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1. Introduction and Statement of Main Results

A linear map ¢ on an algebra A is said to be commutativity preserving if ¢(a)
commutes with ¢(b) for every pair of commuting elements a,b in A. It is said to be
commutativity preserving in both directions when the condition ab = ba holds if and only
if p(a)p(b) = p(b)p(a). It is called a Lie homomorphism if ¢([a, b)) = [¢(a), ¢(b)], where
[z,y] denotes zy — yx. The expression [z,y| is referred to as the Lie bracket.

Commutativity preserving linear maps on spaces of matrices or operators have been
considered by several authors, see [CJR], [CL], [O], [R] and [W]. In this article, we consider
the algebra 7, = 7,(F) of upper triangular n by n matrices over an arbitrary field F.
We characterize linear maps on 7, that preserve commutativity in both directions. As a
consequence we characterize the Lie automorphisms of 7.

We observe that every algebra automorphism of any algebra is evidently a Lie au-
tomorphism. It is well-known that the algebra automorphisms of 7, are all inner, i.e
if ¢ : 7, = T, is an algebra automorphism, then there exists an invertible element X
of T, such that ¢(A) = X7'AX for all A € T,, (cf. [D, p. 234]). (This result will
not be used here. Indeed, it follows as a corollary of our results.) To describe other Lie
automorphisms, we make use of a particular permutation matrix J given by

0 0 0 1
0 0 1 0
J=|: ) (1)
0 1 0 0
1 0 0 0

ie J=[0; ny1-i], where § is the Kronecker delta symbol. If T* denotes the transpose
of T, then it is straightforward to verify that the map

%, (T) = —JT"J (2)

is a Lie automorphism of 7,. The content of Theorem 5 is that every Lie automorphism is
either an algebra automorphism or a composition of 7, and an algebra automorphism. We
thank the referee for pointing out that Lie automorphisms of 7,(R) have been character-
ized in [Do] by D. Dokovié¢, where R is a commutative ring in which the only idempotents
are 0 and 1.

Evidently every Lie automorphism ¢ of an algebra A preserves commutativity in
both directions, as does the map cp + ¢g for a non-zero scalar ¢ and a linear map g
mapping A into its centre. In view of Theorem 5, the assertion of Theorem 4 is that the
above describes all linear maps on 7,, that preserve commutativity in both directions. As
in several other algebras, the linear maps that preserve zero Lie brackets in both directions
differ only slightly from those that preserve all Lie brackets.

We note that it is well-known, and quite easy to prove, that the centre of 7, (F)
is FI. Thus linear maps from 7, into the centre are given by T +— f(T)I, where
f T, — F is a linear functional. We shall use the term “linear functional on 7,” to
denote both the linear map f of 7, into F as well as the corresponding map of 7,
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into FI. Such a linear functional f will be called a generalized traceif f(AB—BA) =0
for every A and B in 7,. We shall determine the commutators and generalized traces
presently. First we state the result about the centre as a formal Lemma.

Lemma 1. The centre of T,(F) is FI.

Lemma 2. The linear span of all commutators [A, Bl; A, B € T, is the space of strictly
upper triangular n by n matrices.

Proof. It is easy to see that [A, B] has zero diagonal. On the other hand, if {FE;;: 1<
i < j <n} denote the usual matrix units, then F;; = [Ej;, F;;] for i < j and so every
strictly upper triangular matrix is a sum of commutators.

O

Lemma 3. Let 7 : T, — F be a generalized trace, i.e. a linear functional satisfying
T(AB — BA) = 0 for all A,B € T,. Then there exist scalars by,ba,...,b, such that
7([aij]) = Yoy biaii, i.e. T(A) = tr(AB), where B = diag(b1,bs,...,b,) is a diagonal
matrix and “tr” denotes the usual trace.

Proof. This is immediate from Lemma 2.

Now we state our main results:

Theorem 4. Let ¢: T, = Tn (n>3) be a linear map. The following conditions are
equivalent.

(a) ¢ preserves commutativity in both directions.
(b) There exists a non-zero scalar ¢ € F, a linear functional f on T, and an invertible
matrix S € T, such that either

(i) o(T) =cS™ITS + f(T)I for every T € Ty,

or

(i) o(T)=cS™YITt IS + f(T)I for every T € T, where J is the matriz defined
by equation (1).

The above result is false for n =2 as will be shown in Proposition 8.

