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Abstract

We present a model for the distribution of family names that explains the power-law
decay of the probability distribution for the number of people with a given family
name. The model includes a description of the process of generation or importation
of new names, and a description of the growth of the number of individuals with a
name, and corresponds for a long-enduring culture to a Galton–Watson branching
process killed at a random time. The exponent that characterizes the decay of the
resulting distribution is determined by the characteristic rates for the creation of
new names and for the growth of the population. The power-law decay is modulated
by small-amplitude log-periodic oscillations. This is rigorously established for a
particular form of the offspring distribution in the branching process, but arguments
are presented to show that the phenomenon will occur under wide circumstances.

1 Introduction

It has been observed recently [1,2] that empirical frequency distributions of
family names appear to exhibit power-law decay over several orders of mag-
nitude. An explanation for this phenomenon, based on a model of Simon [3]
originally used to explain Zipf’s law for word frequencies, was proposed by
Zanette and Manrubia [2]. In this article we offer another model to explain
the power-law phenomenon, which is based on the Galton–Watson branching
process originally proposed as a model for the evolution of family names 1 . We
add to the Galton–Watson process assumptions concerning the introduction
of new names. Specifically we assume that new names are created in a birth
process with immigration i.e. that a new name can either be created from an

1 Francis Galton formulated the model in a question on the proliferation and ex-
tinction of family names in the Educational Times in 1873. A partial solution was
provided by H.W. Watson and a joint paper on the subject resulted [4].
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existing one (e.g. through a change in spelling etc.) with a constant probabil-
ity for all names at all times; or it can be introduced through the arrival of an
immigrant, with arrivals occuring in a Poisson process. With this assumption
we are able to show that the probability of there being m individuals with a
given name is given for large m by

Pr{exactly m individuals have this name} ≈ m−1−κ as m→∞ (1)

(in a sense made more precise below), or, equivalently,

Pr{at least m individuals have this name} ≈ m−κ as m→∞. (2)

The exponent κ depends on the mean number of offspring per individual in
the Galton–Watson process and on the rate of creation of new names from
old, but not on the rate of immigration.

In Section 2 we show how the assumptions of the model lead to the formulation
of the process as a ‘killed’ Galton–Watson branching process. The predictions
of the model are then extracted in three ways in Section 3. The first way,
which is rather naive, produces the behaviour (1) for the specific case of a
geometric offspring distribution. The second way, a more careful analysis for
a geometric offspring distribution, shows that the true asymptotic form is

Pr{exactly m individuals have this name} ∼ Q(m)

m1+κ
as m→∞, (3)

where Q(m) is a bounded periodic function of log m. The third analysis, for a
more general offspring distribution, shows that the ‘log-periodic’ modulation
of the asymptotic power law holds under quite general circumstances. A few
comments on experimental data are made in Section 4.

We shall use the following notation. Angle brackets denote the expectation
of a random variable. The probability generating function (pgf) of a random
variable X is defined by

∞∑
m=0

Pr{X = m}sm = 〈sX〉, (4)

where |s| ≤ 1. A bar over a random variable indicates that it is derived by
killing a time-evolving random variable at a random time.
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2 The model

We assume that once a family name originates its evolution follows a Galton–
Watson branching process (see e.g. [5]), i.e. its frequency Xn, n generations
after origination can be written as

Xn = Z1 + Z2 + Z3 + . . . + ZXn−1 (5)

where X0 = 1 and {Zi} is a set of independent, identically distributed (iid)
random variables with support on {0, 1, 2, . . .} representing the number of off-
spring produced by individuals i = 1, 2, . . . , Xn−1 of the previous generation. 2

