
linear” maps that preserve non-invertibility.) Another related result is in [MP)]
dealing with not necessarily bijective maps on the space of (real or complex)
matrices that preserve invertibility. The results is that such maps are of the
form given in Theorem 0.1, with no restriction on det(bc). In particular, if the
map is also unital, then bc = 1 and the map is indeed a Jordan isomorphism.
Infinite dimensional generalisations of this result appeared in [JS] for spectrum
preserving maps and in [So] for invertibility preserving maps. We state these
results here. We denote the algebra of all bounded linear operators on a Banach
space X by £(X). The dual of X is denoted by X' and the adjoint of an opertor
T is denoted by T*.

THEOREM 1.1. ([JS], [S]) Let X and Y be Banach spaces over the complex
field and let ¢ be a unital bijective linear map from L(X) onto L(Y) . Then
the following conditions are equivalent.

(a) ¢ preserves invertibility.

(b) ¢ is a Jordan isomorphism.
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(¢) ¢ is either an isomorphism or an anti-isomorphism.

(d) Either
(i) ¢(T) = A YT A for every T € L(X), where A : Y — X is an
isomorphism;
or
(ii) ¢(T) = B1T*B for every T € L(X), where B : Y — X' is an
isomorphism.

In particular such maps are automatically continuous in any of the usual
topologies on L(X).

We should point out that the equivalence of (b) and (c) is true for any
additive map from a ring onto a prime ring [H1, pp. 47-51]. and that the
equivalence of (c¢) and (d) include a classical theorem asserting that every au-
tomorphism of £(X) is inner, i.e., of the form z — a~'za. Furthermore, the
case of a nonunital map ¢ can be reduced to the unital case by considering the
map ¢ defined by 9(x) = ¢(1) ! ¢#(x). We state the conclusion formally. Con-
sequently such a map takes one of the forms ¢(T) = AT B or ¢(T) = AT*B
for invertible operators A and B between the relevant spaces.

The proof of Theorem 1.1 in [S] and the related result in [JS] proceed by
first characterising rank one operators in terms of the spectrum. This implies
that an invertibility preserving map preserves the property of having rank one.
The spectrum of an element a is denoted by spec(a).

THEOREM 1.2. ([JS], [So]) For an operator R € L(X), the following
conditions are equivalent:

(i) rank R<1
(ii) For every T € L(X) and every distinct scalars o and (3,

spec(T + aR) Nspec(T + BR) C spec(T).

(iii) For every T € L(X), there exists a compact subset K7 of the complex
plane, such that

spec(T + aR) Nspec(T + BR) C Kr.

In a different direction, results of Gleason [G] and Kahane-Zelazko [KZ],
refined by Zelazko [Z] show that every unital invertibility preserving linear
map from a Banach algebra A into a semi-simple commutative Banach algebra
B is multiplicative. (See also [RS]). Additional related results are in [Au],
[CHNRR], and [Ru]. Articles [CHNRR] and [Ru] contain similar results on
invertibility preserving positive linear maps on C*-algebras and von-Neumann
algebras respectively.
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The commutativity assumption in [G] and [KZ] is quite crucial. It would
be a major advance if the conclusion holds for noncommutative algebras. More
precisely, we pose this question.

Question. Let A be a semi-simple Banach algebra and let ¢ be a unital
bijective linear map on A. If ¢ preserves invertibility, must it be a Jordan
isomorphism?

Aupetit [Au2] has recently announced a proof when A is a von-Neumann
algebra. Perhaps the next step is to prove the result for C'*-algebras.

We close this section by a counterexample. Another example may be found
in [Aul; p.28].

EXAMPLE. Let A be the algebra of 4 x 4 matrices of the form [61 C’]

, where

A, B,C are 2 x 2 matrices, and let
é A B|_[A B
0o C¢c| |0 C

It is straightforward to verify that ¢ is unital and preserves invertibility, but
that it is not a Jordan homomorphism.