Theorem 5. Let ¢: T, — T, be a linear map. Then ¢ is a Lie automorphism of T,
iof and only if ¢ takes one of the following forms:

o(T) =S 'TS + 7(T)I,
or

o(T) = -S~HJT*JS + 7(T)I,
3



where S € T, s invertible, T is a generalized trace on T, such that 7(I) # —1, and
J is the permutation matriz defined by equation (1).

Remarks. 1. By Lemma 3, we get that 7(A) = tr (AD) where D is a diagonal matrix
with tr (D) # —1.

2. For n > 3, Theorem 5 follows readily from Theorem 4 and some easy calculations.
For n =2, a proof is given in the next section.

As a Corollary to Theorem 5, we obtain the following well-known result:

Corollary 6. FEvery algebra automorphism of T, 1is inner.

We also get the following companion result:

Corollary 7. A map ¢ : T, — T, is an algebra anti-isomorphism if and only if there
exists an invertible matrix S such that

o(T) = S~LITJS,

where J is the matriz defined by equation (1).

Let us now fix some terminology which we shall require in the sequel. By D, we
denote the set of diagonal n x n matrices over a field F , and for an n x n matrix A,
we write o(A) for the set of eigenvalues of A . Given two vectors u and v in F?,
we shall denote by © ® v the matrix uwv?, which we may associate with the operator
(u®v)(z) =vtzu for each z e F*. If {ex}?_, denotes the standard basis for F* (i.e.
er = (1,0,...,0), e3 = (0,1,0,...,0), etc.), then the standard matrix units for 7, are
denoted by F;; =e; ®@e;.

Given a subset B of an algebra A, we denote the commutant of B by

B ={A€A: AB=BA forall Be€B}.
The double commutant of B is nothing more than B = (B')".

2. The Exceptional Case n =2
Theorem 4 is false in the case n = 2. This follows from our next result.

Proposition 8. Let ¢: T3 — T3 be a linear map. Then

(a) ¢ is commutativity preserving if and only if ¢(I) € FI, or the range of ¢ is a
commutative subspace of Ts.

(b) ¢ preserves commutativity in both directions if and only if ¢(I) € FI and the
range of ¢ s non-commutative.

Proof. (a) If ran(p), the range of ¢ , is commutative, then ¢ obviously preserves com-
mutativity. Next, we assume that ¢(I) € FI. If A, B € T, are commuting matrices, it
4



is easy to verify that {I, A, B} are linearly dependent. Hence {I,¢(A),p(B)} are also
linearly dependent and ¢(A) commutes with ¢(B).

Conversely, if ¢ preserves commutativity and ran (p) contains two non-commuting
matrices C and D then {I,C,D} are linearly independent and hence span all of 7.
Therefore {ran(¢)}’, the commutant of ran(¢), if FI. Since ¢(I) commutes with
ran (¢), we get ¢(I) € FI.

(b) If ¢ preserves commutativity in both directions, then it follows that ran(¢) must
be non-commutative since 7Ty is. Now part (a) implies that ¢(I) € FI. To prove the
converse, assume that ¢(I) € FI and ran(yp) is non-commutative. Upon adding an
appropriate linear functional to ¢ if necessary, we obtain a linear mapping ¢; of 75
into itself such that ¢1(I) =1 and ran(p;) is non-commutative. As in the proof of part
(a), there exist C,D € ran (¢1) such that {I,C,D} span Ts, i.e. ¢1 is surjective and
hence bijective. From (a), we see that both ¢ and ¢~ ! preserve commutativity. Thus
¢ preserves commutativity in both directions.

O

a bly_ |(a+¢)/2 b o
Example. Let go( [ 0 c] ) = [ 0 - b] . It follows from Proposition 8 that ¢
preserves commutativity in both directions. If N = 8 (1) , then ¢(N) is a non-zero

idempotent. However, the forms described in Theorem 4 would lead to ¢(N) being a
sum of a nilpotent and a scalar. This map is thus a counterexample to the assertion of
Theorem 4 for n = 2.

Next, for the sake of completeness we shall prove Theorem 5 for n = 2. First we

observe that when n = 2, the two forms of Theorem 5 coincide. Indeed, if A = [8 i] ,
—c

0

At T
then JAJ—[ 0 —1

:2] — S1AS — tr(A)I, where § = [1 0 } .