Different family names will have been present for different lengths of time. To
account for this fact we will consider a model for the way in which family names
originate. For convenience we do this in continuous time, and then convert
the results to discrete time for incorporation with the (discrete time) Galton–
Watson model. Specifically we assume that the number of names N(t) evolves
as a linear birth process with immigration. Thus conditional on N(t) = n,
N(t + h) will either be n + 1 with probability (λn + ρ)h + o(h); or n with
probability 1 − (λn + ρ)h + o(h); or some other value with probability o(h).
The parameter λ represents the rate at which new names develop from existing
names (e.g. through a change in spelling) and the parameter ρ the rate at
which new names enter through immigration (in a Poisson process). These
assumptions lead to the set of differential equations

P ′n(t) = [λ(n− 1) + ρ]Pn−1(t)− (λn + ρ)Pn(t) (6)

for Pn(t) = Pr{N(t) = n}. An ordinary differential equation for the evolution
of the mean number of names 〈N(t)〉 can be derived simply by multiplying
Eq. (6) by n and summing over n. If N(0) = n0, it is readily shown that

〈N(t)〉 = (ρ/λ)(eλt − 1) + n0e
λt. (7)

This is a known result for birth processes with immigration (cf. [6], p. 238).

Feigin [7] has shown that the birth process with immigration is one of only two
homogeneous point processes N(t) which have the property that, conditional

2 Since family names are usually carried through the male line the model is, strictly
speaking, restricted to the population of males, with the Xi’s representing numbers
of sons. However when we compare the model with data, we will assume a one-
to-one sex ratio, so that the relative frequency distribution of names in the whole
population will be assumed to be identical to that of the male population.
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on N(τ)−N(0) = k, the successive jump times are distributed in the interval
(0, τ) as the order statistics of k independent, identically distributed random
variables U1, U2,. . . , Uk, where

Pr{Ui ≤ u} =
m(u)−m(0)

m(τ)−m(0)
, 0 ≤ u ≤ τ, (8)

and m(u) = 〈N(u)〉. In our case this reduces to

Pr{Ui ≤ u} =
eλu − 1

eλτ − 1
, 0 ≤ u ≤ τ. (9)

If we let Ti = τ − Ui denote the time since the jump occurred, we find that

Pr{t < Ti ≤ τ} =
e−λt − e−λτ

1− e−λτ
, 0 ≤ t ≤ τ, (10)

corresponding to the probability density function

f(t) =
λe−λt

1− e−λτ
, 0 ≤ t ≤ τ. (11)

It may be observed that this density is independent of k.

If a name is selected at random from the list of all names at time τ , it will
either be one of the n0 ‘Ur’ names in existence at time 0, or one of the new
names that has come into existence at some time t ∈ (0, τ). The probabilities
of these events are, respectively, n0/N(τ) and 1− n0/N(τ), and we find that
the time that a name observed at time τ has been in existence has the density

φτ (t) = δ+(τ − t)
〈 n0

N(τ)

〉
+

λe−λt

1− e−λτ

{
1−

〈 n0

N(τ)

〉}
, (12)

where 0 ≤ t ≤ τ and δ+ denotes the one-sided Dirac delta function. As
N(τ)→∞ with probability 1, it follows that〈 n0

N(τ)

〉
→ 0 as τ →∞ (13)

and so for large τ we arrive at the exponential density

φ(t) = λe−λt (14)

for the time that a name has been in existence.
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To check on the rate of decay to zero of 〈n0/N(τ)〉, we form the generating
function

〈sN(t)〉 =
∞∑
n=0

Pn(t)s
n = P (t, s), say (15)

and deduce from Eq. (6) the partial differential equation

∂P

∂t
+ λs(1− s)

∂P

∂s
+ ρ(1− s)P = 0, (16)

to be solved subject to the initial condition P (0, s) = sn0 . Solving this in the
usual manner by the method of characteristics [8] we find that

〈sN(t)〉 = P (t, s) = sn0 [s + (1− s)eλt]−n0−ρ/λ. (17)

Thus

〈 n0

N(τ)

〉
= n0

1∫
0

〈sN(τ)−1〉ds = n0

1∫
0

sn0−1ds

[s + (1− s)eλτ ]n0+ρ/λ
(18)

≤n0

1∫
0

ds

[s + (1− s)eλτ ]n0+ρ/λ
(19)

=
n0

(n0 − 1 + ρ/λ)(eλτ − 1)
{1− eλτ(1−n0−ρ/λ)} = O(e−λτ ). (20)

Since family names have been around for a very long time, we assume that
e−λτ ¿ 1, and this implies that time that a name, randomly selected from
those currently in existence, has been in existence is distributed exponentially;
or equivalently in discrete time that it is distributed geometrically.