Other examples may be constructed by taking A to be a radical algebra
with identity adjoined and ¢ a bijective unital linear mapping sending the
radical to itself.

2. COMMUTATIVITY PRESERVING MAPS
AND LIE ISOMORPHISMS

A linear map ¢ from an algebra A to an algebra B is said to be com-
mutativity preserving if p(a) commutes with ¢(b) for every pair of commuting
elements a,b in A. It is said to be commutativity preserving in both directions
when the condition ab = ba holds if and only if ¢(a)p(b) = ¢(b)¢(a). It is called
a Lie homomorphism if ¢([a, b]) = [¢(a), ¢(D)], where [z,y] denotes zy—yz. The
terminology is justifiable by the fact that under this operation (a,b) — [a,b],
the algebra A becomes a Lie algebra. In fact, it is a standard result (see, for
eg. [Hu, Chapter V]) that every Lie algebra } may be embedded as a Lie
subalgebra of an associate algebra — the universal enveloping algebra of } —
equipped with the product [a,b]. As usual, a Lie isomorphism is a bijective Lie
homomorphism.

We note that if « is an (associative) isomorphism or the negative of an
anti-isomorphism from A to B and + is a linear map from A into the centre
of B, such that y(ab — ba) = 0 for every a and b in A, then a + v is a Lie
isomorphism, provided it is injective. We may ask for sufficient conditions on
algebras A and B for the converse to hold.
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Evidently every Lie isomorphism ¢ between algebras A and B preserves
commutativity in both directions, as does the map cp+7 for a non-zero scalar ¢
and a linear map 7 from A into the centre of B. Again we may ask for sufficient
conditions on algebras A and B for the converse to hold.

Commutativity preserving linear maps on spaces of matrices or that pre-
serve commutativity in both directions. As in several other algebras, the linear
maps that preserve zero Lie brackets in both directions differ only slightly from
those that preserve all Lie brackets.

Lie isomorphisms between rings and between self-adjoint operator algebras
have been considered by several authors, see [Mal], [Ma2], [Mi], [Br]. Quite
frequently, the Lie isomorphisms are closely related to the associative isomor-
phisms are described above. Commutativity preserving linear maps on spaces
of matrices or operators have also received a great deal of attention. They have
been considered by [W] and [PW] for the algebra My, in [CL] for the space of
symmetric matrices, in [CJR] for the space of self adjoint operators on Hilbert
space, in [O] for the algebra B(X) of all bounded linear operators on a Banach
space X, and in [BM] for von-Neumann algebras. In the majority of cases, it
is shown that under some injectivity or surjectivity conditions, commutativity
preserving maps (possibly in both directions) takes one of two forms

T cA'TA + f(T)I

or
T — cA7'TYA + f(T)I

where ¢ is a scalar, T is either the adjoint or the transpose or some other
anti-isomorphism (depending on the space considered), and where A is an in-
vertible operator (perhaps a unitary), and f a linear functional. Consequently,
the results may be stated as showing that every such a map is a linear combi-
nation of a Lie isomorphism and a map with central range. recently algebras
of triangular or block-triangular matrices and their infinite dimensional gener-
alisations have received a lot of attention. In the remainder of this section, we
will discuss results on commutativity preservers and on Lie isomorphisms for
some such algebras. Let T,,(F') denote the algebra of upper triangular n by n
matrices over an arbitrary field F. The ”transpose” of an n x n matrix A with
respect to the ”anti-diagonal”, i.e., the diagonal that includes the positions
(j,m — 7) is denoted by T'*. It is easy to see that the mapping T' — Tt is an
anti-isomorphism. Indeed it a composition of the usual transpose and an inner
automorphism induced by the matrix J := [d; »,—i], where ; ; is the Kronecker
delta symbol.

THEOREM 2.1. [MS] Let F be an arbitrary field and ¢ a linear map from
T, (F), the algebra of upper triangular matrices, into itself. Assume thatn > 3.
The following conditions are equivalent.