Proof of Theorem 5 for m = 2. Assume that ¢ is a Lie automorphism of 75. Since
span {F12} is the set of all commutators, it follows that ¢(FE2) = rEj5 for a nonzero
scalar 7. Also ¢(I) € FI by Proposition 8. It follows that there exists a linear map g
from the diagonal algebra D2 into itself and a scalar s such that

@(A) = g(diag A) +

0 rb+s(a—c)
0 0 ’

a r -—s

when A = [0 l;} and diag A refers to the diagonal of A. Let C = [0 1 } and
define 9 on T by ¢(T)= o(C~TC). Then 1 is a Lie automorphism of 75 and it

0 b:| , i.e. w(Elg) = E12

follows from direct computation that ¥ (A) = g(diag A) + [0 0

and 9|Dy = g. Thus if D = [%1 ;2] , we have [g(D), E13] = [%(D),¢v(E12)] =
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Y([D, Er2]) = ¥((dy — d2)E12) = (di — d2)Er2 = [D, Evs]. Thus [g(D) — D, Eys] = 0,
and since g¢(D) 1is diagonal, we have that ¢(D) — D is just a scalar. It follows that
¥(A) = A+ h(A) for some linear functional h , and hence ¢(T) = CTC~! + 7(T) for
a linear functional 7. It is easy to see that 7 must be a generalized trace. This proves

that “only if” assertion of the Theorem. The converse is obvious.
O

3. The Proof of Theorem 4

The “if” part of Theorem 4 is obvious. We shall prove the converse via several
lemmas and propositions. Throughout this section, we shall assume that ¢ is a linear
map on 7, that preserves commutativity in both directions.

Lemma 9. (a) The null space of ¢ is included in F1I.
(b) If 7 is a linear functional, then @ + T preserves commutativity in both directions
and is bijective if and only if (¢ + 7)(I) # 0.

Proof. Assertion (a) follows from the fact that FI is the centre of 7,. The second
assertion is trivial.

g

In view of the above Lemma, we may assume without loss of generality that ¢
is bijective and that ¢(I) = I. This will be assumed throughout the remainder of this
section.

Lemma 10. If A€ T,, and {A}' = span{l, A}, then A=\ + B, where \,f €T
and either B2=0 or B>= B #0.

Proof. Now A? € {A}" = span{I, A}, so A%? = al +yA for some «,y € F. As such,
A satisfies a polynomial of degree at most 2, and hence has at most two eigenvalues.

If 0(A) ={A}, then o(A— AI) ={0}, and (A — AI) also satisfies a polynomial
of degree 2, so (A—AX[)2=0. Set B=A— M toget A=A+ B, B2=0.

If 0(A) = {M1,X2} with Ay # Ay, then B = (A2 — A;)"}(A — A\ I) satisfies
o(B) ={0,1}. Again, {I, B, B?} C {A}’ = span{I, A}, andso B satisfies a polynomial
of degree 2. But then B(B —1)=0, i.e. B%=B.

Thus A:)\1]+()\2—)\1)B, B2 :B7é0

(Il

In what follows, commutants and double commutants are always relative to the
algebra 7, and not the full algebra M,, of n xn matrices over F . It may be useful to
keep in mind the fact that for any subset S of 7, , {¢(S)} = p({S}) .

Lemma 11. Let R be a rank one matriz in T, . Then {R}" = span{l, R}.
Proof. Let R=xQ®y. As R € T, , there exists an integer k € {1,2,...,n} such that

x € span{ey,es,...ex} and y € span{eg,ext1,-..,6en}. We consider three cases:
6



(a) 1<k <mn. Lt C =e; ®v, where v € {z}t. Then RC = CR =0. If
A € {R}",then AC = CA, ie., Ae;®v = e; ® A'v, and hence Av = ajjv for
every v € {r}*. Similarly, if v € {y}* and D=u®e, ,then RD = DR and hence
AD = DA, leading to Au®e, = u® Ale, . But we already have that Ale, = ai1e,
and so Au = ajju for every u € {y}+. Let B= A —a;;I. Then Bu= 0= Btv for
every u € {y}+ and every v € {x}1 . It follows that B = Bz ® y for a scalar B, and
so A € span{I, R}.

(b) k=1. Inthiscase, R=e;®y . If u€ {y}* Nspan{er,e2}, 7 >2,and C = uQe;,
then RC=CR=0.1If Ac{R}’,then AC=CA,ie., Au®e; =u® A'e; . Thus
Au = agou and Ale; = agse; for j > 2. Let B = A— agnl. Then Ble; =0 for
j > 2. Next, we take v € {y}*, D =v®e, . We then have RD =D R =0, and hence
Bv®e, = v® Ble, . We conclude that Bv =0 for every v € {y}+ . Thus B = fe; ®y
for some scalar . Hence A € span{I,R} .