Coupling this with the Galton–Watson process model for the evolution of
names after their introduction, we see that the distribution of the frequency
of any name, should be that of a Galton–Watson process after a geometrically
distributed number of generations, where the parameter p of the geometric
distribution is related to λ above by p = 1 − e−λ∆, where ∆ is the length of
one generation.

3 Analysis of the model

The pgf for the number Xn of individuals in the nth generation of a Galton–
Watson branching process Xn+1 = Z1 + Z2 + . . . + ZXn , started with one
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individual for the zeroth generation, is given [5] by

Gn(s) = Gn−1(g(s)). (21)

Here g(s) = G1(s) is the pgf for the number of offspring of an individual.

The pgf G(s) = E(sX̄) of the state X̄ of the branching process killed on the
production of the Nth generation according to the geometric distribution

Pr{N = n} = p(1− p)n−1, n = 1, 2, 3, . . . (22)

is given by

G(s) =
∞∑
n=1

Gn(s)p(1− p)n−1. (23)

Splitting the first term off from the sum, we obtain a functional equation for
G(s):

G(s) = pg(s) + (1− p)G(g(s)). (24)

For a general offspring pgf g(s), there seems to be little that one can do
except to attack this functional equation directly. However we first look at a
particular case where more elementary means are at our disposal.

Harris ([5], p. 9) has derived the explicit form for Gn(s) in the case where the
offspring distribution is

P (individual has k offspring) =

 1− b/(1− c), k = 0,

bck−1, k = 1, 2, . . .
(25)

In the special case in which each individual has at least one offspring (so that
b = 1 − c), to which we now restrict our attention, Harris’ solution gives the
relatively simple pgf

Gn(s) =
bns

1− (1− bn)s
=

∞∑
m=1

bn(1− bn)m−1sm (26)

and so

G(s) =
∞∑
m=1

∞∑
n=1

p(1− p)n−1bn(1− bn)m−1sm. (27)
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It is easy to verify directly that the series (27) satisfies the functional equation
(24). Extracting the coefficient of sm from G(s) we see that

P (X̄ = m) =
∞∑
n=1

p(1− p)n−1bn(1− bn)m−1. (28)

3.1 The simplest model: naive analysis

To determine the large-m asymptotic form of P (X̄ = m), we first use a naive
argument that reveals part of the behaviour, but misses a subtle point. We
write ≈ to indicate that no claim is made to the status of the result (that is,
whether it is truly an asymptotic representation, or a numerical approximation
of any quality). Approximating the sum (28) by an integral, we obtain

P (X̄ = m) ≈ p

1− p

∞∫
0

[b(1− p)]x(1− bx)m−1dx. (29)

If we write t = bx we obtain

P (X̄ = m)≈ p

(1− p) log(1/b)

1∫
0

tκ(1− t)m−1dt (30)

=
p

(1− p) log(1/b)

Γ(κ + 1)Γ(m)

Γ(κ + m + 1)
, (31)

where we have written

κ =
log[1/(1− p)]

log(1/b)
=

log(1− p)

log b
. (32)

From the known asymptotic behaviour of the gamma function, we arrive at
the approximation

P (X̄ = m) ≈ pΓ(κ + 1)

(1− p) log(1/b)
m−1−κ. (33)