(a) ¢ preserves commutativity in both directions.
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(b) There exists a non-zero scalar ¢ € F, a linear functional f on T, and an
invertible matriz S € T,, such that ¢ takes one of the following forms.

o(T) = eST'TS + f(T)I

or
o(T) =S IT*S + f(T)I

(c) There exists a Lie isomorphism « of T,(F') a non-zero scalar ¢ € F, and
a linear mapping f from T, (F) into its centre such that ¢ = ca + f.

The above result is false for n = 2.

COROLLARY 2.2 Let ¢ : T,(F) = T,(F) be a linear map. The following
are equivalent. Then ¢ is a Lie automorphism of T, (F) if and only if o takes
one of the following forms:

o(T)=S™'TS +tr (TD)I,

or
o(T) = =S~ 'TtJS +tr (TD)I,

where S € T, (F) is invertible, tr denotes the trace and D is a diagonal matriz
with tr (D) # —1.

We note that the result above implies that every Lie isomorphism ¢ = a + 7,
where a is either an automorphism or the negative of an anti-automorphism
and 7 maps T, (F) into its centre and annihilates all commutators AB — BA.
The above corollary had also been proven in [Do] for matrices over rings in
which the only idempotents are 0 and 1.

The above result about Lie isomorphisms have been extended in [MS2] to
one of the best known infinite dimensional generalisations of T7,, nest algebras
on a Hilbert space. In order to avoid the technical difficulties that usually
surround this subject, we will only present an example. Let H be a Hilbert
Space with an orthonormal basis B = {e,, : n € Z}, and let T, be the algebra
of all bounded linear operators on H whose matrix with respect to the basis
above is an upper triangular (doubly infinite) matrix. The bilateral shift is
the operator S on H determined by Se, = e,41. Consisting with previous
notations, if an operator C is determined by the matrix [¢;j] relative to the
basis B, then CT will denote the operator whose matrix with respect to the
same basis is [c_j,—;].

THEOREM 2.3. Let ¢ : Too = T be a linear map. Then ¢ is a Lie
automorphism of Ty, if and only if ¢ takes one of the following forms:

o(T) = S~"A~YTAS™ + r(T)I,
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or
o(T) = =S~ A'T+AS™ + 7(T)I,

where A is an invertible element of Too, S is the bilateral shift, n is an integer,
and T is o linear functional on T that annihilates all commutators.

Also in the finite dimensional spaces, the following result about block
triangular algebras was proved in [MS2]. We start with a definition.

For every finite sequence of positive integers ni,na, . ..ng, satisfying ny +
ne + ...+ nx = n, we associate an algebra T (n1,ns,...ny) consisting of all
n X n matrices of the form

A A .0 A
_ 0 A22 SN Agk
0 0 ... A

where A;; is an n; X n; matrix. We call such an algebra a block upper triangular
algebra.

THEOREM 2.4. Let A= T (ni,n2,--..n,) and Let B = T (m1,m2,...mg) be
block upper triangular algebras in M, and M,, respectively, and let ¢ be a Lie
isomorphism from A onto B. Then m = n, r = s and there exists an invertible
matriz B € B and a linear functional T on A satisfying 7(I) # —1 such that
either
(a) n;=m; and o(T) = B 'TB+7(T)I, or
(b) ni=m,_; and o(T) = B'TT*B + 7(T)I.

The mapping 7 is given by 7(T) = tr (' D), where D is a diagonal matriz
such that tr (D) # —1 and the diagonal entries in every one of the blocks that
determine A are identical.

3. RANK ONE PRESERVING MAPS

A map ¢ from a space S; of matrices into a space S of matrices is said
to preserve matrices of rank one if p(T) is of rank one whenever T has rank
one. It is said preserve rank one matrices in both directions when ¢(T') is of
rank one if and only if T has rank one.

