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ABSTRACT. Let T be an invertible operator that is not a scalar modulo
the ideal of compact operators. We show that the multiplicative semi-
group generated by the similarity orbit of T is the group of all invertible
operators. If, in addition, T is a unitary operator, then the multiplica-
tive semigroup generated by the unitary orbit of 7" is the group of all
unitary operators.

INTRODUCTION

Let H be a separable infinite-dimensional complex Hilbert space and let
B(H) be the algebra of all bounded operators on H. We consider the fol-
lowing question: What is the multiplicative semigroup generated by the
similarity orbit of an invertible operator on H? An analogous question for
the unitary group is: What is the multiplicative semigroup generated by the
unitary orbit of a unitary operator?

Let us call a subset S of of a group G conjugation invariant, or simply
invariant if g 'Sg C S for every g € G. (An invariant group is also called
a normal subgroup.) One may ask what are the invariant semigroups of the
group GL(H) of invertible operators, or, respectively, of the group U(H) of
unitary operators.

We prove that if T" is an invertible operator that is not a scalar modulo
the ideal K (H) of compact operators, then the multiplicative semigroup
generated by the similarity orbit of T' is the group of all invertible operators.
Consequently, every proper invariant semigroup in GL (H) is included in
CI + K (H). This generalizes a Theorem of Radjavi [11] that asserts that
every invertible operator is a product of a finite number (seven) of involutions
and a theorem of the authors [7] that states that every invertible operator
is a product of six unipotent operators.

Analogously, we show that if U is an unitary operator that is not a scalar
modulo the compacts, then the semigroup generated by the unitary orbit of
U is the group of all unitary operators. Consequently, every proper invariant
semigroup in U/ (H) is included in CI+ K (H). This generalizes a Theorem of
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Halmos and Kakutani [9]; namely, that every unitary operator is a product
of four symmetries (i.e., self-adjoint unitary operators).

In the last section we prove a result about invariant groups in the Calkin
algebra B(H)/K(H).

We end this introduction by noting that an additive version of the results
in this paper is in [6]. A special case of the results in [6] is that every proper
linear subspace of B (H) that is invariant under conjugation by all invertible
operators (respectively, all unitary operators) is included in CI + X (H). We
also note that semigroups generated by a similarity orbit of a matrix have
been investigated in [8].

1. STATEMENTS OF RESULTS

We start by stating the results about unitary operators.

Theorem A. Let U be a unitary operator that is not the sum of a scalar
and a compact operator. Then every unitary operator is a product of a finite
number of operators each of which is unitarily equivalent to U.

The following is an immediate corollary.

Corollary 1. FEwvery proper invariant semigroup in the group of unitary
operators in included in CI + K (H).

In Theorem 1, if we take U to be a symmetry (i.e., a unitary operator
U satisfying U? = I), and if we also assume that both ker (U — I) and
ker (U + I) are infinite dimensional, then we recover the qualitative part of
the Halmos-Kakutani [9] result that states that every unitary operator is a
product of four symmetries.

The Theorem of Halmos and Kakutani has a ”skew” version due to Rad-
javi [11]; namely, that every invertible operator is a product of seven involu-
tions. (An involution is an operator whose square is the identity.) We also
have the following ”skew” version of Theorem A.

Theorem B. Let T be an invertible operator which is not the sum of a
scalar and a compact operator. Then every invertible operator is a product
of a finite number of operators each of which is similar to T.

As before, we conclude the following about invariant semigroups.

Corollary 2. Every proper invariant semigroup in the group of invertible
operators in included in CI + K (H).

The following are special cases of Theorem 2. First recall that an operator
is said be unipotent if it is the sum of the identity and a nilpotent operator,
and is said to be a unipotent of order 2 if it is of the form I + N, where
N2 =0.

Corollary 3. Every invertible operator is a product of a finite number of

(a) involutions (cf. [11]);

(b) unipotents of order 2 (cf. [7]);
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(c) invertible positive operators (cf. [10]).

We again observe that in [11, 7, 10], the number of factors are seven, six
and seven respectively. See also [13].

Proof. Parts (a) and (b) are obvious. To prove part (c), let P be an invertible
positive operator that is not a scalar plus compact. By Theorem B, every
invertible operator is a product of a finite number of operators each of which
is similar to P. Each factor S~'PS is a product of two invertible positive
operators since S 1PS = S (S 1)*(S*PS). i

We end this section with the following remarks about the number of
factors in Theorems A and B.

