SEMIGROUPS GENERATED BY SIMILARITY ORBITS

L. GRUNENFELDER, M. OMLADIC, H. RADJAVI, A. SOUROUR

ABsTRACT. We investigate the semigroups in My, (F) generated by the similarity orbit
of single matrices.

0. INTRODUCTION

Question. What is the semigroup in M, (F) generated by the similarity orbit of a
single matrix of rank &k ?

In section 1 and 2 we consider the semigroup S in M, (F) generated by the similarity
orbit of an invertible matrix A. In this case S is of course a semigroup in GL,, (F'), and
it is a normal subgroup if and only if det A is a root of unity in F*. For a non-scalar A,
except when n = 2 and |F| < 3, these normal subgroups are isomorphic to semi-direct
products S = SL,,(F) x U, where U is the cyclic subgroup of F* generated by det A.

Some bounds for the number of similarity factors required are found in section 2.
Let (A)m = {A142.. . Ap|A; ~ Afor j =1,2...,m}. If A= Al is scalar, then of
course (A),, is the singleton {A\™I}. If A is not scalar, an obvious necessary condition
for T to be in (A),, is that det(T) = (det(A))™. We prove that this condition is
sufficient if m is large enough. We find a bound on m in terms of the number of linear
invariant factors of A; this bound never exceeds 4n.

In section 3 we find that the semigroup in M, (F) generated by the similarity orbit
of a singular matrix A with rank A = r < n consists of all matrices of rank less than
or equal to r.

1. SEMIGROUPS GENERATED BY THE
SIMILARITY ORBIT OF AN INVERTIBLE MATRIX

The semigroup S in GL,, (F) generated by the similarity orbit of a matrix A of finite
multiplicative order is automatically a normal subgroup of GL,,(F). It is therefore
useful to characterize the normal subgroups of SL,,(F) and of GL, (F) first. Recall
[AB] that SL,, (F) is perfect, i.e. SLy,(F)a = SLy,(F)/[SL,(F),SL,(F)] is trivial, and
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PSL,, (F) is simple when n # 2 and |F| # 2, 3. Moreover, Z(SL,,(F)) = Z(GL,,(F)) N
SL,,(F) for every field F.

Lemma 1.1. Let H be a normal subgroup of SL,(F), where n # 2 and |F| # 2, 3.
Then either

(1) H consists of scalar matrices and is therefore a cyclic subgroup generated by
an n-th root of unity, or
(2) H contains a non-scalar matriz and is equal to SLy, (F).

Proof. If Z = Z(SL,(F)) = SL,(F) N Z(GL,,(F)) is the center of SL, (F), i.e. the
cyclic subgroup of n-th roots of unity, then the obvious commutative diagram

1 1 1

l— > HNZ —— Z —— Z/HNZ ——1

1—— H —— SL,(F) —— SL,(F)/H ——1

1 —— n(H) —— PSL,(F) —— PSL,(F)/n(H) —— 1

1 1 1

has exact rows and columns. Now, either n(H) = 1 or n(H) = PSL,(F), since
PSL,, (F) is simple. If n(H) =1 then HNZ = H, so that H C Z. If n(H) = PSL,(F)
then Z/H N Z = SL,(F)/H is abelian, hence trivial, since SL,(F) is perfect (i.e.
SL,,(F)ap is trivial), so that H = SL,,(F). O

Observe that the exact sequence of groups

1 — SL,(F) — GL,(F) 2% F* — 1

splits; for example the homomorphism s : F* — GL,,(F) defined by s(z) =2 & I,,_1

is a section. Thus GL,,(F) = SL,,(F) > F*, the semidirect product, where the action
a: F* x SL,(F) — SL,(F) is given by a(z, A) = s(z)As(z) L.

Proposition 1.2. Let G be a normal subgroup of GL,,(F), where n # 2 and |F| #
2,3. Then, either

(1) G consists of scalar matrices and therefore G C Z(GL,(F)) = F*, or
(2) G contains a non-scalar matriz and is a semidirect product G = SL,,(F) < U,
where U = det(G) C F*.
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Proof. The commutative diagram

1

l

1 — GNSL,(F) ——

l

1 —— SL,(F) —— GL,(F) —=* F~ > 1

AN
7

— 3 «— +~
~
[a—

l det
J

has exact rows and columns. The bottom sequence is split by the homomorphism
s: F* — GL,(F) defined by s(z) = @ I,,_1, so that GL,(F) = SL,,(F) ba F*. The
action a : F* x SL,,(F) — SL,,(F) is given by a(z, A) = s(z)As(z) L.

