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Abstract. A possible explanation for the frequent occurrence of power-law distribu-
tions in biology and elsewhere comes from an analysis of the interplay between random
time evolution and random observation or killing time. If the system population or its
topological parameters grow exponentially with time, and observations on the system
correspond to stopping the evolution at an exponentially distributed random time,
power-law behaviour in one or both tails of the distribution of observed quantities
may result.

We pursue this theme for two specific models. The first model is a randomly killed
birth-and-death process, with applications to the numbers of genes per gene family
and proteins per protein family, the distribution of taxonomic elements in live taxa,
and other areas. The second model is a randomly growing network, with the state of
a random node (which thus has a random age) observed. For the growing network, we
consider both tree-like networks, appropriate in biological applications, and networks
in which closed loops can appear, which model communication networks and networks
of human sexual interactions.

1 Introduction Distributions exhibiting power-law (or fractal) behaviour in one or both
tails are widespread in biology and elsewhere. Within biology these include various size dis-
tributions and the connectivities of nodes in various networks. Size distributions for which
power-law tail behaviour has been claimed include the numbers of genes per gene family and
proteins per protein family; the number of species per genus; areas burned in wildfires and
the length distribution of terrestial animal species. Some biological networks for which the
distribution of connectivities of nodes are claimed to exhibit power-law behaviour include
protein-protein interactions (proteins being connected if they bind together); food webs and
networks of human sexual contacts.

Other examples just outside the realm of biology are the size distribution of family name
clades1 and of language taxa; and the connectivities of words in languages (‘word webs’).
In the non-biological world some examples are the size distributions of cities, incomes, sand
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1In view of this one might expect that the size distribution of haplogroups sharing the same mitochon-
drial DNA would also exhibit power-law behaviour, given that the mechanism through which mtDNA is
transmitted is similar to that through which family names are transmitted.



2

particles and World Wide Web file sizes along with the connectivities of World Wide Web
sites2.

An obvious question to ask is why these phenomena and many others share similarities
in their distributional form: one furthermore in which extremes of size, connectivity etc.
readily occur? For the widespread occurrence of the normal distribution in biology and
elsewhere there is a simple and elegant explanation, based on de Moivre–Laplace central
limit theorem. It seems natural to ask whether there is a similar explanation for the
widespread occurrence of distributions with power-law tails. We have provided an answer
to this question elsewhere (Reed and Hughes 2002b). The purpose of this paper is to provide
an outline of the theory and to show how it can be applied to explain the phenomenon of
power-law behaviour in some examples from biology.

Put very simply the explanation is that if a process that is growing exponentially in
some loose sense is stopped, or observed after an exponentially distributed time, the state
of the process at the time of stopping or observation will exhibit power-law behaviour in one
or both tails. To illustrate consider the simplest case in which deterministic exponential
growth X(t) = X0e

µt is stopped after an exponentially distributed random time. The
stopped state is X̄ = X0e

µT where T has an exponential distribution, with parameter λ
(say), that is, Pr{T > t} = e−λt. A simple calculation shows that X̄ has a density of the
form

fX̄(x) = kx−λ/µ−1 for x > X0,

a Pareto distribution, exhibiting power-law behaviour over its full range. Reed and Hughes
(2002b) show how this result can be extended to include stochastic processes that are
growing exponentially or geometrically in expectation. Specifically in continuous time, if
either geometric Brownian motion or a homogeneous birth-and-death process are stopped
after an exponentially distributed time (i.e. with a constant stopping rate); or in discrete
time, if either a multiplicative process or a Galton–Watson branching process are stopped
after a geometrically distributed number of steps (i.e. with a constant stopping probability),
then the distribution of the resulting stopped state will exhibit power-law behaviour in one
or both tails.

In this article we shall concentrate on models of biological phenomena of the birth-and-
death process type, and show how they can be used to explain the observed power-law
behaviour in the size distributions of gene and protein families and of genera, and in the
distribution of connectivities of nodes in some biological networks.

2 A model for the size distribution of genera and gene and protein families
Consider a genus which begins with one species (or a gene or protein family which begins
with one gene or protein) at time t = 0. Suppose that in time (t, t+h) there is a probability
λh + o(h) that any given species may speciate, giving rise to a new species (or any gene
may mutate and create in addition to replicates of itself, a new gene in the family); and a
probability µh+o(h) that the individual species may go extinct (or a gene alone be selected
out of the genome). Suppose further that all speciations and extinctions are independent.
Under these assumptions, Nt, the number of species in the genus (genes in the family) in
existence at time t follows a homogeneous birth-and death process (see e.g. Bailey 1964)
for which the probability mass function (p.m.f.)

pn(t) = Pr{Nt = n}(1)

2Although these last two examples are from outside of biology, their similarity to biological pheneomena
is recognized in the name ‘internet ecology’ used to describe the study of such phenomena.
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satisfies the differential-difference equation

d

dt
pn(t) = −(λ+ µ)npn(t) + λ(n− 1)pn−1(t) + µ(n+ 1)pn+1(t),(2)

with initial condition

pn(0) = 1 if n = 1; pn(0) = 0 otherwise.