Remarks. The number of factors in Theorem A is unbounded. Indeed, if
U is a unitary operator satisfying ||[U — I|| < 27", and if V is a product of n
operators from the unitary orbit of U, then it is easy to see that ||V —1I| < 1.
On the other hand, the proof of Theorem B given below establishes that 112
factors suffice for the factorization of that theorem. This is undoubtedly not
a sharp estimate, but we make no attempt in the present work to investigate
the minimum number of factors required.

2. PROOF OF THEOREM A

We denote the essential numerical range of an operator A by W,(A). For
basic properties of the essential numerical range, the reader is referred to

[5]-

Lemma 1. If U is a unitary operator and if zero is in the interior of the
numerical range of U, then every unitary operator is a product of at most
eight operators each of which is unitarily equivalent to U.

Proof. We denote the interior of the numerical range of U by W, (U)°.
Construct inductively an orthonormal sequence {e,} such that (Uey,en) =
0 for all n,m, as follows. Since 0 € W, (U)° C W (U), there is a unit vector
e1 such that (Uej,e;) = 0. Suppose now that we already have eq, ..., e
such that (Uey,en) =0 for all n, m < k. Let

€L
M= {61,...,€k, Uel,...,Uek, U*el,...,U*ek}

and let V be the compression of U to M. Since M~ is finite dimensional,
we have W, (V) = W, (U) and hence 0 € W, (V)°. Let ex41 be a unit vector
in M such that (Veg11,ex+1) = 0. Then ey, ..., ek is a finite orthonormal
sequence such that (Uey,e,) =0 for alln, m < k + 1.

Let H; be the closed linear span of {e, : » odd}, let H3 = UH; and let
Hy=(H; o Hg)J_. The unitary operator U maps H; onto Hz and hence it
maps Hy @ H3 = Hi- onto Hy = Hy & Hy and so the matrix of U relative
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to the decomposition: H = H{ ® Hy @ Hj takes the form
0
0
R

* %
U= * ok
00
where R is a unitary operator from H; onto Hz. We note that each of H,

Hj, and Hsj is isomorphic to H.
Now let V' be any unitary operator on Hs and let

0 0 RV
Vo= 0 1 0
R 0 O

Then Vj is a unitary operator on H and

* x 0 ,
UVWUVy =| * % 0 :<‘g 8)
0 0V

Identifying each of Hy 4+ Hy and Hj3 with H, the above computation shows
that if V' is a unitary operator on H, then there exists another unitary oper-
ator V' such that V @ V' is a product of two operators unitarily equivalent
to U. We now take V to be a bilateral shift of infinite multiplicity. The uni-
tary operators V' can be written as a product V4 V5 of two bilateral shifts of
infinite multiplicity [9]. Let J be a unitary operator such that V* = JV; J*
and let S = JVoJ*. It follows that V @V’ is unitarily equivalent to V& V*S
and so each of V@ V*S and V*S @ V is a product of two operators unitar-
ily equivalent to U. So, there exist four operators unitarily equivalent to U
whose product is the operator (V @ V*S) (V*S@ V) =S & V*SV which is
a bilateral shift of infinite multiplicity. Now the conclusion of the lemma, fol-
lows by using, once again, the fact that every unitary operator is a product
of two bilateral shifts of infinite multiplicity. I

Proof of Theorem A.

Suppose that U is a unitary operator which is not a scalar plus compact.
The essential spectrum o, (U) of U contains two distinct complex numbers
A1 and Ao. We may write U in the form

Al 00
U = 0 Azl 0 +K1
0 0 A

where K is a compact operator and where every direct summand is infinite
dimensional, (see, e.g., [5, Theorem 4.2]). In view of Lemma 1, it suffices
to show that there is a product V of a finite number of operators unitarily
equivalent to U such that 0 € W, (V)°.
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We consider two cases according as Ao = —A1 or not. In the first case,
1 0 O
U=\ 0 -1 0 + K3
0 0 B

which is unitarily equivalent to

0 J 0
Al JP0 0 | +Ky
0 0 B

for every unitary operator J. Now let R be a unitary operator such that
0 € W, (R)°. It follows that U is unitarily equivalent to each of the operators

0 R O
U=\ R 0 0 + K,
0O 0 B
and
01 0
U2 = )\1 1 0 0 + Kl,
0 0 B
hence
R 0 0
UlU =X 0 R* 0 | +K,
0 0 B2

where Ky is compact. Therefore 0 € W, (U1U3)°. This ends the proof in
this case.