If G consists of scalar matrices then the assertion is obvious. If G contains a
non-scalar matrix A then for some S € SL,(F) the element [S, A] = SAS™1A™! of
GNSL, (F) is not scalar. For, suppose to the contrary that [S, A] = SAS™!A™1 = \gI,
i.e. SAS™! = A\gA, for all S € SL,,(F). Then A : SL,,(F) — F* is a homomorphism of
groups and in particuar Aig ) = 1 for all S, T € SL,(F). Since SL,(F) is perfect, i.e.
[SL,, (F), SL,, (F)] = SL,,(F), it follows that Ag = 1 and hence [S, A] = I for all S €
SL,(F), which means that A is scalar. Thus, if G contains a non-scalar matrix then
so does G NSLy,(F), and G N SLy,(F) = SL,(F) by Lemma 1.1. Then det™(U) = G,
hence the top exact sequence of the diagram splits, and G = SL,,(F) < U. O

Corollary 1.3. Ifn # 2 anf |F| # 2,3 then the subgroup G of GL,, (F) generated by
the similarity orbit of a non-scalar invertible matriz A is of the form G = SL,, (F) <
U, where U is the cyclic subgroup of F* generated by det A.

To determine the semigroup S (as opposed to the group) generated by the similarity
orbit of an invertible matrix is more complicated. Since every square matrix has a
rational canonical form it is useful to start with the companion matrix of a polynomial,
i.e. a cyclic matrix.

Lemma 1.4. The semigroup S in GL,(F) generated by the similarity orbit of the
companion matriz A of the polynomial p(x) = ™ + a, 12" 1 + ...+ a1x + ag with
det A = ag # 0 contains the diagonal matriz I,_1 & a% and the scalar matriz a%I.

Proof. If () is the involution obtained from the identity I by reversing the order of
the rows then B = QAQ is the matrix obtained from A by first reversing the order
of the rows of A to get a matrix C' and then reversing the order of the columns of C'

to get B. Then
A In-1 X
pa= ("' %)

for some X, where I,,_; is the identity matrix of size n — 1. If a2 # 1 then BA
is similar to I,,_; @ a2, as can be seen by replacing the last vector in the standard
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ordered basis {e;]1 < i < n} of F™ by e, + (1/(a2 — 1)) 3.7 zie;. Thus we are
done in this case, since by a cyclic permuation similarity argument a2l is in S. If
a2 =1 then BA =1+ N with N2 = 0. Since I + N is similar to I — N, which is
easily seen by replacinge,, by —e,, in the standard ordered basis of F", it follows that
(I+N)I-N)=TisinS. O

Proposition 1.5. The semigroup S in GL,(F) generated by the similarity orbit of
an invertible matriz A contains an upper-triangular matriz U with det U = det A2?,

a diagonal matriz D with det D = det A* and a non-zero scalar matriz \I with A =
det A",

Proof. We may assume without loss of generality that A is in rational canonical form.
Apply Lemma 1.4 to each companion matrix in the rational decomposition of A to get
an upper-triangular matrix BA ~ (I+ N)® D, where B is similar to A, D is diagonal,
det D = det A? and N? = 0. Again, since (I + N) @ D is similar to (I — N) & D, it
follows that (I + N) & D)((I — N) @ D) = I ® D?. Cyclicly permuting the diagonal
entries of I @ D? yields n mutually similar diagonal matrices. The product of these
diagonal matrices is the scalar matrix A\I € S, where A = det A**. O

Corollary 1.6. Let S be the semigroup in GL,(F) generated by the similarity orbit
of an invertible matriz A. Then S is a normal subgroup of GL,(F) if and only if
det A is a root of unity. If d = det A is a root of unity and A is not scalar then
S 2 SL,(F) < d >, except when n =2 and |F| = 2,3. In particular, if d = 1 then
S = SL,(F), except when n =2 and |F|=2,3

Proof. If d = det A is not a root of unity then detS # 1 for all S € S and the
semigroup S is not a subgroup of GL,(F). If d™ = 1 then I = D™ = XSAS~! in
SL,(F) for some X € SL,, (F) and some S € GL,,(F), where D is the diagonal matrix
of Proposition 1.5. Thus, A~! = S71XS € S and S is a subgroup of GL,(F). Now
apply Proposition 1.2. [

In the two exceptional cases n = 2 and |F| = 2, 3 the group PSL,, (F) is not simple
and SL,, (F) is not perfect. These cases have to be considered separately.

