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1. Introduction and Statement of the Main Theorem

Characterizing isometries of spaces of matrices or operators under various norms has
been a fruitful area of research for a long time. One of the earliest results is Kadison’s
[Ka| characterization of isometries for the usual operator norm on B(H), the space of all
bounded linear operators on a Hilbert space H. Isometries of various symmetrically normed
ideals were characterized (see, e.g., [So].) More recently, triangular matrix algebras and
triangular operator algebras have received a great deal of attention in several contexts. In
particular isometries of nest algebras or affiliated spaces have been investigated (see [AK]
and the references therein).

In this article, we restrict our attention to finite dimensional spaces and to block upper
triangular algebras of matrices. We characterize the isometries for Ky-Fan norms (defined
below) on such algebras. The analogous question in the full matrix algebra has been dealt
with in [GM].

We start by fixing notation and terminology. All matrices are over the complex field
C. Let C™ be the vector space of n x 1 matrices equipped with the Euclidean norm ||z||,
and the standard basis {ej,...,en}.

Denote by M, the algebra of all n x n complex matrices. For a finite sequence of
positive integers ny,na, ..., ny, satisfying ny + na + ...+ ny = n, let T(nq,na,...,n;) be

the algebra of all n x n matrices of the form

All A12 . Alt
- 0 A22 . A2t
0 0 ... Ay

where A;; is an n; X n; matrix. We call such an algebra a block upper triangular matriz
algebra. Up to algebra isomorphisms, these are all the finite dimensional nest algebras. In
particular, when n; = 1 for every j, we have the algebra 7, of upper triangular matrices.

Let A € M,. Denote the transpose and adjoint of A4 by A® and A*, respectively;
furthermore, denote by spec A the spectrum of A. The singular values s;(A) of a matrix
A € M, are the eigenvalues of (A*A)l/ 2 repeated according to multiplicity and arranged
in decreasing order s1(A) > s9(A) > ... > s,(A). For a positive integer k < n, the Ky-Fan
k-norm is defined by

k
4l =" 55(4)
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This is a unitarily invariant norm, that is ||A||x = ||[UAV|| for any unitary matrices U and
V. Notice that for £ = 1, this is the usual operator norm with matrices acting as operators
on the usual unitary space C", and the case k = n is the so-called trace norm trv/A*A.
We turn our attention to the “usual forms” of isometries. In the case of the full matrix
algebra M,,, the isometries of most unitarily invariant norms take one of the following forms
X —» UXV,and X — UX'V, where U and V are unitary matrices (see [So] and [LT]).
In the case of upper triangular matrices, the transpose is replaced by the map X — X,
the transpose with the respect to the anti-diagonal, i.e., the “diagonal” containing the
positions (1,n) and (n,1). We observe that this map preserves the sequence of singular
values, indeed At = JA'J, where J is the involution matrix J = [0, 14n—;], and where §

is the Kronecker delta.

Now, we state the main result of this article. To simplify the statement we make the

convention that || A||x, for A € M,,, and k > m, will be the same as the trace norm.

Theorem. Let A = T(ni,n3,...,n¢) and B = T (my,ma,...,ms) be block upper tri-
angular algebras in M,, and M,,, respectively, and let ¢ : A — B be a surjective linear
isometry for the Ky-Fan k-norm ||Al|g, (1 <k <n). Then m =n, s =t, and there exist
unitary matrices U and V in B such that one of the following holds:

(1) nj = m; for every j, i.e., B= A, and ¢ has the form A — UAV, A € A.

(2) nj = my4y4—j for every j, i.e., B= AT, and ¢ has the form A — UATV, A€ A.
Conversely every map of the form described above is a linear isometry with respect to any

unitarily invariant norm.

Several remarks are in order.

1. A unitary matrix U in a triangular matrix algebra T (ni,na,...,ng) must necessarily
be block-diagonal, i.e., U = Uy @ Uy & ... ® Uy, for unitary matrices U; € M,,;.

