HEREDITARY PROPERTIES OF SPECTRAL ISOMETRIES

MARTIN MATHIEU AND AHMED R. SOUROUR

ABSTRACT. We prove that a surjective spectral isometry between von Neumann al-
gebras of type I is a Jordan isomorphism. This is based on a study of some hereditary
properties of spectral isometries.

The objective of this note is to study the behaviour of surjective spectral isometries
with respect to restrictions to corners, quotients, or direct products. Combining
these results with theorems on the structure of spectral isometries we shall obtain
that every surjective spectral isometry has to be a Jordan isomorphism for some
new classes of C*-algebras.

Throughout, A and B will denote unital semisimple Banach algebras over the
field C of complex numbers, unless specified otherwise. A linear mapping T: A — B
is called a spectral isometry if r(Tx) = r(z) for every element z € A, where r(-)
stands for the spectral radius. We recall a few basic facts about spectral isometries:

(i) Ewvery surjective spectral isometry is bounded.
This follows from [Aup1l, Theorem 5.5.2].

(ii) Ewery spectral isometry is injective.
This follows from the identity r(z) = r(Tz) = r(Tz + Ta) = r(z + a) valid
for each a € A with Ta = 0 and all + € A, which entails that a = 0 by
Zemanek’s characterisation of the radical; see [Aup1, Theorem 5.3.1].

(iii) Ewvery surjective spectral isometry maps the centre Z(A) of A onto the cen-
tre Z(B) of B.
This follows from Ptdk’s characterisation of the centre; see [MS1, Proposi-
tion 4.3].

(iv) Let T: A — B be a unital surjective spectral isometry, that is, T1 = 1. Then
T z(a) is an algebra isomorphism from Z(A) onto Z(B).
This is a consequence of (ii), (iii) and Nagasawa’s theorem; see [Aupl,
Theorem 4.1.17] or [MS1, Corollary 4.4].

In the following we will assume that 7" is a unital surjective spectral isometry
from A onto B. By property (iv) above, every central idempotent e in A is mapped
onto a central idempotent T'e. We will now study the behaviour of " when restricted
to the corner determined by e.
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Lemma 1. Let e € A be a central idempotent, and let f = Te. Then (1— f)T(ex)
is quasi-nilpotent for every = € A.

Proof. Suppose that 7((1—f)T'(ex)) > 0 for some 2 € A. By rotating z by a suitable
complex number of modulus 1, if necessary, we can assume that r((1 — f)T(ex)) €
o((1 — f)T(ex)). Hence, r(¢ (1 — f)T(ex) +1 — f) > 1 for all € > 0. On the other
hand, r(eex +1 — e) = 1 for all small enough € > 0. Consequently, for such &,

l=r(cez+1—¢e)=r(cT(ex)+1—-Te) >r(c(l—f)T(ex)+1—f)>1,

a contradiction. [

By means of this, we obtain a linear subspace (1 — f)T'(eA) of B consisting of
quasi-nilpotent elements. We shall apply this fact to show that the restriction of T'
to eA is a spectral isometry onto (Te)B.

Proposition 2. Let e € A be a central idempotent, and let f =Te. Then T,:eA —
fB, ex — fT(ex) is a unital spectral isometry from eA onto fB.

Proof. Since, by Lemma, 1,
rlex) = r(T(ex) = r(fT(ea) + (1 - f)T(ex)) = r(fT(ex)) (v € A),

T, is a unital spectral isometry. By property (ii) above, it follows that T, is injective.
As T is surjective, every element y € fB can be uniquely written as y = fT(ex) +
fT((1 — e)z) with z € A. In order to establish the surjectivity of 7., we need to
show that fT'((1 —e)z) = 0.

Suppose that fT'(ez’) is quasi-nilpotent for some z’ € A. Since T is a spectral
isometry, ez’ is quasi-nilpotent. For each A € C, we have

r(AfT(ez) + fT((1 —e)z)) <r(T(\ex’ + (1 —e)z))
=r(Aex’ + (1 —e)z) =7r((1 —e)z).

As a result, the subharmonic function A — r(X fT(ez’) + fT((1 — €)z)) is bounded
on C, hence it must be constant. Since f7'((1—e)x) is quasi-nilpotent by Lemma 1,
we infer that r(fT(ez’) + fT((1 — e)z)) = 0 for all quasi-nilpotent fT'(ez’) and
each z € A.