The group GL2(Z2) is not abelian and |GLy(Z3)| = 6, so that PSLy(Zy) =
SL2(Z3) =2 GL2(Z3) =2 S3, the symmetric group on three symbols. The only proper
normal subgroup of GLy(Z3) is therefore the cyclic subgroup C3 of order 3 generated

by
11 s i 0 1
1 0 Oor 1US 1Inverse 1 1 .

Proposition 1.7. If I # A € GLy(Z3) then S = C5 if A has order 3 and § =
GLy(Z53) otherwise. O

In the case of GLy(Z3) we have | GLy(Z3)| = 48 and Z(GL3(Z3)) = Cs is the cyclic
subgroup of order 2 generated by 2/. In the commutative diagram with exact rows
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and columns
z z
SLy(Z3) —— GLy(Z3) —=s 7
| | |
PSLy(Z3) — PGLy(Z5) —= 72

the determinant map is split by the homomorphism s : Z5 — GL3(Z3) defined by
s(2) = diag[2,1]. Moreover, the Sylow 2-subgroups of SLy(Z3) and PSLy(Z3) are
normal, they are a copy of the quaternion group () generated by the two matrices

2 1 1 1
X—(1 1) and Y_<1 2),
and a copy of the Klein 4-group V generated by n(X) and n(Y), respectively. We
have a commutative diagram with exact rows and columns

A A

l l

Q —— SLa(Zs) -, Cs

d d |

V —— PSLQ(Zg) —_— Cg

in which the canonical projection p : SLy(Z3) — Cj3 is split by the homomorphism
t : C3 — SLo(Z3), where
1 1

the image of a generator of C3, generates a Sylow 3-subgroup of order 3 in SLy(Z3).
Observe that s(Z3%) acts on ¢(C3) and on @ while ¢(Cs) acts on @ by conjugation,
so that Cg > Z; = 53. ThllS, PSL2(Z3) &2V x 03, SL2(Z3) = Q > 03 and
GLy(Z3) = SLy(Z3) > Z5 = @ <1 S3. There are three Sylow 2-subgroups of order
16 in GLy(Z3), namely @ < Z% and its conjugates. They intersect in the normal
subgroup . The proper normal subgroups of GLs(Z3) are therefore Z = Cy, @) and
SLa(Z3).

Proposition 1.8. Let I # A € GLy(Z3).

(1) Ifdet A =1 then S = Z,Q,SLy(Z3) depending on whether the order of A is
2, 4 or divisible by 3.
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The main result of [S] will be used repeatedly in the next section. We record it
here, without proof, for future reference.

Theorem 1.9. Let A € GL,(F) be nonscalar and let B;,v; (1 < j < n) be elements of
F* such that H?Zl Bjv; = det A. Then there exist matrices B and C in GLy, (F) with
etgenvalues B, ..., Bn and vy1, ... ,Yn, respectively, such that A = BC. Furthermore,
B and C' can be chosen so that B is lower triangularizable and C' is simultaneously
upper triangularizable. [

2. SOME BOUNDS ON THE NUMBER OF SIMILARITY FACTORS REQUIRED

In this section we have to assume that the field F has enough elements, |F| > 2n
should suffice. The following result of Cater [C], which we quote here without proof,
will be used in our considerations.

Lemma 2.1. If M is a non-scalar in GL,(F) and det M = z1z2...x, then there
is a factorization M = AjAs... A, with det A; = x; and rank(A; — I) = 1 for
1=1,2,...,n. O

Observe that the properties of the matrices A; of Lemma 2.1 imply that A; is
similar to (I3 + J2) @ I,—2 if ; = 1 and similar to z; & I,y if z; # 1. Here is an
immediate consequence of Cater’s result.

Proposition 2.2. Let A be a non-scalar element of GL,(F) such that rank(A —
I) = 1. If detT = det A™ then T = A,As...A,, where A; is similar to A for
i=1,2,... . n.