2. The above results imply that ¢ : A — B is a surjective linear isometry for the Ky-Fan
k-norm, 1 < k < n, if and only if ¢ extends to an an isometry of the full matrix
algebra M,, that maps A onto B.

3. One way to distinguish the two forms in the theorem is that if we multiply a map ¢
of type (1) by ¢(I)~! then we get a multiplicative map, while in the case (2) we get

an anti-multiplicative map.

4. Another way to distinguish the two forms is that every map ¢ of form (1) is “completely
isometric” in the sense that for every positive integer m, the naturally induced map

¢ ® id from A ® M,, to B ® M,, is an isometry, while maps of type (2) are not
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All A12

0 0 ] . where A;; = eje], A2 = eje), and

even 2-isometric. Indeed if A = [

A AL
B = [ 011 012] , then it is easy to see that ||Al|x # || B||-

5. A more thoroughgoingly triangular version of the above is that ¢ ® id is an isometry
from A® Ty, onto B® T, if and only if it is of the form (1) of the Theorem.

2. Proofs and Related Questions

Two matrices A and B in M,, are called orthogonal if AB* = A*B = 0. We write
A 1 B to indicate that A and B are orthogonal.
As usual, if a matrix A € M, is identified with the linear transformation it induces

on C", then the image (or range) of A is denoted by ran A.

Lemma 1. Let A, B € M,,. The following are equivalent

(a) A L B;

(b) ranA 1 ran B and ran A* | ran B*;

(c) there exist unitary matrices U,V € M,,, C € M,,, and D € M,,_,, such that

UAV =C®0 and UBV =08 D.
Proof. Straightforward. |
The next result is well known. We include a short proof for completeness.

Lemma 2.
(a) If A and B are positive semidefinite matrices, then spec(AB) C [0, c0).
(b) If A and B are positive semidefinite and if spec(AB) = {0}, the AB = 0.

Proof. (a) If A is invertible, then AB is similar to AY2BA'Y2, which is positive
semidefinite and the result follows. In the general case A is a limit of a sequence {A4;} of
invertible positive definite matrices and so AB = lim(A;B), and the result follows from
the continuity of the spectrum.

(b) There is nothing to prove if A = 0, so assume that A # 0. First if A is invertible,
then again we have that the positive semidefinite matrix A/2BA/? is similar to AB and
thus has zero spectrum. This occurs only if AY2BA'Y2 = (0 which in turn implies that
B = 0. In the general case, we replace A and B by UAU* and UBU* for a unitary matrix
U, and so we may assume without loss of generality that

A1 O | Bi1 B2
A—[ 0 0} and B_[BIQ ng}
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where Ai; is positive definite. Now spec(A11B11) = spec(AB) = {0} and so By; = 0
since Aip is invertible. As B is positive semidefinite, we must have that Bis = 0, and so
AB = 0. |

The next lemma is Proposition 1.1 in [CHL)].

Lemma 3. Let A, B € M,, be nonzero matrices such that ||A+ B||x = ||A|lx+||B||x- Then
there exist unitary matrices U,V € M, and positive semidefinite matrices A1, By € My,
such that the singular values of A, (respectively B;) are the k largest singular values of A

(respectively B) and
UAV:Al@Ag and UBV:Bl@Bz
for some matrices Ay, By € M,,_.

Lemma 4. Let A, B € M,, be nonzero positive semidefinite matrices, and let w # 1 be a

unimodular complex number. If ||A+wB]||x = ||Al|x +||B||x, then A and B are orthogonal.

Proof. The singular values of A and B are denoted by 0 # p; > ps > ... > p, and
0# q1 > q2 > ... > qn, respectively. Furthermore let s; > s > ... > s, be singular
values of A + wB. By Lemma 3, applied to A and wB, we get that there exist unitary
matrices U and V such that

UAV = Ag® A" and UBV =wB,® B/,

where Ay, By € M, are positive semidefinite matrices with singular values p;,-- -, px and
q1,- -, qx respectively.