Suppose now that ¢ € fB is quasi-nilpotent. As T is a surjective spectral
isometry, there is a unique quasi-nilpotent p € A such that

q=Tp= fT(ep) + fT((1 —e)p).

Clearly, both ep and (1 — e)p are quasi-nilpotent as well. Hence, fT'(ep) is quasi-
nilpotent. From the above we deduce that

r(g+ fT((1 - e)z)) = r(fT(ep) + fT((1 — e)p) + fT((1 - e)x))
=r(fT(ep) + fT((1 - e)(p+x))) =0.
By Zemének’s characterisation of the radical [Aup1, Theorem 5.3.1] it follows that

fT((1 —e)z) € rad(fB) = {0}, as claimed. As a result, y = fT(ex) and so T is
surjective. [
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Theorem 3. Let T: A — B be a unital surjective spectral isometry between the
unital semisimple Banach algebras A and B. For each idempotent e € Z(A), the
image f = Te is a central idempotent in B and the restriction of T to eA is a
unital surjective spectral isometry onto fB.

Proof. The arguments in the proof of Proposition 2 show that fT((1 —e)A) =
{0} = (1 — f)T'(eA). Therefore, T(eA) C fB and T((1 —e)A) C (1 — f)B. In fact,
we have equality in both cases by Proposition 2. As a result, T, is nothing other
than Tj, 4, from which the claim follows. [

In the recent past, a lot of attention has been devoted to the question under what
additional assumptions (on 7' or on the algebras A and B) every unital surjective
spectral isometry has to be a Jordan isomorphism; see, e.g., [Aup2, Aup3, BSmo,
CH, MM1, MS2, Sem, Sou|. It was surmised in [MS1] that this holds whenever
A and B are C*algebras. From Theorem 3 above we can derive the following
consequences, which extend some of the known results.

Corollary 4. Suppose that A1 and As are unital semisimple Banach algebras with
the property that every unital spectral isometry from A;, i = 1,2 onto a unital
semisimple Banach algebra is a Jordan isomorphism. Then A; @ As has the same
property.

Proof. Put A= A; ® A3 and let T: A — B be a unital surjective spectral isometry
onto a unital semisimple Banach algebra B. Letting e = 1 & 0 we obtain unital
surjective spectral isometries Te:eA — fB and T1_.: (1 —e)A — (1 — f)B, where
f = Te, by Proposition 2. Since, by hypothesis, both T, and T;_. are Jordan
isomorphisms, so is 7. [

It is well known that every unital spectral isometry from M, (C) onto itself is
a Jordan isomorphism, see [Aup2, Proposition 2]. We can now extend this to
arbitrary finite-dimensional algebras.

Corollary 5. Every unital surjective spectral isometry between finite-dimensional
semisimple Banach algebras is a Jordan isomorphism.

Proof. Let T: A — B be such a spectral isometry. Since T is injective, we have
dimA = dim B = n. By Wedderburn’s theorem, both A and B are finite direct
sums of full matrix algebras. As Tjz(4) is an isomorphism from Z(A) onto Z(B),
every maximal orthogonal family of minimal idempotents in Z(A) has to be mapped
onto a maximal orthogonal family of minimal idempotents in Z(B). Therefore,
A= @le M,,, with Zle n? =n and B = @?:1 M,, with £; = n; for exactly
one pair (4,7). (Here, we have already used Theorem 3.) Let e; be the minimal
central idempotent in A such that e;,A = M,,,, 1 < i <k, and f; = Te;, so that
f[iB = M,; with ¢; = n;. By Theorem 3, Tj.,4:¢;A — f;B is a unital surjective
spectral isometry for each ¢ wherefore, by Aupetit’s theorem mentioned above, it is
a Jordan isomorphism. Consequently, T' itself must be a Jordan isomorphism. [

The description of spectral isometries on matrix algebras does not extend to
algebras of operators on arbitrary Banach spaces, see [BSmo|. It does, however,
extend to Hilbert space, see [BSmo] or [Sem]. Using this fact, we obtain the
following extension of Corollary 5. Let B(H) stand for the C*-algebra of all bounded
linear operators on a Hilbert space H.
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Corollary 6. Let A =]],.; B(H;) and B = [];.; B(K;), where H; and K; are
Hilbert spaces. Then every unital surjective spectral isometry from A onto B is a
Jordan isomorphism.