Proof. The conditions imposed on A imply that A is similar to (Is + J3) & I,,_o if
det A = 1 and similar to det A® I,,_1 if det A # 1. By Cater’s Lemma 2.1 we see that
T =A1A,...A,, where det A; = det A and rank(A; — I) = 1, and hence where A; is
similar to A for7=1,2,...,n. 0O

Corollary 2.3. If T is in SL,(F) then T = A1A,...Ag for some k such that 0 <
k <mn, where A; is similar to A= (I + J2) ® In_2 fori=1,2,... k. O

Lemma 2.4. If A € GL,(F) is cyclic, then every T € GL,,(F) with distinct eigen-
values and det T = det A2 has a factorization T = A, Ao, where A; is similar to A
fori=1,2.

Proof. The matrix A is similar to the companion matrix of its characteristic polyno-
mial p(z) = ag + @12 + ...+ ap_12" "' + z™. Thus we may assume that

0 Qo
1 ai

1 Ap—1



SEMIGROUPS GENERATED BY SIMILARITY ORBITS 7

It is easy to see that via a suitable diagonal similarity A is similar to a matrix of the
form

0 bo
I1 bl
B = . ,
Tpn—-1 0Ap-1
where z1,x9,...,2,_1 can be chosen arbitrarily in F*, and where the determinant

condition bgx1Z3 . ..%L,—1 = ag holds. Then

p—1 Tp-1 0 aop Tn—1 *
1 a1
S=1 : , -
by 1 T : 1
bo 0 1 Ap—1 boao

is upper-triangular, and the first factor of S is similar to B via the similarity given
by the involution obtained by reversing the order of the rows of the identity matrix.
Since z1,T3,...,T,—1 and bpag can be taken to be the distinct eigenvalues of T' we
conclude that T is similar to S, and thus T is of the desired form. [

Proposition 2.5. Suppose that |F'| > 2n. If the rational canonical form of A has no
scalar direct summand then there exists a T € GL,(F) with distinct eigenvalues and
det T = det A% such that T = A1 Ay with A; and Ay similar to A. Furthermore, the
eigenvalues of T can be chosen outside a given subset E of F* if |[F| > 2(|E|+ n).

Proof. Assume without loss of generality that A is in rational canonical form A =
Ri® R ...D R,,. By hypothesis each rational cell R; has size k; > 2. Let ng =0
and n; =n;_1 +k; for j=1,2,... ,m. We want to apply Lemma 2.4 in sequence to
each rational cell R;. First choose n; —2 distinct elements z1, ..., z,,—2 of F* outside
E. Then choose distinct elements z,, 1 and z,, outside E' = EU{x1,... ,Zn,—2}
such that z1xs . ..x,, = det R?. This is possible if |F*| > 2|E'|+2 = 2(|E|+ny —1).
We have now used n; distinct elements of F*. Now let E; = EU{z1,...,%y, }, and
choose in the same way distict elements z,,4+1,...,%n, of F* outside E; such that
Tp,41---Tp, = det R3. This is possible if |[F*| > 2(|E1| + k2 — 1) = 2(E| + ng — 1).
Continue this process to obtain a sequence {z1,zs,...,z,} of distinct elements of
F* outside E with zy, 41...2;,, = det R} for j =0,1,...,m — 1. This is possible
if [F*[ > 2(|E|4+n —1). Now let T; = diag[zn;41,...,%n,,,]- Applying Lemma
2.4, we get factorizations T; = R’ R} with R} and R} each similar to R;. Then T =
T'6T:®...®T,, = R'R", where R' = R1®R,®.. . ®R,, and R" = R/®R}®...®R!
are both similar to A. 0O

Theorem 2.6. If the rational canonical form of A has no scalar direct summand
then every matriz B with det B = det A* is of the form B = A1 Ay A3 A4, where A; is
similar to A fori=1,2,3,4.

Proof. Use Theorem 1.9 to write B = LU, where L is lower-triangular and U is
upper-triangular, each with the same spectrum as the operator T of Proposition 2.5.
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Thus L and U are both similar to 7. It then follows from Proposition 2.5 that
B =LU = A{A3A3A,4, where A; is similar to A fort=1,2,3,4. O

Corollary 2.7. Let A € GL,,(F) be such that its rational canonical form has no scalar
direct summand, and let k be any natural number. Then every matriz B € GL,,(F)
with det B = det A*f is of the form B = A1A, ... A4, where A; is similar to A for
1=1,2,...,4k. O

Corollary 2.8. If the rational canonical form of A € SL,(F) has no scalar direct
summand then every matrix B € SL, (F) is of the form B = A1 Ay A3A4 where A; is
similar to A fori1=1,2,3,4.