Now (UAV)(UBV)* = UABU* has the same spectrum as AB, which, by Lemma 2
is included in [0, 00). Since wAyBy is a direct summand of (UAV)(UBV)*, it follows
that spec(wAoBop) C [0, 00). On the other hand spec(AoBy) C [0,00), by Lemma 2 again.
Thus, if X denotes the nonnegative x-axis, then spec(ApBp) C X NwX and so it must be
{0}. By Lemma 2, we get that AgBy = 0. Since A # 0 and B # 0, we have that p; # 0
and ¢; # 0, and so Ag # 0 and By # 0. However AgBy = 0, hence both of Ay and By must
be singular. Thus py = g = 0, and hence p; = ¢; =0 for all j > k,ie, A'=B" =0. It
now follows that AB* = B*A = 0 as required. |

Lemma 5. Let A, B € M,, be nonzero matrices. Then ||aA+ BB||r = |a|||Allx + |5] || B|x
for every pair of complex numbers o and 3 if and only if A 1. B and rank A +rank B < k.
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Proof. The “if part” is easily verified by using Lemma 1. To prove the converse,
we start by noting that due to Lemma 3, we may assume with no loss of generality that
A=A ® As, and B = By & By, where Ay, B1 € M}, are positive semidefinite matrices
whose eigenvalues are py, - - -, pr and g1, - - -, g, respectively. (We use the same notation for
the singular values of A, B and A + B as in the proof of the preceding lemmas.)

For every unimodular complex number w # 1, we have |41 + wB1||x < ||[A+wBl||x =
NAllx + [|Bllg =71+ +7% = (p1 + -+ oK) + (@1 + -+ - + gx.) We consider two cases
according as ||A1 + wBil|le = p1 +q1 + -+ + pe + q¢ for some £ < k and some w # 1 or
not. In the former case, we get by Lemma 4, that A; 1 By, which implies that both of A
and B; are singular, i.e., pr = qx = 0. Thus Ay = Bs = 0, and A and B are themselves
mutually orthogonal. The orthogonality of A; and B; implies that the sum of the ranks is
at most k. This completes the proof in the case that |41 +wBi|le=p1+ g1+ +pe+q
for some w # 1 and some £ < k.

Next, we consider the case when ||A; +wBi|ls < (p1 +q1) + -+ + (pe + q¢) for every
w # 1 and every £ < k. Our aim is to show that this is not possible. Denote the singular
values of A; + iBy and As +1iBs by s; > --- > s, and o1 > --- > 0,_j respectively.
We now show that oq,---, 0 are the k largest singular values of A 4+ ¢B. Assume, to the
contrary, that there exists a positive integer j < k such that the k£ largest singular values

of A+iB are {s1,---,s;} U{o1,---,0,—;}. By our assumption we have
31+---+sj<(p1—|-q1)+----|-(pj—|-qj). (1)
On the other hand

o1+ +0k—j < Prt1+41)+ -+ 02— +26—5) < Pjr1+¢j+1)+ -+ e+ k). (2)

Upon adding (1) and (2), we get ||A +iB|x < ||Allx + [|Bl|x, which contradicts our as-
sumption. This proves that the k largest singular values of A 4+ ¢B are indeed o1, - - -, 0.
Returning to inequalities (2), we see that the leftmost side equals the rightmost side due
to the basic assumption about the norm equality. It follows that all three expressions
in (2) are equal to each other. Thus p; = pg4; for 1 < j < k and similar equalities
also hold for g;. Therefore p; = --- = pop and ¢1 = --- = qor. We also have that
|A2 +iBsl||x = ||A2]|x + || B2||x and so by Lemma 3, there exist unitary matrices U and V>
such that Uy AsVs and iU B3Vs are themselves direct sums as in Lemma 3. The equality
of the first 2k singular values now gives us that there exist unitary matrices U and V such
that

pily 0 0 q11y 0 0
UAV = 0 plfk 0 and UBV = 0 —iqllk 0
0 0 A3 0 0 B3



where Iy, is the identity matrix in M.

