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considered. It is claimed that the current notion of fire cycle is poorly7

defined (since the time required to burn a specified area is a random8
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between fires at any location). In view of this it is recommended that11

the notion of fire cycle in its current form be abandoned.12
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1 Introduction.15

The basic theoretical concepts of fire history were laid out by Johnson and16

Van Wagner (1985) and subsequently reiterated and refined by Johnson and17

Gutsell (1994). In the former paper the authors emphasize (p.218) that the18

fire history models used “can be interpreted on a per element basis or in19

terms of the proportion of the universe”. Thus the average fire interval (the20

average of return times between fires at a point) is identified with the fire21

cycle, defined as the time required to burn an area equal in area to that of22

the universe.23

The reasoning behind this duality of interpretations is based on the iden-24

tification of the per annum probability of a fire at a point (element) with the25

proportion of the area burned in a given year. Such an identification is not26

strictly true. Fires are random processes and the actual proportion burned27

in any year will be a random variable. However the expected value of this28

random variable (i.e. the expected proportion burned) will be equal to the29

per annum probability. One might hope for a similar relationship, involving30

expectations, between return time and fire cycle i.e. that the expected time31

between fires at any point is the same as the expected time to burn an area32

equal to the area of the universe. Unfortunately, as is shown in the Appen-33

dix, this is not true. In fact the latter expected time exceeds the former one,34

except in one unrealistic special case1. Thus the identification of fire interval35

1This is when all fires are of the same size, and the study area is an integer multiple of
this size; in this case the two expectations are equal.
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and fire cycle is not valid.36

In order to avoid confusion in future fire history studies, and especially in37

simulation studies in which areas “burned” are generated on a computer, the38

notions of fire cycle, fire interval etc. need to be clarified. This is purpose39

of this paper. The main recommendation is that the notion of fire cycle, as40

the time required to burn an area equal to the area of the study area, be41

abandoned. Rather it is better to think “element-wise”, i.e. in terms of the42

hazard of burning at any point and its reciprocal the expected fire interval43

at the point. The notion of fire cycle as originally defined results from a44

deterministic way of thinking and as its stands is inadequate and can lead to45

confusion.46

2 Definitions of basic concepts.47

The notion of the hazard of burning was introduced by Johnson and Gutsell48

(1994). We shall distinguish between a local hazard of burning and an area-49

wide hazard of burning.50

The local hazard of burning at a point x in the study area, at time t, can51

be defined as52

λ(t;x) = lim
dt→0

{P(fire at location x in [t, t + dt])/dt} . (1)

Clearly this has units (time)−1 e.g. per annum. In contrast to the local53

hazard of burning, the area-wide hazard of burning can be defined as54

Λ(t) = lim
dt→0

{P(fire ignited somewhere in study area in [t, t + dt])/dt} . (2)
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which again has units (time)−1.55

How do these two concepts relate? Clearly Λ(t) ≥ λ(t;x) for all points x56

in the study area. Also one can write57

λ(t;x) = Λ(t)
∫

A
h(x,y; t)f(y; t)dy (3)

where h(x,y; t) is the conditional probability of a fire ignited at point y58

spreading to x at time t; and f(y; t) is the probability density function of59

where an ignition occurs over the study area A, given that one occurs at60

time t. Letting p(t,x) denote the integral (so that p(t,x) is the conditional61

probability of a fire occurring at x, given that a fire starts somewhere in the62

study area at time t) leads to63

λ(t;x) = Λ(t)p(t,x) (4)

Note that the area-wide hazard of burning will in general depend on the64

size of the study area (as area increases so will the area-wide hazard). Because65

of this, it is not very useful in characterizing aspects of the fire ecology.66

The fire interval at location x is defined as the expected time between67

fires at that location. In general with a time-varying hazard of burning this68

will depend on the time t of the most recent fire and can be shown (see69

Appendix) to be70

71

FIt(x) =
∫ ∞
0

exp
[
−
∫ z

0
λ(t + s;x)ds

]
dz. (5)