(¢) k=mn. The proof is similar to (b).

In each case, we have {R}"” Cspan{I, R} . The reverse inclusion is obvious.
U

For each 1 < i < j < mn, weset F;; := ¢(E;;), and also write F,, for Fy,,,.
In view of the fact that {@(A)} = p({A}) for every A € T, , it is an immediate
consequence of Lemmas 10 and 11 that each Fj; is of the form F;; = A;I + B;;Bij,
where \ij, Bi; € F and either Bj; =0, or B}, = Bj; # 0. In fact, more is true.

Lemma 12. There exists 1 < m <n such that F,, = Apymd + Brum Bmm, with Bfnm =
Brum # 0.

Proof. Suppose otherwise. Then for each 1 < m < n, write N, = BmmBmm t0 get
Fp = A + Ny, N2 =0.

For some 1 <1< 35 <n, (p(Eij) = AijI + Bi;Bij with S;; #0 and ij = B;; # 0.
For otherwise, diag(¢(T)) € FI for all T € T,, contradicting the surjectivity of ¢. For
this fixed ¢ and j, consider Fz = )\HI-i-NZ, Fj = )\jjI +NJ and Fij = A,LJI -|—ﬁ”B7‘_7
Let {I, Ei, Eij, Ejj,Us,Us, - .,Upm41)/2} be a basis for 7, and let 7: 7, — FI be
the linear functional satisfying:

Set p:=¢@+ 7. Since p(I) =(p+7)(I) =I1+0# 0, Lemma 9 shows that p satisfies
all of the conditions of our original problem, as well as satisfying p(E;;) = N;, p(Eij) =
BijBij, p(Ej;) = N; and p(I) =1. As such we may relabel so as to assume that ¢ = p.
We shall obtain a contradiction through the following three steps:
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(i) We have N? = N7 =0 and [Ej, Ejj] =0 forces [Nj, Nj] = 0. Moreover,
[(E” + Ejj), Eij] =0 implies [Bij, N; + Nj] = 0.
(11) CLAIM: BzyNz + Nszg = N; and Biij + NjBij = Nj.
ProOOF OF CLAIM: (p(Eu + E”) =N; + IB’LJBlj
By Lemma 10 and Lemma 11, (N;+ f;;B;;) satisfies a quadratic polynomial. Since
o(N; + BijBij) = {0, Bi;}, that polynomial must be p(t) =t (t — 3;;). We therefore have
(Nz + IBijBij)2 = /Bij (]\/vz + /BijBij)7 from which follows NZB’LJ + Bz]]\/vz = Nz
The second equality is proved in a similar fashion, ending the proof of the claim.
(iii) With N = N; + N; , it follows from (ii) that NB;; + B;; N = N . On the other
hand, NBZJ = B,LJN since Eii+Ejj commutes with Eij . It follows that NBZJ =
NB,?J + BZJNBZJ = 2NBij . Therefore NB” =0 s and so BZJN = 0. Thus
@(Ei; + Ej;) = N =0 . This contradicts the injectivity of ¢ , proving the Lemma.
d

Proposition 13. For 1 <i<n, F;,=¢(E;)=MNI+a;Q;, where 0+# a; € F, \; €T,
and 1# Q= Qi #0.

Proof. By Lemma 12, there exists at least one 7, 1 < j < n for which is is true. Suppose
now that for some 1 <i# j<n, F; = ¢p(E;) = NI+ N; where N? =0. (This is the
only other alternative, by Lemmas 10 and 11.)

We can extend {I, Ey;, Ej;} toabasis for Ty, say {I, Eij, Ej;,Us, Us, ..., Upny1)/2}-
Define a linear functional 7 :7, — FI via 7(Ey) = —XNI, 7(Ej;) = —\I, 7(I) =0 =
T(Unm), 4 <m < n(n+1)/2. Using the arguments of Lemma 9, we see that p := ¢+7 sat-
isfies the conditions of our original problem, as well as satisfying p(E;;) = o;Q;, p(Eii) =
N;, p(I) = I. We relabel so that ¢ = p.