Finally, we consider the case Ao # —Aj. Let = Ao/A1, s0o pu # £1. It is
easy to see that there exists a positive integer n such that 0 belongs to the
interior of the convex hull of {1, u,u?,...,u"}. For every positive integer
m, we have

1 0 0
Ur=xt 0 ugm 0 |+Kn
0 0 B™

where K, is compact. So U™ is unitarily equivalent to the operator
Vin = A" diag (1,...,1, ™, 1,...,1,B™) + K,

with n + 2 direct summands and with p™ in the (m + 1)st position. Now
let V=VV,...V,, so
V = X diag (1,4, 4%, ...,u",C) + K

for a unimodular complex number A, a bounded operator C' and a com-
pact operator K. Therefore 0 € W, (V) and V is a product of n (n + 1) /2
operators that are unitarily equivalent to U. I
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3. PROOF OF THEOREM B

We begin by stating a well-known result (see [12, Cor. 0.15]). Recall that
o(A) denotes the spectrum of an operator A.

Lemma 2. If o(A) No(B) =0, then the operator ( é B
A®B.

To prove Theorem B, assume that 7' is an invertible operator which is
not a scalar modulo the compacts. By a result of Brown and Pearcy [1,
Theorem 2], 7' is similar to an operator of the form

) s similar to

0 A B
o= 0 C D
1 E F
acting on H @ H @ H. Let S be an arbitrary invertible operator, let
0 01 S 00
Liy=|10101], Ly=| 0 1 0 ],
100 0 01
and let T; = L;lTOLj for 5 = 1,2. Then each of 77 and T3 is similar to T
and
_|F(S) 0
T = [ « S ] ;
where

St o VA VB D C
F(S)_[O 1][0 D][VB VA:|'
For every invertible operator X, we will show that o (aX) No (F (aX)) =
0 if |a| is either large enough or small enough. To prove this, notice
-1
that £ (X) = [ % ] | FO0, 50 1P @] < 1P QO] for o] > 1
and hence we can choose || large enough so that o (aX) lies outside the
disc {z : |z| < ||F (X)||} which includes o (F («X)) . Similarly, for || small

-1
enough, o (aX) is included in the disc {z: |z| < HF(X)_IH }, while

o (F (aX)) lies outside the same disc since HF (aX)_IH < HF (X)_IH for
|a| < 1. Applying the above to X = S and X = 1 and using Lemma 2, we
conclude that there exists a scalar a such that each of the operators

{F(SzS) aos] and [F(aoll) a011]

is a product of two operators similar to 7', and so S @ F' (aS) F (a_ll) is a
product of four operators similar to 7'

Now take S to be U1 where U is a bilateral shift with infinite multiplicity
and 1 is the identity operator on an infinite dimensional space. From the
above, there exists an invertible operator () on H such that S ® @ is a
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product of four operators similar to 7. The operator S @ @ can be written

as U @ @' where both U and @' are operators on Y, &H, with H,, = Hj
nez
for all » and

U (...,56_2,.73_1,,.’1,'1,...> = (...,LI}_Q,,LII(),.Tl,...),
Q’:diag(...,l,,l,l,...);

that is,

!
Q (...,.’E_Q,.'Ii_l,,.'L‘l,.’L'Q...) = (...,x_g,x_l,,lﬂl,l‘g,...) .

(The box D is used to indicate the zero® position.) Now
Ueq)(@el)=UgeQT,

UQI (...,5672,.’1,‘,1,,171,.’1)2...) = (...,.’L‘_Q,, Q.’L‘(),J,‘l,.’L‘Q,...) .

Let J = diag(. 1 1,, Q,Q,.. ) . By direct computation, it follows that

J(UQ") J~! = U. In the same way, we can show that Q'U is similar to U.
Therefore (U @ Q') (Q' @ U) is similar to a bilateral shift of infinite multi-
plicity. We have shown that a bilateral shift is a product of eight operators
similar to 7. Since each symmetry is a product of two bilateral shifts of
infinite multiplicity, the theorem follows from Radjavi’s result [11] which
asserts that every invertible operator is a product at most seven involutions.