Note that this depends on the hazard of burning for all times beyond t.72

Without further assumptions it is of little practical use. The usual simplifying73
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assumptions are those of spatial and temporal homogeneity, the latter at least74

over suitably long epochs. Spatial homogeneity is a realistic assumption if75

the study area can be partitioned into bio-geographically homogeneous sub-76

areas.77

2.1 Temporal homogeneity.78

Suppose that the above hazard rates are constant over some epoch, so that79

the local hazard of burning at location x is a constant λ(x) (and the area-80

wide hazard is a constant Λ). In this case the formula (??) for the fire interval81

at x reduces to (using (??))82

FI(x) =
1

λ(x)
=

1

Λp(x)
. (6)

The fire interval has units of time.83

Note that one could also define an area-wide fire interval. In the time-84

homogeneous case this would simply be the reciprocal of the area-wide hazard85

of burning i.e. 1/Λ. However, like the area-wide hazard of burning it will86

depend on the size of the study area, and so is of limited usefulness.87

2.2 Spatial homogeneity.88

If in addition to temporal homogeneity, there is spatial homogeneity, then89

the local hazard of burning will not depend on location x (i.e. λ(x) ≡ λ for90

all x) nor will the local fire interval91

FI =
1

λ
=

1

Λp
(7)
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where p is the conditional probability of a fire occurring at any specific point92

given that a fire occurs somewhere in the study area.93

2.3 The fire cycle.94

Johnson and Van Wagner (1985) equate the local fire interval FI (assuming95

spatial and temporal homogeneity) with the fire cycle FC, which they define96

as the time required to burn an area equal in area to the study area. This97

definition emerges from a deterministic way of thinking (in which fixed pro-98

portions of the study area are burned every year). Clearly in the real world99

the time required to burn a fixed area will not be fixed, but rather be a100

random variable. One could modify the Johnson-Van Wagner definition of101

fire cycle to be the expected time required to burn an area equal in area to102

the study area.103

However with this definition the fire cycle is no longer necessarily equal104

to the local fire interval FI. Indeed it is shown in the Appendix that if fires105

occur (anywhere in the study area) in a Poisson process2 at rate Λ, and the106

average area burned per fire is µ, then the expected time EFC, say, to burn107

an area A equal to the size of the study area satisfies108

EFC ≥ A

Λµ
(8)

Note that µ/A is the expected fraction of the study area burned in any109

2i.e. independently of one another with the probability of a fire in (t, t + dt) being
Λdt for all times t. Note that one can also work in discrete time and have fires occurring
in a given year with a fixed probability π, say. Similar results pertain in this case – see
Appendix.
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fire and can be thought of (under the assumptions of homogeneity) as the110

probability p that the fire burns any particular location, given that a fire is111

ignited somewhere in the study area. Thus using (??) the above inequality112

can be expressed as113

EFC ≥ 1

Λp
= FI (9)

In most cases the inequality is strict. Indeed there appears to be only114

one case in which it holds as an equality – that is when every fire is the same115

size (area burned = µ with probability one) and the total study area is an116

integer multiple of µ (i.e. A = kµ for some k = 1, 2, . . .).117

In the Appendix some other specific examples are considered. One is118

when the size of fires is exponentially distributed, with mean µ. In this case119

the expected time to burn an area A is120

EFC = FI +
1

Λ
.

If fires are infrequent then 1/Λ will be large and the expected fire cycle121

considerably larger than the fire interval. A similar result pertains in the122

case when the size of fires follows a gamma distribution. Explicit formulas for123

the EFC are obtained using the gamma distribution with shape parameter124

κ = 2 and 3.125

Also results are obtained for the case when fires are all of the same size.126

In this case, provided the area of the study area is an integer multiple of127

the size of a fire, EFC = FI. This is essentially the (deterministic) case128

contemplated by Johnson and Van Wagner (1985) when they developed the129
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notion of fire cycle and claimed its identity with the fire interval.130

3 Estimation.131

Maximum likelihood estimation of the local hazard of burning, and its recip-132

rocal the fire interval, for stand-replacing fires using time-since fire map data133

has been described by Reed et al. (1998). The question of determining134

change points between epochs of temporal homogeneity has been discussed135

by Reed (2000). Methods for the maximum likelihood estimation of the local136

hazard of burning and the fire interval for other fires using fire scar data have137

been presented by Reed & Johnson (2004).138

4 Conclusions.139

In view of the difference between the local fire interval and the (expected) fire140

cycle, it is recommended that to avoid confusion, the original definition of141

the fire cycle (as the time required to burn an area equal in area to the study142

area) be no longer used. Firstly it is not well-defined – by this definition the143