Next, [E“, Ejj] =0 implies [Qja NZ] = 0. Since R := Eii+Ejj is an idempotent, it
follows that {R}"” = span{I, R} . Hence S := ¢(E;;+E;;) = N;+«;Q; satisfies {S}" =
span{l, S} . It follows that S satisfies a quadratic equation. But o(N;+a;Q;) = {0, o5},
and hence the equation must be z(z —a;) = 0. As such,

(N; + Q)% = o (Ni + a;Q;).

We may expand this equation to obtain:
Nf -+ ajNin -+ anjNi -+ a?Q? = Oszi -+ CM?QJ‘,
or 2Q]Nz = Nz

Thus 2Q§Ni = 2Q;N; = Q;N;, implying that Q;N; = 0, and hence N; = 2Q;N; =0,
contradicting the injectivity of .
We conclude that ¢(Ej;) = AT+ a;Qj, o #0, QF = Q; #0 forall 1 <5 <n.
O

Remark. It should be noted that the choice of @; above is not unique. If F; = A1+ a;Q);
with Q2 = Q; # 0, then Q) = I — @; is again a nonzero idempotent, and F; =
8



(Ai+ i)+ (—;)Q) . As we shall now see, this is the only latitude we have in determining
a;, 1<i<n.

Proposition 14. For 1 < i <n, F; = p(E;;) = NI + aQ;, where 0 #a €F, \; € F
and Q? = Q; # 0. In other words, the «;’s from Proposition 13 may be chosen to be
identical.

Proof. It clearly suffices to show that «; = a1, 2 < i <n. To that end, fix 2<j5<n.
Let 7 : 7, — FI be a linear functional satisfying 7(I) = 0,7(E11) = =M1, 7(Ej;) =
—XNI and 7(Up) =0, 4<m <n(n+1)/2, where {I, E11, Ejj, Uy, ..., Upnyry/2} 18
a basis for 7, .

If p:= ¢+ 7, then by Lemma 9, p preserves commutativity in both directions,
while p(E11) = 01@Q1 and p(Ejj) = o;Q; by Proposition 13. Thus p(E11 + Ejj) =
a1Q1 + a;Q; . Again, since (Eq; + Ej;) satisfies a quadratic equation, we see as before
that so must (@1Q1 + @;Q;) . Note also that [Eyq,Ej;] =0, forcing [Q1,Q,] =0. By
Lemma 10, a1Q1 + o;Q; = A + 8B , where B2=0 or B2=B#0.

Since )1 and ; are commuting idempotents, they can be simultaneously diago-
nalized. Therefore o(a1Q1 + ;Q;) includes:

(a) a1 if ran@ € ran(Q;) ;

(b) ¢« if ran@Q; Z ran(Q1) ;

() o1 +aj; if ran@QiNran@; # {0} ;
(d) 0 if ranQy +ran@; #IF" .

Furthermore, since (o1Q1 + ;Q;) = Al + BB satisfies a quadratic equation,
o(a1Q1 + Q) consists of either one or two points. As such, we must have one of
the following possibilities (keeping in mind that 0# Q; # I for all i ):

(i) a1 = a;, and either ran @, Nran@; = {0} or ran@; +ranQ; =F" .

(i) a1 = —a;. Replace @; by @} := 1 — ;. As in the Remark preceding this
Proposition, we see that the corresponding a;- =-—a; =01 .

(iii) ran@q =ran@; . This implies that Q1 = Q; since the two idempotents commute.
This contradicts injectivity.

(iv) ran@QiNran@; =0, and ranQ;+ran@Q; =F" ,ie. F* =ran@Q;®ran@; . Then
Q1+ Q; = I, contradicting injectivity again.

]

Proposition 15. For 1 <i<mn, let F; =¢@(Ey) =N+ aQ; with 0£a €T, \; €T
and Q? = Q; # 0, as derived from the previous proposition. Then for 1 < i # j < n,
either

(a) QiQ; =Q;Q;=0; or
(b) I-Qi)I-Q;)=U-Q;)(I—-Q;)=0.

Proof. As in the proof of Proposition 14, we have that Q;Q; = Q; Q; , and o(Q; + Q;)
has at most two points, implying that either ran@; Nran@; = {0} or ran@; +ran@Q; =
9



F™ . The former case is equivalent to assertion (a), while the latter is equivalent to (b).
0

Proposition 16. For 1 <i<mn, let F;, = ¢(Ey;) = A1+ aQ; with o # 0, \; € F,
and Q? = Q; # 0 as derived from Proposition 14. Then either

(a) QiQ;=0=0Q;Q; forall 1<i#j<mn, or

(b) I-Q:)UI—-Q;)=IT—-Q;)I—-Q;) forall 1<i##j<mn.