Characterizing linear maps on spaces of matrices or operators that preserve
rank One operators has been an active area of research for quite a while. Of
all linear preserver problems, this is arguably the most basic. Indeed several
other questions about preservers may be reduced to, or solved with the help
of, rank-one preservers. This has already been noted in §1 above and has been
observed long ago in [Ma]. In addition to maps that preserve invertibility or
spectrum as discussed in §1, preserving commutativity ([CL], [Ra], [W]) quite
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often involve rank-one preservers. Classifying isomorphisms of several types of
operator algebras is frequently accomplished by exploiting the fact that they
preserve rank one operators; see, e.g. [Da; Chapter 17].

Although the forms of rank one preservers are very similar to the forms of
other preservers disacussed in the previous sections, we describe them slightly
differently. By a left multiplication on an algebra A we mean a mapping L,
defined by L,(x) = az, for every x € A, where a is an element of A. Right
multiplications R, are defined analogously.

The linear rank one preservers on the space of all n x n matrices was
characterized by Marcus and Moyls [11]. They show that every such map is
a composition of a left multiplication L4 by an invertible matrix A, a right
multiplication Rp by an invertible matrix B, and possibly the transpose map.
For related results, and a summary of similar results obtained from 1960 until
1989, we refer to [Lo] and the references therein.

In this section, we discuss more recent results about additive (not nec-
essarily linear) maps that preserve rank one especially on triangular matrix
algebras. In [0S2], Omladic and Semrl characterized surjective additive maps
on the space of finite rank operators on real or complex Banach spaces. In case
of finite dimensional spaces, they show that every such a map is a composition
of the three types of maps described above and a fourth type induced by an
automorphism of the underlying field, which we describe presently.

Assume that ¢ — ¢ is an automorphism of the underlying field F', and
C = [cij] € Mypn(F). We denote the matrix [¢;;] by C. Evidently the map
C — C preserves every rank. We say that C — C is the map induced on the
space of matrices by the field-automorphism ¢ + €.

We shall make use of the transpose with respect to the anti-diagonal T +—
T+ described in §2.

We now define another type of rank one preservers which appears in [BS]

(3.1) Let each of fi, fa,... f, be an additive mapping from F to F such that

f1 is bijective, and let f = (f1, fa,... fn). Define a mapping f on a triangular
algebra A = T(ny...ny), with ny = 1, by

i1 €12 ... Cip f1 (011) f2(C11) +c12 .. fn(cll) + Cin
f‘ 0 Co2 ... Ca2n _ 0 C29 - Con
0 0 ... cun 0 0 - Cnn

This is a surjective additive mapping on A and it preserves rank one matrices,
but only when n; = 1.

(3.2) For f and fi, fa, ... f as above, define a mapping fona triangular algebra,
A=T(nyi...ng), with ng, = 1, in a similar fashion except that the ”action” is



LINEAR PRESERVERS 9

on the last column instead of the first row, more precisely f(C) = (£(C*))*.
Again this is an additive mapping on A preserving rank one matrices, but only
when nj = 1.

We now present a result from [BS].

THEOREM 3.3. [BS] Let A = T (n1 . ..nyg) be a block upper triangular algebra
in M,(F), such that A # T2(F). Let ¢ : A — A be a surjective additive
mapping that preserves rank one matrices. Then ¢ is a composition of some
or all of the following maps:

(i) Left multiplication by an invertible matriz in A.

(i) Right multiplication by an invertible matriz in A.
(iii) The map C — C, induced by o field automorphism a — @ of F.
(iv) The map f defined in 3.1 above, but only when ny = 1.

(v) The map f defined in 3.2 above, but only when ny = 1.
(vi) The transpose with respect to the antidiagonal T — TT. This is present
only when A= A%, i.e., nj = ng_j11 for every j.

COROLLARY 3.4 If ¢ is as in Theorem 3.3, then:
(a) ¢ is injective;
(b) ¢ preserves every rank, i.e., rank o(T) = rank T, for every T € A.

REMARK When ¢ is linear, then obviously maps of type (iii), (iv), and (v)
in Theorem 3.3 cannot be present. This is catually true for maps on spaces of
matrices much more general than triangular algebras, see [BS].
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