fire cycle is a random variable – and secondly, even if the expected value of144

this random time is used, it does not coincide with the local fire interval (or145

the reciprocal of the local hazard of burning). It is recommended either that146

the notion of the fire cycle no longer be used; or if it is that it be defined147

as identical to the local fire interval i.e. that the fire cycle be defined as the148

expected time between fires at any given location in the study area.149

The heretofore accepted duality of fire history concepts proposed by John-150
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son and Van Wagner (1985) (“per element” notion or “proportion of the151

universe” notion) occurs only in a (theoretical but imaginary) deterministic152

world. Persisting with this duality can cause confusion and error, especially153

in simulation studies. In view of this it is recommended that concepts based154

on the proportion of the study area (universe) be no longer used and instead155

only the “element based” notions of local hazard of burning and local fire156

interval be used to describe fire history.157
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Appendix.174

Expected time between fires at a particular location.175

Given that a fire has just occurred at time t at location x, let FIt(x) denote176

the expected time until the next fire at this location. This can be written177

(using a well-known result for the expectation of a non-negative r.v.) as178

FIt(x) =
∫ ∞
0

S(z|t) dz

where S(z|t) is the conditional probability of no fire at x in the time interval179

(t, t+ z] given a fire at x at time t. But this ‘survivor function’ relates to the180

local hazard of burning as181

S(z|t) = exp
[
−
∫ z

0
λ(t + s;x) ds

]

leading to the result (??).182

Relationship between EFC and FI under assumptions183

of homogeneity.184

Assume temporal and spatial homogeneity, and suppose that the area-wide185

hazard of burning is Λ. Assuming independence of fires this implies that the186

number of fires N(t) occurring by time t is a Poisson process with187

P(N(t) = n) =
e−Λt(Λt)n

n!
, n = 0, 1, . . .

Suppose that the areas burned in fires are independently, identically distrib-188

uted (iid) random variables (rvs) with mean µ. Then the total area burnt by189

11



time t is a random variable190

St = X1 + X2 + . . . + XN(t)

where X1, X2, . . . are iid rvs.191

Now let T ?(A) be the time when the total area burned first reaches A, the192

area of the study area (i.e. T ?(A) = min(t : St ≥ A)). When the dependence193

on A of this time is not important we shall simply write T ?, so that T ? is194

the fire cycle as defined by Johnson and Van Wagner (1985). But note, this195

is a random variable, so the definition is not precise. If the expected value196

of this time is considered, using conditional expectation one can write197

E(T ?) = E(E(T ?|N(T ?)) =
1

Λ
E(N(T ?)) (10)

since the expected time between fires is 1/Λ. Now X1, X2, . . . forms a renewal198

process and N(T ?) is a stopping time for such a process. It follows by Wald’s199

theorem (see e.g. Grimmett and Strirzaker, 1992) that E(X1 + X2 + . . . +200

XN(T ?)) = E(N(T ?))E(Xi) so that201

E(N(T ?)) =
E(X1 + X2 + . . . + XN(T ?))

µ
(11)

The numerator of the rhs is greater or equal to A. Thus it follows, using202

(??), that203

E(T ?) ≥ A

Λµ
(12)

Now E(T ?) is the expected value of the fire cycle (EFC); and µ/A is204

the expected proportion of the study area burned in any fire. Under the205
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assumption of spatial homogeneity it is the conditional probability p that a206

fire occurs at any particular location in study area given that a fire is ignited207

somewhere in the study area. Thus the right-hand side of (??) is equal to208

1
Λp

= 1
λ

where λ is the local hazard of burning. Thus (??) states that the209

expected fire cycle is greater or equal to the local fire interval; or EFC ≥ FI.210

To evaluate the expected fire cycle in specific cases we examine the cu-211

mulative distribution function (cdf) of total area St, burned by time t. It212

is213

FS(s) = P(St ≤ s) =
∞∑

n=0

P(St ≤ s|N(t) = n)
e−Λt(Λt)n

n!