Remark. The difference between this Proposition and the previous is the “for all” quanti-
fier.

Proof. Suppose
(i) QiQ; =0=0Q;Q:
(i) I-Q)I-Qk)=0=I-Qk)I - Q)
and (iii) Q;Qr = 0= QrQ;-

Then 0=Q;0=0Q;I—-Q:)I—-Qx)
=(Q; —0)(I — Qx)
=Q; -0

= (@j, a contradiction.

Alternatively, suppose (i) QiQ; =0=Q,;Q;
(i) (I-Qi)I—Qk)=0=(—Qr)I - Qi)
and (i) (I—-Q;)I—Qx)=0=(—Qr)I~Q;)
Then 0=0Qi0=Qi(l —Q;)( — Qx)
=(Q: —0)({ — Q)
= (I —Qy), implying that I=Qy, a contradiction.

Thus it is impossible to simultaneously have Q;Q; =0 and (I —Q;)({ — Q) =0
for any 1 <k # ¢ <n. Combining this with Proposition 15, the statement follows.

O
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Remark. Suppose that with the above notation, we have
[-Q)I-Qj)=0=(I-Q;)I—-Qy), 1<i#j<n.

Then we may set §; = \; +a, vy = —a and V; = (I —Q;) to get @(E;) = 6,1 +~V;
and V;V; =0=V;V;, 1 <i<j <n. Assuch, there is no loss of generality in assuming
a priori that Q;Q; =0 = Q;Q;.

Lemma 17. Let {Q;}", be n mutually disjoint non-zero commuting idempotents in
Tn. Then there exists an invertible operator R € T, and a permutation = :{1,2,...,n} —
{1,2,...,n} such that

RT'QiR = Er(iyr(s), 1<i<n.

Proof. We shall argue by induction on n, the dimension of the underlying vector space.
If n = 1, there is nothing to prove. Suppose therefore that the result holds when the
dimension of the space is (n —1). The fact that the Q; ’s are non-zero mutually disjoint
idempotents forces ¢(Q;) = {0,1}, 1 < i < n. Since there are n such idempotents acting
on an n-dimensional space, each idempotent must have precisely one “1” on the diagonal
with the remaining diagonal entries being “0”.

Choose (1) € {1,2,...,n} such that (Qrm)e1,e1) =1, (Qrqa)er,ex) =0, 2
k < mn. Since Q) is an idempotent in 7,, we also have (Qr1)ej,ex) =0, 2 <
n, j <k <n. Thus

IAIA

[1 Y12 Y13 ... Yin | [1 —vy12 —y13 ... —Y1n
0 0 ... O 1 0 ... 0
Qﬂ-(l) = 0 . Set R1 = 1 :
' .10
i 0 | i 1]

Obviously R; € 7, and is invertible. Then Rl_lQ,,(l)Rl = F11. Moreover, if we set
G = Rlele, 1 <k <mn, then {Gy}}_, forms a set of commuting non-zero idem-
potents (mutually disjoint) with Gr) = E11. Since G; commutes with G, ;) for all
1 <j<n, andsince (Gjer,e;) =0 from above, we see that for 1 <j # 7(1) <n,

a 0 O
j= sl
0 Gj
where G is the compression of G; to the subspace span{es, es,...,en}-
By our induction hypothesis, there exists Ry, a triangular operator acting on
span {es, e3,...,e,} such that {R2_1G;~R2}1§j¢,,(1)§n is a permutation of the diagonal
matrix units of the corner algebra (i.e. the compression of 7, to span{es,es,...,en},

which we may identify with 7,_1).
11



1 0
0 Ry
verified that {R™'Q;R}7_, is a permutation of {Ej;}7_,.