4. GROUPS IN THE CALKIN ALGEBRA

The Calkin algebra B(H)/K(H) will be denoted by 2. The group of
invertible elements and unitary elements of 2 will be denoted by GL(2) and
U () respectively. In this section, we make a few remarks about semigroups
generated by a conjugacy class in GL(2) and U (2). Recall that two elements
a and b of a group G are said to be conjugate if a = g~'bg for some g € G.

Before proceeding, we recall some facts about the Calkin algebra and
index theory (see [4; Chapter 5]). The index of a Fredholm operator T is
defined by ind(T") = dimker (T") —dimker (7). The index satisfies the equa-
tion ind(7'S) = ind(T') + ind(S) . Furthermore, it is invariant under compact
perturbations. Let 7 : B(H) — 2 be the canonical quotient map. Atkin-
son’s theorem [4; Theorem 5.17] implies that the set of Fredholm operators
is the inverse image under « of the set GL () of invertible operators in 2.
In view of this and the invariance of the index under compact perturbations,
we define the index of an invertible element in 2 by ind(a) = ind(A) for any
A € 7! (a). This gives a homomorphism from the group GL (2) onto the
group of integers Z.

Two facts about operators of index 0 are needed in the sequel.

(1) For a Fredholm operator 7', ind(7T") = 0 if and only if T is a compact
perturbation of an invertible operator.
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(2) If 7 (T') is unitary and if ind(7") = 0, then T is a compact perturba-
tion of a unitary operator [2; Theorem 3.1].

One more fact about the Calkin algebra 2{ is that the centre of 2 is the
scalars [3]. It follows immediately that the centre of the group GL (%) is
also the (nonzero) scalars. We can also easily establish the fact that the
centre of the group U () is {Al: |A\| = 1} since every element of 2 is a
linear combination of four unitary elements. (Indeed, if a is self-adjoint

with [|a|| < 1, then a + (1 — a2)1/2 are unitaries, and hence a is a convex
combination of two unitaries.)

We now state two immediate consequences of Theorems A and B.

Proposition 1. Let a be an invertible (respectively, a unitary) element
of A of index 0. If a is not a scalar, then the semigroup generated by the
conjugacy class of a in GL(2A) (respectively, U(2l)) is the subgroup of all
elements of indezx 0.

Proof. Since ind(a) = 0, there exists an invertible operator B such that
m(B) = b. Furthermore, if a is a unitary, then the operator B may be
chosen to be a unitary [2; Theorem 3.1]. Since B is not a scalar modulo the
compacts, the results follow from Theorems A and B. 1

For more general elements, we consider only the group generated by the
conjugacy class. First, we need a lemma.

Lemma 3. If a is an invertible element in the Calkin algebra A such that
a"'u"lau is a scalar for every unitary element u in A, then a is a scalar.
Proof. Let b be a self-adjoint element in 2. Since €' is unitary for every
real number ¢, there exist scalars \; such that ale *tae’® = X\,1 for every
scalar t. Taking the derivative at t = 0, we get that b — a~'ba = A1 for a
scalar A. Thus

o(b)=0(a"tba) =0 (b—Al)=0(b) — A\

This implies that A = 0 and hence ab = ba; i.e., a commutes with every
self-adjoint element in 2. It follows that a commutes with every element in
2 and so a is a scalar. I

Proposition 2. Let G be either the group GL(l) of all invertible elements
or the group U(2A) of all unitary elements in the Calkin algebra. If a is
an element of G with a nonzero index n, then the group generated by the
conjugacy class of a in G is {g € G : n divides ind(g)}.

Proof. Let N be the group generated by the conjugacy class of a. Since a is
not a scalar, it follows from Lemma 3 that there exists a unitary element u
in 2 such that b := a~'u"lau is not a scalar. Now b € V" and ind(b) = 0. By
Proposition 1, we have that N' D Gy := {g € G : ind(g) = 0}. Since Gy is the
kernel of the homomorphism ind: G — Z, the subgroup N is the inverse
image under the index map of a subgroup of Z, and the result follows. i
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Corollary 4. Let G be either the group GL(21) of all invertible elements
or the group U(A) of all unitary elements in the Calkin algebra. Every
normal subgroup of G is either included in the centre (i.e., the scalars) or is
{g € G :n divides ind(g)}, for some integer n.

Corollary 5. Let G be as above, let S be the unilateral shift and s its image
in the Calkin algebra. Then the group generated by the conjugacy class of s
in G is all of G.
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