Proof. The restriction of T to Z(A) is an isomorphism between the commuta-
tive C*algebras Z(A) and Z(B); therefore, it is *-preserving. It follows that
|7| = dim Z(A) = dim Z(B) = |J| and that T sends minimal projections in Z(A)
onto minimal projections in Z(B). Let e; € Z(A) be a minimal projection. By
Theorem 3, Tj., 4 is a unital spectral isometry onto f;B, where f; = Te;. As
e;A = B(H;) and f; B = B(K;), [BSmo, Theorem 1] entails that Tj,, 4 is a Jordan
isomorphism for each 7, from which the assertion follows. [

Remark. There are a number of variations on this theme. For instance, the direct
product in the statement of Corollary 6 can be replaced by the direct sum (co-
direct sum) of C*-algebras. Moreover, the algebra B(H) can be replaced by a
unital purely infinite simple C*-algebra in view of [MM1, Theorem B].

Another application of Theorem 3 enables us to reduce the open conjecture in
the situation of von Neumann algebras to the finite case.

Corollary 7. Let A be a von Neumann algebra, and let A = A @& Ay be the
decomposition of A into its finite part Ay and its properly infinite part As. Suppose
that T: A — B is a unital surjective spectral isometry onto a unital semisimple
Banach algebra B. Then T is a Jordan isomorphism if and only if T4, is a
Jordan isomorphism.

Proof. Let e be the central projection in A such that A; = eA, and let f = Te.
By Theorem 3, Tj4,: A1 — Bi and Tj4,: A2 — Bp are unital surjective spectral
isometries, where By = fB and By = (1 — f)B. By [MS2, Theorem 3.6, T}4, is a
Jordan isomorphism since A, is properly infinite. Thus, the statement follows from
Corollary 4. O

Remark. There is further information available in the case of a finite von Neu-
mann algebra A. Let 7 denote the canonical centre-valued trace on A, and let N
denote its kernel. Then A = Z(A) & N. By [FH1, Theoréme 3.2], N = [4, 4],
the linear span of the commutators in A, and by [PT1, Theorem 3], [A,A] =
N@)(A), the linear span of all nilpotent elements of index two. Property (iii) above
entails that TZ(A) = Z(B), whereas [MS2, Lemma 3.1] yields that, whenever
a € A, a® = 0 if and only if (T'a)? = 0. Tt follows that TN (?(4) = N (B) and
that B = Z(B) ® N®(B). (Since B is semisimple there are no non-zero central
nilpotent elements in B.) In order to establish the conjecture for finite von Neu-
mann algebras it therefore suffices to show that every bijective bi-continuous linear
mapping between N'(?)(A) and N(?(B) is given by the restriction of a Jordan
isomorphism. For matrix algebras, this was obtained in [BPW].

Our next corollary is another piece of evidence that the conjecture on spectral
isometries is expected to be true for von Neumann algebras.

Corollary 8. Let A be a von Neumann algebra, and let T: A — B be a unital
surjective spectral isometry onto a unital semisimple Banach algebra B. Then

T(za) = (Tz)(Ta) (z€ Z(A),a € A).
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Proof. The proof of Theorem 3 shows that T'(ea) = (Te)(Ta) for all projections
e € Z(A) and all a € A. The claim therefore follows from the spectral theorem
applied in Z(A) and the boundedness of 7. [

From this result it follows in particular that T maps every ultraweakly closed
ideal in A onto a closed ideal in B. It is therefore natural to ask about the perma-
nence properties of spectral isometries with respect to quotients. We call a linear
mapping T' a spectral contraction if r(Tz) < r(z) for all  in the domain.

Proposition 9. Let T: A — B be a spectral isometry from the C*-algebra A onto
the C*-algebra B. Suppose that I C A and J C B are closed ideals in A and B,
respectively, such that TI C J. Then the induced mapping T: A/I — B/J is a

spectral contraction. If TI = J then T is a spectral isometry as well.

Proof. Take a € A. By the spectral radius formula in quotient C*-algebras, see
[Ped, Theorem 2] or MW, Corollary on p. 274], we have r(a+I) = inf,¢; r(a+z).
Applying this we find that

r(T(a+ 1))

r(Ta+ J) = inf r(Ta + y)
yeJ
<infr(Ta+Tz) = inf r(a + z)

z€l z€l
=r(a+I).