Next, we set R = [ ] Ry, so that R € 7,, R is invertible, and it is readily

g

Observation 18. At this point, it may be worth reviewing our situation. We currently have
(without loss of generality)

0(Eii) = NI + 0@,

where 0 #a € F, \; € F and Q? = Q; # 0, 1 <4 < n. Moreover, by the Remark
following Proposition 16, we may also assume that Q;Q; = Q;Q; =0, 1 <i#j <n.
Set p; = R~ '@R, where R is the invertible matrix from Lemma 17. Clearly p;
is still bijective and preserves commutativity in both directions, and p;(F;) = NI +
aBriyn@), 1 <@ <n for some permutation m of {1,2,...,n}. Next,let 71 :7, = FI
be the linear functional determined by
Tl(Ei')Z—AiI 1§i§(n—1)
Tl(I):OZTl(EZ") 1SZ<]S’I’L

Set p2 = p1 + 7. Then po(f) = I and so by Lemma 9, py is also bijective and
commutativity preserving in both directions. Moreover

p2(Eii) = aBr(iyry  1<i<(n—1)
p2(Esj) = p1(Eij) 1<i<j<n
1.

pa2(I)

Next, let 75 be the linear functional determined by

7'2(Eij) =0 if (7”.7) 7é (TL, n)

72(Epn) = (a — 1)1

Define p3:= pa+72 toobtain p3(Ei) = aFr(iyx@), 1 < i< n. Finally, set p= (a™1)ps.
Again, p is bijective and commutativity preserving, and now p(F;;) = w(i)n(i)y 1 <
1< n.

Note that p= (a™!)(R71pR) + a~ (71 + 72). Our next step is to show that either
(a) m(k)=k, 1<k<n or (b) nlk)=Mn+1)—k, 1<k<n.
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Lemma 19. Suppose 1 <i<j<mn, and (i,j) # (1,n). Then dim{E;;}' < dim{E,}' =
n(n+1)/2 - 1.

Proof. It is readily verified that {F1,} = {[ai;] € Tn : a11 = ann} and therefore
dim{FEq,} =n(n+1)/2 - 1.
AlSO, {Eij}l = {[aij] € Tn: ay = Qjj, Oki = 0 if k 7é i, Ajm = 0 if m 75 _]}
The dimension of the latter space is n(n +1)/2 - (n+i—j) < n(n+1)/2 — 1 unless
1=1,5=mn.
O

Proposition 20. Let 7 be the permutation of {1,2,...,n} suchthat p(Ey) = Ex@yn(i),
1 < ¢ < n, where p s the bijective map which is commutativity preserving in both
directions, as obtained in Observation 18. Then either

(i) n(j)=4, 1<j<mn, or
(i) 7(j)=(Mm+1)—-j, 1<j<n.

P’I"OOf. STEP ONE. We have p(Eu) = Eﬂ-(i)ﬂ-(i), 1 <7< n. Let Hij = p(E,'j), 1<i<
J < n. We claim that there exist scalers ~y;; and p;; such that H;; = fyij(EO(i)w(j))—i-uijI

where Eg(i)r(j) = Ex@iyr(j) OT Eg(i)ﬁ(j) = E(j)r(i) (depending upon whether 7(i) <
w(j) or m(i) > m(j) respectively).
To see this, note that for k ¢ {7,j}, [Eij, Exx] =0, and hence [Hij, Er(kyn)] = 0.

Thus

(Hijerk)) ® exry = Hij(err) @ ex(r))
= (evr(k) ® ew(k))Hij

= ex(k) ® (Hijen(r)),

and so Hije,r(k) € ]Feﬂ.(k), Hitjew(k) € Few(k)- We deduce that H;; = ’ying(i)ﬂ(j) + Cij,
where Cj; is a diagonal matrix. Note that <;; # 0, since C;; lies in the span of
{Ekk}7r_,, but H;; does not, and p is bijective.

Next, fix £,m sothat j# ¢ <m #i. Then [Eyy, E;j] =0, forcing [Hyp, Hij] = 0.

Upon expanding, we get
Ve Eneyn (my» Cig] + Yii [ En(iym (), Cem] = 0.

If we temporarily denote Cj; by diag(zr) and Cp, by diag(yx), the equation implies
that

Vem (T (m) = Tr(8)) B (0yr(m) = 0

and  Yij(Yn() — Un(i) Eagiyn(j) = 0
13



and hence that Zr(n) — Zre) =0 for all j # £ < m # 4. But this implies that C;; =
Zn(i)I, which we relabel as p;;I. We therefore have H;; = 'ying(i)W(j) + pijil.

STEP Two. Let 7: 7, — FI be the linear functional determined by 7(E;) =0, 1 <
¢t <n and 7(E;j) =—pi;1, 1 <i<j <1 Then py = p+ 7 is bijective and preserves
commutativity in both directions, while po(Ei) = Er(iyr(iy, 1 < i@ <n and po(E;;) =
'Ying(i)w(j); 1<i<j<n.