Now, if we combine the first two direct summands, write UAV = Ay A3 and UBV =
By @ Bs and if w is a complex number of modulus 1, w ¢ {1,7}, and £ < k, then ||A¢ +
wBolle < ||Aolle + ||Bolle, since max{|p1 + wqi|, |p1 — iwq1|} < (p1 + ¢1). This means
that we may continue and write A3 and B3 as direct sums. This process may be repeated

indefinitely, which is absurd as n is finite. |
Recall that {e1,...,e,} is the standard basis for C".

Lemma 6. If R, is a rank one matrix in M,,, n > 3, then there exist n—2 rank one matrices

Rs,---,R,,_1 € T, such that the matrices Ry, Ro,-- -, R,_1 are mutually orthogonal.

Proof. Let Ry = zy*. Set u; = z. For j = 2,...,n, let u; be a nonzero vector in the
linear span of {e1,...,e;} perpendicular to uq,...,u;—1. Then
(i) u; € span {e1,...,e;}; (2<j<n);
(ii) the vectors x, ug,- - -, u, are mutually orthogonal.
Similarly we may find vectors vy, vs, -+, v,_1 such that
(a) v; €span {ej, - -,en}t; (1<j<n—1);
(b) the vectors y, vq,---,v,_1 are mutually orthogonal.
Let R; = ujfu;-‘ for 2 < 7 <n—1. It is then obvious that Ry, Rs,---, R,_1 are mutually
orthogonal. |

Proof of Theorem. Let ¢ be an isometry. We will first show that ¢ maps every rank
one matrix to a rank one matrix. Assume that A is a rank one matrix in .A. By Lemma 6,
there exist £ mutually orthogonal rank one matrices A; = A, Ay, ---, Ay € A. By Lemma
5, (A1), p(Az),- -, d(Ax) are mutually orthogonal. Furthermore, if B = Ay + - - + Ag,
then again by Lemma 5, we have that rank¢(A)+rank¢(B) < k. Since the rank is additive
on orthogonal matrices, we conclude that Z’f rank¢(A;) < k. Thus rank¢(A4) = 1.

The structure of maps on triangular algebras that preserve rank one has been deter-
mined in [BS]. Indeed Theorem 4.4 in [BS] establishes that m = n, B = A or A" and
that ¢(A) = UAV for every A € A or that ¢(A) = UATV for every A € A for invertible
matrices U and V in B. It remains only to prove that U and V may be chosen to be
unitary. Plainly, it suffices to establish this only in the case ¢(A) = UAV.

First, we may multiply U by X := ||V *e,||, and V by A~!. Therefore, we may assume
that ||[V*e,|| = 1. For every vector x € C™, the matrix ze) belongs to every triangular
matrix algebra. Furthermore the norm preserving property of ¢ implies that ||[Uz|| = ||z||

for every x. Therefore U is unitary. A similar calculation shows that V is also unitary.
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As to the converse, it follows from the well known facts that every unitarily invariant
norm is a function of the singular values (see [Ne|) and that the sequence of singular values
of At is the same as that of A. |

We raise the question whether our result extends to the space of compact operators
in a nest algebras on an infinite dimensional Hilbert space. It is known (see [LT] and [So])
that a surjective isometry for a unitarily invariant norm, which is not a multiple of the
Frobenius (Hilbert-Schmidt) norm, on M, or a symmetrically normed ideal of compact
operators has the form A — UAV or A — UA!'V for some unitary U and V, where A?
is the transpose with respect to a fixed orthonormal basis. Our theorem and the result
in [AK] show that a similar conclusion holds for surjective isometries for certain unitarily
invariant norms on some triangular algebras. It would be of great interest to further extend

the results to other unitarily invariant norms on finite or infinite dimensional spaces.
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