=
∞∑

n=0

Fn(s)
e−Λ(Λt)n

n!
(13)

where Fn is the cdf of the n-fold convolution of Xi i.e. it is the cdf of214

X1 + X2 + . . . + Xn.215

Now if T ?(A) is the time required to burn an area A;216

P(T ?(A) ≥ t) = P(St ≤ A)

=
∞∑

n=0

Fn(A)
e−Λt(Λt)n

n!
(14)

The expected value of a continuous non-negative random variable Y , say can217

be computed using E(Y ) =
∫∞
0 P(Y ≥ y)dy. Thus218

E(T ?(A)) =
∫ ∞
0

P(T ? ≥ t) dt

=
∞∑

n=0

Fn(A)

n!

∫ ∞
0

e−Λt(Λt)n
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=
∞∑

n=0

Fn(A)

n!

Γ(n + 1)

Λ

=
1

Λ

∞∑
n=0

Fn(A) (15)

where Γ() is the usual gamma function and F0(A) is the Heaviside step func-219

tion which assumes value zero for A ≤ 0 and value 1 for A > 0.220

In general closed-form expressions for Fn(A) are not available. However221

in some cases one can evaluate (??) using Laplace transforms.222

The Laplace transform of a probability density function (pdf), f(x), say,223

of a random variable X with nonnegative support is224

f̃(s) =
∫ ∞
0

e−sxf(x) dx = E
(
e−sX

)
.

Also the Laplace transform of the cdf F (x) of such a random variable is225

f̃(s)/s and that of the Heaviside function is 1/s. Furthermore the pdf of the226

n-fold convolution of the r.v. X is227

f̃n(s) =
[
f̃(s)

]n
.

Using these results one can obtain the Laplace transform τ̃(s) of τ(A) =228

E(T ?(A)) in (??). It is229

τ̃(s) =
1

Λ

1

s
+
∞∑

n=1

[
f̃(s)

]n
s


=

1

Λs

1

1− f̃(s)
(16)

We now consider some special cases:230

(a) Fire size exponentially distributed.231
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Suppose the size of fires is exponentially distributed with mean µ i.e.232

with pdf f(x) = (1/µ)e−x/µ for x > 0. The Laplace transform of f is233

f̃(s) = 1/(1 + µs) and in consequence τ̃(s) = (1 + Λµs)/(µs2). This can be234

inverted to yield τ(A) = E(T ?(A)) = A/(Λµ)+1/Λ. As discussed in the text235

A/(Λµ) is the fire interval (FI), so the expected fires cycle (EFC) satisfies236

EFC = FI +
1

Λ

If fires are infrequent (small Λ) the difference between the EFC and FI can237

be large.238

(b) Fire size following a gamma distribution.239

Suppose the size of fires has pdf240

f(x) =

(
κ

µ

)κ
1

Γ(κ)
xκ−1 e−

κ
µ

x κ > 1.

Like the exponential distribution above this has mean µ and a long tail to the241

right. However unlike the exponential distribution its mode is not at zero,242

but rather at κ−1
κ

µ. The Laplace transform of f is f̃(s) = 1/(1 + µs/κ)κ.243

For specific integer values of κ one can, with a little work, invert the Laplace244

transform τ̃(s) to yield the EFC. For example with κ = 2245

EFC = FI +
1

4Λ

[
3 + e−4A/µ

]
.

With κ = 3246

EFC = FI +
1

3Λ

[
2 + e−

9A
2µ

(
cos(

3
√

3A

2µ
) +

1√
3

sin(
3
√

3A

2µ
)

)]
.
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Again, as the case of exponentially distributed fire size (κ = 1), in both of247

these cases if fires are infrequent (small Λ) the difference between the EFC248

and FI can be large.249

(c) Fire of constant size. If fires are of constant size µ then f̃(s) = e−µs and250

τ̃(s) = 1/(Λs(1− e−µs)). This is the Laplace transform of a step function251

with steps of height 1/Λ at 0, µ, 2µ, . . .; or in other words of the function252

{A/Λµ} where {z} is the ceiling function i.e. {z} = smallest integer ≥ z.253

Thus254

EFC =
1

Λ

{
A

µ

}

This is equal to the fire interval FI if A is an integer multiple of µ, but255

otherwise exceeds FI.256

Not that the above results can be replicated using a discrete-time formu-257

lation of the problem (to reflect the fact that fires occur only during a fire258

season). In this case assume a probability Θ of a fire being ignited anywhere259

in the study area in a given season. It is not difficult to show that all of the260

above results hold with Λ replaced by Θ. Again the difference between ex-261

pected fire cycle and the fire return interval will be large if fires are infrequent262

(small Θ).263
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