The expression for P (X̄ = m) as a series has been computed numerically
using the Mathematica package for p = b = 0.5. This case corresponds to
the predicted asymptotic form P (X̄ = m) ∼ (m2 log 2)−1. For m ≥ 2 the
values obtained by truncating the series at 100 terms and at 1000 terms agree
to 6 significant figures, and the 1000-term estimates have been used in place
of the exact result and compared with the predicted asymptotic form. We
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find that (m2 log 2)P (X̄ = m) is strictly increasing from 0.528112 at m = 2
to 0.999067 at m = 1000, giving no evidence of oscillation in the dominant
behaviour. However, the subdominant behaviour is more interesting, even for
these modest values of m. We write

P (X̄ = m) =
1

m2 log 2
[1− A(m)

m
], (34)

and

εm = 1 +
log[1− (m2 log 2)P (X̄ = m)]

log m
. (35)

The naively expected asymptotic behaviour would have A(m) converging to a
positive constant, and consequently εm → 0 as m→∞, while if A(m) ∼ cmε,
we would obtain εm → ε. We have computed A(m) and εm for m ≤ 10000.
We observe that εm changes sign many times (see Table 1). The gap in log m
between two successive sign changes of the same type is shown in the table,
and that the gap converges to log 2 = 0.693147181 is easily believed.

We also see oscillations by a direct plot of A(m) against log m (Fig. 1). The
growth of these oscillations is actually due to some small-amplitude oscillations
in the coefficient of the dominant term which are not revealed in a superficial
analysis. The sequence (m2 log 2)P (X̄ = m) increases for n ≤ 1250, attaining
the local maximum value 0.999 231 7 · · · at n = 1250 and then decreases until
n = 1374, where is attains the local minimum value 0.999 226 9 · · ·, and the
alternation of increasing and decreasing behaviour persists.

3.2 The simplest model: proper analysis

We shall prove that as m→∞,

P (X̄ = m) =
pQ(m)

(1− p) log(1/b)
m−1−κ + O(m−2−κ) (36)

where Q(x) is a function that is periodic in log x with period log(1/b), that
is, Q(x) ≡ Q(bx) for all x > 0. We shall write

P (X̄ = m) =
p

1− p
{φ(m− 1)− ψ(m− 1)} , (37)
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where

φ(x) =
∞∑
n=1

[b(1− p)]ne−b
nx (38)

and

ψ(x) =
∞∑
n=1

[b(1− p)]n
{
e−b

nx − (1− bn)x
}

. (39)

Our analysis will reveal the dominant form of φ(x) and show that ψ(x) is of
lesser order. It is based on Mellin transform methods (cf. [9], Appendix 2).

The Mellin transform f̃ of a function f is defined and inverted by the formulae

f̃(z) =

∞∫
0

xz−1f(x)dx and f(x) =
1

2πi

c+i∞∫
c−i∞

x−zf̃(z)dz, (40)

with the first integral restricted to those (complex) values of z for which the
integral converges. The second integral is a contour integral along the vertical
contour Re{z} = c, placed in a strip in the z-plane in which the first integral
converges. It is easily verified that the integral defining the Mellin transform
of φ converges for Re{s} < 1 + κ, with κ as defined above, and that

φ̃(z) =
Γ(s)b1−s(1− p)

1− b1−s(1− p)
. (41)

The analytic continuation of φ̃(z) has simple poles to the right of the inversion
contour at the points z = κ + 1 + 2πki/ log(1/b), where k is any integer.
Translating the integration contour to the right and summing the residues
from the poles that are crossed, we deduce that

φ(x) =
Γ(κ + 1)Φ(log x/ log(1/b))

log(1/b)x1+κ
+

1

2πi

c′+i∞∫
c′−i∞

x−zf(z)dz (42)

where c′ > κ + 1 and

Φ(ω) =
∞∑

k=−∞

Γ(1 + κ + 2πki/ log(1/b))

Γ(1 + κ)
exp(−2πkωi). (43)