If TI = J, the inequality sign in the above estimate turns into an equality sign. O

We can rephrase this result in terms of extensions as follows. Suppose that
0—1—A—B—0

yields A as an extension of the C*-algebra B by the C*-algebra I (so that B = A/I).
If T: A — A is a surjective spectral isometry and I is a closed ideal of A such that
TI = I then both Tj;:I — I and the induced mapping T:B — B are spectral
isometries. The converse question seems to be more difficult to decide.

Question. Suppose that, with the above notation, both 7j; and T are surjective
spectral isometries. Does T have to be a spectral isometry?

The next result gives a positive answer to this question at least when the ideal
is the ideal K(H) of compact operators on a Hilbert space H.

Theorem 10. Let Hy and Hs be infinite dimensional Hilbert spaces. Suppose that
T: K(H,) — K(H>3) is a surjective spectral isometry. Then T extends to a spectral
isometry from B(H;) onto B(H,). Consequently, T is of the form = +— paza™!,
x € B(Hy) or of the form x — paxta=, z € B(H;) for some u € C with |u| =1

and some invertible operator a € B(Hy, Hy).

For the proof we will need the following result, which is an immediate conse-
quence of [MS2, Lemma 3.1].

Lemma 11. Let T: A — B be a surjective spectral isometry between the semisimple
Banach algebras A and B. For each a € A, a™ =0 if and only if (Ta)™ = 0.

Proof of Theorem 10. Ahmed: Can we prove this in this formulation? [
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In every von Neumann algebra there is a large class of ideals which is preserved
by spectral isometries. Recall that a Glimm ideal I in a von Neumann algebra A
is of the form I = AM, where M is a maximal ideal in the centre of A. (The
ideal AM is closed by Cohen’s factorisation theorem.) We denote by Ay the Glimm
quotient Ay = A/I. Corollary 8 together with Proposition 9 enable us to deduce
the following result.

Proposition 12. Let T: A — B be a unital surjective spectral isometry between
the von Neumann algebras A and B. For each Glimm ideal I in A, J =TI is a
Glimm ideal in B. Thus, the induced operator T:A; — By is a unital surjective
spectral isometry.

Proof. Let M be a maximal ideal of the centre Z(A) and let I = AM be its
corresponding Glimm ideal. Since Tjz(4) is an isomorphism between Z(A) and
Z(B), N =TM is a maximal ideal of Z(B). By Corollary 8, TI =T(AM) C BN.
Applying the same argument to T~!, we obtain TI = BN. Thus, J = TI is a
Glimm ideal in B. The second assertion now follows from Proposition 9. [

Every Glimm quotient A; of a von Neumann algebra A is a primitive C*-algebra,
by [H, Theorem 4.7]. Since the Glimm ideals separate the points of A, it thus
suffices to show that every unital surjective spectral isometry between primitive
C*-algebras is a Jordan isomorphism in order to establish the conjecture for general
von Neumann algebras.

We apply this method to give a positive answer for type I von Neumann algebras.

Theorem 13. Let T: A — B be a unital surjective spectral isometry between the
von Neumann algebras A and B. If A or B is of type I, then T is a Jordan
isomorphism.

Proof. We may assume that A is of type I; the other case is treated by considering
T~ instead. By Corollary 7, we may further suppose that A is finite. Therefore
A = [],, An, where each A, is an n-homogeneous von Neumann algebra, n € N
and hence of the form 4, = C(X,) ® M, (C) with X,, a hyperstonean space [T,
Theorem V.1.27]. As Z(A) = [[,, C(X,) ® C, every maximal ideal M in Z(A) is
of the form M = [[, I,, ® C, where all I,, but one are equal to A,, and there is
ng such that I,,, = {f € C(X,,, Mpn,(C)) | f(zo) = 0}. As a result, every Glimm
ideal T of A is of the form I =[] I, ® M,(C) with the same restriction on the
n’s. The mapping (f,) + I — fn,(xo) establishes an isomorphism from A/I onto
M,,,(C); therefore the Glimm quotient A; has dimension n2. By Proposition 12,
J =TI is a Glimm ideal in B and the induced mapping T:A; — By is a unital
surjective spectral isometry. As B/J is primitive and of dimension n2, it is also
isomorphic to M, (C). Aupetit’s result [Aup2, Proposition 2] thus entails that 7'
is a Jordan isomorphism. Since the Glimm ideals separate the points (in A and B,
respectively), we conclude that 7' is a Jordan isomorphism. [
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