For a matrix A € GL, (F) whose rational canonical form has a scalar direct sum-
mand of size one the bound on the similarity factors depends on the multiplicity of this
summand. The ‘worst’ case occurs when that scalar direct summand has multiplicity
n — 2, i.e. when A is diagonalizable with an eigenvalue of multiplicity n — 1.

Theorem 2.9. If the rational canonical form of A € GL,(F) has a scalar direct
summand of multiplicity r — 1 < n — 2 then every non-scalar T € GL,(F) with
det T = det A*" is of the form T = A1 A, ... A4, where A; is similar to A for i =
1,2,...,4r.

Proof. Without loss of generality we may assume that the matrix A is in rational
canonical form A = cl,_1 ® R1 @ ...® R,,, where each rational cell R; has size at
least 2. Apply Proposition 2.5 with E = {c?} to Ri ® Ro & ... ® R, to get a matrix

B = A1A2 = C2Ir_1 @dlag[do, d17 P 7dn_r] = DO @dlag[dl, dz, ... ’dn_r] = -DO @Dl

so that the entries ¢2,dg,dq, ... ,d,_, are all distinct, with A; and A, similar to A.
This is possible if |[F*| > 2(n —r). Then Dy = ¢*I,_1 & dy and rank(c%Do —-I,)=1.
Setting o = (—1)""!(dp/c?)" and applying Lemma 2.1 we conclude that

[0
1 0
) =MiMs...M,

1 0

with det M; = do/c? # 1 and rank(M; — I,) = 1. Thus M; is similar to I,_; & ‘2—8 =
% Dy. Multiplying by ¢*" we get the matrix

o

c®r 0
P= . . |=pPp...P,
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with P; = ¢?M; similar to Dy for i = 1,2,...,r. Moreover, by repeated applications
of Theorem 1.7 we can find a diagonal matrix Q = diag[q1, g2, - - . , ¢n—r] With distinct
diagonal entries, distinct from the eigenvalues of P, such that det ) = det D] and
Q = Q1Q3...Q,, where @; is similar to Dy for : = 1,2,...,r. Thus, C =P & (Q is
cyclic, det C' = det(P) det(Q) = det B" and C = B1By...B, = A1 A, ... Ay, where
B; = P, ® Q; is similar to B= Do @ D; fori=1,2,...,r and A; is similar to A for
j=1,2,...,2r.

Thus, by Theorem 1.9, every matrix T' € GL,, (F) with det T = det C? = det B*" =
det A" is of the form

T:0102 :BlBg...Bgr:AlAg...A4r

with Cj is similar to C, B; is similar to B and Ay is similar to A. [

Corollary 2.10. If A € GL,(F) is not scalar and s = lem(1,2,...,n — 1), then
every T € GL,,(F) with det T = det A*® is of the form T = A1 Ay ... Ay,. O

3. SEMIGROUPS GENERATED BY THE SIMILARITY ORBIT OF A SINGULAR MATRIX

We first prove a preliminary result for the similarity semigroup when rank A = n—1
and then apply it to to show that in the general when rank A < n the similarity
semigroup of A consists of all matrices of rank less than or equal to rank A.

Proposition 3.1. The semigroup in M, (F) generated by the similarity orbit of a
matriz A with rank A = n — 1 consists of all matrices of rank less than or equal to
n—1.

Proof. Let S be the semigroup generated by the similarity orbit of the matrix A of
rank n — 1 in M,,(F). The proof will be in four steps.

Step 1) We first show that S contains a matrix C' = X @0 for some invertible X of
size n — 1. By Fitting’s Lemma, see for example [B], we have F"™ = im A™ & ker A™
for some natural number m, so that we may assume that A =Y @& N, where Y is
invertible and N is nilpotent in Jordan canonical form. Then B =Y @ N7 is similar
to Aand AB=Y?®I1® 0= X &0, where X is invertible of size n — 1.