The absence of any singularities further right than Re{s} = 1+κ ensures that
the integral on the right of Eq. (42) decays faster than any fixed power of x.
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The rapid decay of Γ(σ + iτ), with

|Γ(σ + iτ)| ∼ (2π)1/2|τ |σ−1/2 exp(−π|τ |/2) (44)

as the real parameter τ → ±∞ for fixed real σ, ensures the convergence of the
doubly-infinite series, and as Γ(σ − iτ) is the complex conjugate of Γ(σ + iτ)
we have

Φ(ω) = 1 +
∞∑
k=1

2Re
{Γ(1 + κ + 2πki/ log(1/b))

Γ(1 + κ)
exp(−2πkωi)

}
. (45)

Having established what we need for φ(x), we turn to ψ(x). We shall simply
show that ψ̃(s) has no poles for 0 < Re{s} < 2+κ, so that ψ(x) = O(x−2−κ+δ)
for all positive δ. The stronger assertion that ψ(x) = O(x−2−κ) requires a more
detailed analysis that we shall not pursue. We use the inequality

0 < e−b
nx − (1− bn)x =

log[(1−bn)−1]x∫
bnx

e−tdt

< xe−b
nx{log[(1− bn)−1]− bn} = xe−b

nx
∞∑
k=2

bkn

k

<
xe−b

nxb2n

2

∞∑
k=2

(bn)k−2 =
xe−b

nxb2n

2(1− bn)
<

xe−b
nxb2n

2(1− b)
,

from which the required convergence of the Mellin transform for 0 < Re{s} <
2+κ follows easily. This completes the analysis. We have actually established
that the dominant power law decay in P (X̄ = n) is periodic in log(n − 1)
rather than log n, but for large n this distinction may be dropped.

Concerning the magnitude of the non-constant terms in Eq. (45), which we
already know to decrease rapidly with k, we observe that for p = b = 0.5 and
κ = 1, the expansion becomes

Φ(ω) = 1 + {0.0000749933 cos(2πω) + 0.0000500182 sin(2πω)}+ · · · ,(46)

so the oscillations are of very small amplitude.

3.3 The general case

In the absence of explicit solutions for Gn(s) for a general offspring pgf g(s),
our analysis has to rely on the functional equation (24). Functional equations
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of this kind were first encountered in stochastic processes over 20 years ago
by Hughes et al. [10] and by Shlesinger and Hughes [11], who observed their
close analogy with real-space renormalization methods in statistical mechan-
ics, and their antecedents in the classical analysis of Hardy and Littlewood, in
the theory of nondifferentiable functions, and noncontinuable analytic func-
tions. More recently, Gluzman and Sornette [12,13] have reviewed the existence
of log-periodic oscillations mirroring underlying scale hierarchies in several ar-
eas of physics, and have developed classifications of such things in terms of
complex dimensions and the decay of the coefficients in the expansion of the
periodic coefficient function. Grabner and Woess [14] (see also [15], §16) have
given an elegant discussion of random walks on the Sierpiński lattice where
similar phenomena are encountered.

If G†(s) is any solution of the functional equation (24), then the most general
solution has the form

G(s) = G†(s) + H(s), (47)

where H(s) satisfies the homogeneous functional equation

H(s) = (1− p)H(g(s)). (48)

If G†(s) is chosen to be holomorphic at s = 1, then all critical behaviour of
G(s) at s = 1 resides in H(s). Since the behaviour of P (X̄ = m) for large m
is reflected in the singularity structure of G(s) at s = 1, we can attempt to
extract the dominant behaviour of P (X̄ = m) by examining the implications
of Eq. (48) near s = 1. We write s = 1− ε, so that if the mean offspring per
individual is µ <∞, we have g(s) = 1− µε + o(ε). If we guess the asymptotic
form