STEP THREE. We now claim that {n(1),w(n)} = {1,n}. Indeed, consider H;, =
’YlnE,?(l)ﬂ(n)- Then dim{E1,} =n(n+1)/2—1, so dim{H,} =n(n+1)/2—-1, forcing

Eg(l)ﬂ(n) = F1,,, by Lemma 19. Thus either n(1) =1, n(n) =n, or n(l) =n, m(n) = 1.

0 ... 0 17
STEP FOUR. Suppose n(1) =n, n(n)=1. Let J = 0| be the operator
0 . :
1 0 ... 0l

defined in Section 1. Let p{(A) = J(po(A))*J for all A € T,. Again, pj is bijective,
preserves commutativity in both directions, and pi(E11) = F11, p4(Fnn) = Enn. There-
fore, by replacing pg by p; if necessary, we may assume that 7(1) =1, m(n) =n. (This
replacement gives rise to the second possibility of Theorem 4.)

STEP FIVE. We have Eﬂ(l)ﬂ.(l) = FEy1, E,r(n)ﬂ.(n) = E,,. Thus p()(Ekn) = Eg(k)n =
Er(yn, 1 < k < n. This implies that the compression of py to span{ei,...,e,_1}
is again a bijective, commutativity preserving (in both directions) map. The associated
permutation, call it =, is simply a restriction of 7= to {1,2,...,n — 1}. The above
arguments show that n(n —1) =n.(n—1) € {1,n—1}. But n.(1) =n(1) =1 and =,
is injective, so w(n — 1) = m.(n — 1) = (n — 1). Continuing in this manner we see that
w(k)=k 1<k<n.

dJ

Proposition 21. Let py be a linear, bijective map preserving commutativity in both
directions and satisfying po(Fy) = Eii, 1 < i < n, po(Eij) = vijFij, 1 <i<j<n,
where y;; are non-zero scalars. Then there exists an invertible matriz D such that

po(A) =D7Y*AD forall AcT,.

Proof. We see immediately that po is a Hadamard multiplier — i.e. po([aij]) = [vijai;] ,
where we set v;; =1, 1 <i<mn. Set dy =1, and for 2 <r <mn, set d. = dr_1Yr—1+-
Then

Dpo(A)D™ = [divijdy taig) = [kijai),
14



where kij = d;7vijd; '. Note that ki =1, 1 <i <n and that kjjy; =1, 1<i<n—L
Furthermore, the map A+ Dpg(A)D~! preserves commutative in both directions.

We claim that k;; = 1 for all 1 < 4 < j < n. For suppose otherwise. Fix
1 < ¢ < (n—2) maximal with respect to the condition that there exists m > ¢ + 1
such that kg, # 1. Let A = epp41 + €om and B = epy1n — €mn. Then [A, B] =
(en —0+0—e€p,) =0, andso A and B commute. On the other hand,

[Dpo(A)D™1, Dpo(B)D™'] = e, — kemeen # 0,

a contradiction. Thus k;; =1 for all 1 <i < j <mn, and hence Dpo(4A)D~' = A for
all A € 7,. In other words, po(A) = D7'AD for all A € 7,, completing the proof.
O

Conclusion
The ingredients required to complete the proof of Theorem 4 are now all present.
We have an invertible matrix D € 7, (in fact D is diagonal) such that

po(A) =D7'AD forall AcT,.

Now from Step Two of Proposition 20, there exists a linear functional 7 such that py =
p + 7, where from Observation 18

p= a_l(R_lgoR) + a_l(ﬁ + 79),

0#aclF, ReT, isinvertible and 7,79 are linear functionals. Putting these together,
we obtain:

D'AD = o Y (R7'oR) + o (11 +72) + T,
or ¢ =a(RD"HADR™Y) + (ar — 1 — ).

Letting ¢ = o, S = DR™! and f = ar — 71 — T3, we recover the first statement of
Theorem 4. The second possibility of Theorem 4 arises if we must use p; instead of pg
in Step Four of Proposition 20.

a

Remark. In a related article [MS], we describe the Lie automorphisms of nest algebras
acting on a Hilbert space.

This research was conducted while the first author spent part of his sabbatical at the
University of Victoria. He thanks the Department of Mathematics and Statistics of the
University of Victoria for their hospitality during his stay.
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