Step 2) Next we can prove that S contains a matrix Y = A\, _1 & 0, where X # 0
and I,,—; is the identity matrix of rank n — 1. In the matrix C = X &0 of step 1) the
matrix X is invertible and we can get the result by applying Proposition 1.5.

Step 3) Now we show that S contains for each r = 0,1...,n — 1 a matrix of the
form A, & N, where N is nilpotent of maximal rank n —r — 1. This is certainly true
forr=n—1bystep 2). If r=n—2and Y = Al,,_; & 0 is the matrix obtained in
step 2) then

A A A2
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that is

QIYQSIYS = AL,y @ \? (_11 _11) ,

which is similar to

A1, o
0 N\ = N1, 2 & N Js.
0 O
Here we used the similarities
QYQ=Q 'Y =M,_»® (_)‘)\ 8) and STYS=YS=A,_2® (3 3) :

where the elementary matrix Q = E,, ,,_1 is obtained from I,, by adding the (n—1)-th
row to the n-th row and S = Q7 is the transpose.
Now proceed by backward induction on r using

IT—I
2(n—r—1) I’r 2 —_ \2(n—r) IT—I 0
A ( Jn—r) A J2 =2 ( 0 Jn—r+1

which is the same as
N1 @ Jy N (L1 @ Jo @ I 1) 2 N2 (L ® Ty 1),
or the same as
L @)1 ®J2® L p1) = 11 ® Ty,

where J; is the nilpotent Jordan cell of size s and rank s — 1.

Sep 4) Finally we prove that S contains every matrix of the form Z & 0 for every
invertible matrix Z of size n — 1. By step 3) the big Jordan cell J,, is in & and so
are its transpose J¢ and all their powers. Moreover J,, J! = I,_1 ® 0 is idempotent of
rank n — 1 and J¥(JT)* = I,,_; ® Oy, is idempotent of rank n — k. Thus S contains
all idempotents of rank less than or equal to n — 1. Then

In—l x In—l 0 _ In—l + -Tyt 0
0 0 yt 0) 0 0
yields the result. This is all we need to proceed with the general case when rank A < n
and the final argument is done in the proof of the next theorem. [
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Theorem 3.2. The semigroup S in M, (F) generated by the similarity orbit of a
matrix A of rank r < n consists of all matrices of rank < r.

Proof. Let rank A = r = n — u. The argument used in step 1) of Proposition 3.1
shows that S contains a matrix of the form X & O, for some invertible matrix X of
size r. That S contains a matrix Y = A, & O,, for some scalar A # 0 again follows
from Proposition 1.5 as in step 2) of Proposition 3.1. As in step 3) of Proposition
3.1 with n = r + 1 we show that for each s = 0,1,...,r the semigroup & contains a
matrix of the form Al & N @ Oy_1, where N ~ J,._,., is nilpotent of maximal rank
r — s. As in step 4) of Proposition 3.1 it now follows that S contains all matrices of
the form Z & O, for every invertible matrix Z of size r.

This shows in particular that K = J, 11 ® O, _1, all its powers and their transposes
are in S. But then KY{(K)T =I,_;® Op_,_; isin S for [ = 1,2,...r, and hence S
contains all idempotents of rank < r, and hence all matrices of the form C' & O,, for
invertible C and v < w < n.

Now we want to prove that if B € M,,(F) and rank(B) = v < r then B € §. By
Fitting’s Lemma B ~ By & N, where By is invertible of size s > 0 and N is nilpotent
of rank v — s. More precisely,

BZBO@N:BO@Jsl®J52®---@Jst@0w:
(Bo® (Is;—1®00)®... 0 (I5,—190)BOy)Is D Js, ® ... D Js, ®Oy)

when N is in Jordan form. Since n = s+581+8y+ ...+ 8 +w =v +t+ w it follows
that the number of Jordan cells is ¢t = n — v — w < n — v. The first factor on the
right is similar to By @ I,—s ® Oy4t, hence belongs to §. The second factor is in the
semigroup generated by the similarity orbit of

IL,®O0yyt ~ I (I,-100)® ([5,-190)®D...0 ([,—190)d 0, €S,

since Jg; is in the semigroup generated by the similarity orbit of Iy, _; @ 0 in My, (F)
for j =1,2,...,t by step 3) in the proof of Proposition 3.1. This proves that B is in
S. O
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