H(1− ε) ∼ εκQ(ε), (49)

we find that

εκQ(ε) ∼ (1− p)(µε)κQ(µε) (50)

and consistency is obtained by requiring

Q(ε) ∼ Q(µε) and (1− p)µκ = 1, (51)

so that we have a coefficient with log-periodic oscillations, and we recover
a critical exponent κ = log[1/(1 − p)]/ log µ. The standard identification of
branch point behaviour (1− s)κ in a generating function with a contribution
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proportional to m−1−κ suggests that m−1−κ behaviour dominates in the large-
m expansion of P (X̄ = m). By analogy with Tauberian Theorems, where
slowly-varying coefficients L((1 − s)−1) indicate a factor of L(n), one may
guess that the log-periodicity of Q(1− s) is mirrored by a periodic function of
log n of period log µ. Of course the precise conditions needed for the application
of Tauberian Theorems or standard complex variable techniques do not hold
in these cases, although a theorem of Odlyzko [16] establishes log-periodic
behaviour rigorously for the coefficients fn of solutions f(z) =

∑∞
n=0 fnz

n of
the functional equation f(z) = P (z) + f(Q(z)), where P (z) and Q(z) are
polynomials, subject to the restrictions that P (0) = Q(0) = Q′(0) = 0. Our
general analysis is therefore necessarily heuristic, but it is fully consistent with
the rigorously analysed specific example above.

4 Discussion

Our model of the evolution of family names is constructed using a birth process
with immigration to describe the creation of family names (in the limit of a
long-enduring society), and a killed Galton–Watson process to describe the
growth in the number of persons with a given family name, taking into account
the time for which that name has existed. For a specific model of the offspring
distribution for the Galton–Watson process we have rigorously proved that
the probability that there are m individuals with a given family name decays
for large m as Q(m)m−1−κ, where Q(m) is a bounded, log-periodic function
and κ is determined by parameters associated with the birth process with
immigration and the offspring distribution. We have argued that the same
behaviour persists for more general offspring distributions, and that

κ =
log[1/(1− p)]

log µ
, (52)

where µ is the mean number of offspring per individual, p = 1 − e−λ∆, ∆ is
the length of one generation, and λ describes the rate at which new surnames
are created. We can rewrite κ in the form

κ =
λ∆

(log µ)
. (53)

Since for a Galton–Watson process E(Zn) = µn = en log µ, we write µ = e∆δ,
where δ is the average rate of growth per unit time of a family. This gives

κ =
λ

δ
. (54)
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The exponent κ therefore measures the ratio of the rate of surname generation
to the rate of growth in size of surname families.

The fact that the empirical power-law exponent (corresponding to −1 − κ =
−1 − λ/δ in our model) for names in USA and in Berlin [2] was found to be
close to −2 (so that λ ≈ δ) suggests that the two growth rates are very similar
in those populations. The empirical exponent for Japanese names [1] is close
to −1.75; for Taiwanese names [17] around −1.9; and for Isle of Man names in
1881 [17] close to −1.5. This suggests that the average rate of growth in size
of surname families exceeds the rate at which new names evolve from existing
ones in all these three cases (by about 33% in Japan; 11% in Taiwan and by
a factor of two in the Isle of Man).
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Fig. 1. Oscillations in the amplitude A(m) are found when an attempt is made
to analyse numerical values of P (X̄ = m) for 2 ≤ m ≤ 10000 using the naively
anticipated form (34).

Table 1
Oscillations in the sequence εm defined by Eq. (35) when the naive asymptotic form
(33) is used. The table shows values of m at which sign changes of the sequence
occur. The gap in logm between two successive sign changes of the same type is
well approximated by log 2 = 0.693147181.

εm next becomes positive εm next becomes negative

m logm gap in logm m logm gap in logm

90 4.499809670 104 4.644390899

167 5.117993812 0.618184142 224 5.411646052 0.767255153

327 5.789960171 0.671966358 456 6.122492810 0.710846758

650 6.476972363 0.687012192 917 6.821107472 0.698614663

1299 7.169350017 0.692377654 1836 7.515344571 0.694237099

2598 7.862497197 0.693147181 3674 8.209036266 0.693691695

5197 8.555836815 0.693339618 7349 8.902319529 0.693283263
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