Now let

φ(z; t) =
∞∑
n=0

pn(t)zn(3)

be the generating function for Nt. Multiplying both sides of (2) by zn and summing over
n = 0, . . . ,∞ yields the partial differential equation

φt = (λz − µ)(z − 1)φz,(4)

with initial condition

φ(z, 0) = z.(5)

This can readily be solved by the method of characteristics (see e.g. Bailey 1964) to yield

φ(z, t) =


µ(1− z)− (µ− λz) exp[−t(λ− µ)]
λ(1− z)− (µ− λz) exp[−t(λ− µ)]

if λ 6= µ,

1− (1− z)/[1 + λt(1− z)]−1 if λ = µ.

(6)

From this the well-known formulas for the p.m.f. of N(t) can be derived. In the case λ 6= µ

p0(t) =
µ− µe−t(λ−µ)

λ− µe−t(λ−µ)
;(7)

pn(t) =
(λ− µ)2e−t(λ−µ)

[λ− µe−t(λ−µ)]2

{
λ− λe−t(λ−µ)

λ− µe−t(λ−µ)

}n−1

, n ≥ 1.(8)

Since different genera (gene families) will have originated at different times, in order
to obtain the p.m.f. (or generating function) of the unconditional distribution of family
size N̄ say, the p.m.f. {pn(t)} or the generating function φ(z, t) must be integrated with
respect to the distribution of t over genera (gene families). It seems reasonable to assume
that any genus (or gene family) originated when an individual species mutated to a form
so different from others in the genus (gene family) that it could no longer be considered a
member of that genus (gene family). Let us suppose that such radical mutations can occur
in any existing genus (family) in a time interval of length h with probability ρh + o(h).
This implies that the number of genera (gene families) follows a Yule process (Yule 1924),
and that the time in existence of any genus will follow a truncated exponential distribution,
the truncation time being the time since the establishment of the first genus in the family
(Feigin 1979). Since evolution has been happening for a very long time, this truncation
can essentially be ignored, so that the p.m.f. of the distribution of current genus (or gene
family) size, N̄ , is

qn = Pr(N̄ = n) =
∫ ∞

0

pn(t)ρe−ρtdt for n = 0, 1, . . .(9)
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and its generating function is

φ̄(z) =
∫ ∞

0

φ(z, t)ρe−ρtdt.(10)

Neither of the integrals in (9) or (10) have simple closed-form expressions. However by
returning to the partial differential equation (36), multiplying throughout by ρe−ρt and
integrating with respect to t between 0 and ∞, one arrives at the following ordinary differ-
ential equation for φ̄(z):

(λz − µ)(z − 1)
dφ̄

dz
− ρφ̄(z) = −ρz.(11)

While this can be solved in terms of Lerch’s phi function (see Reed and Hughes 2002a),
the form is not particulary useful. However a series solution can be obtained by equating
coefficients of powers of z on both sides of (11), yielding the following recursion for the
p.m.f. {qn}

(n− 1)λqn−1 − [n(λ+ µ) + ρ]qn + (n+ 1)µqn+1 = 0, for n ≥ 2(12)

−(λ+ µ+ ρ)q1 + 2µq2 = −ρ(13)

−ρq0 + µq1 = 0.(14)

The p.m.f. {q̃n} of the size of a non-extinct gene family is obtained as

q̃n =
qn

1− q0
, n = 1, 2, . . .(15)

2.1 Power-law behaviour in the genus (gene family) size distribution It is shown
in this section that in the case λ > µ, the distribution of genus size exhibits power-law
behaviour in the upper tail. Consider (from (9) and (8))

qn+1 =
∫ ∞

0

ρe−ρt(λ− µ)2e−t(λ−µ)

[λ− µe−t(λ−µ)]2

{
λ− λe−t(λ−µ)

λ− µe−t(λ−µ)

}n
dt.(16)

The factor in braces is strictly increasing in t from zero at t = 0, approaching unity as
t→∞. Effecting a change of variable from t to τ with

t = (λ− µ)−1 log[n(1− µ/λ)/τ ],(17)

gives for n→∞, {
λ− λe−t(λ−µ)

λ− µe−t(λ−µ)

}n
∼
{

1− τ

n

}n
→ e−τ ,(18)

so that in (16)

qn+1 ∼
ρ

λ

(
1− µ

λ

)−ρ/(λ−µ)

n−1−ρ/(λ−µ)

∫ ∞
0

e−ττρ/(λ−µ)dτ.(19)

The integral can be evaluated as a gamma function. The important conclusion is that for
large n, the p.m.f. exhibits power-law behaviour i.e.

qn ∼ c1n−(ρ/(λ−µ)+1),(20)
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where

c1 =
ρ

λ

(
1− µ

λ

)−ρ/(λ−µ)

Γ(1 + ρ/(λ− µ)).(21)

Thus q̃n will also exhibit asymptotic power-law behaviour with exponent −(ρ/(λ− µ) + 1).
For λ ≤ µ, it can be shown (Reed and Hughes 2002a) that qn does not exhibit exact

power-law behaviour, but rather behaves in a ‘stretched exponential’ form.

2.2 A special case: no extinctions If the extinction rate parameter µ is set to zero,
the birth-and-death process reduces to the Yule process and the resulting size distribution
is the eponymous Yule distribution (e.g. Johnson et al. 1993, Sec. 6.10.3) with p.m.f.

qn =
(ρ
λ

) Γ(ρ/λ+ 1)Γ(n)
Γ(ρ/λ+ n+ 1)

, for n = 1, 2, . . . .(22)

This exhibits power-law behaviour in the upper-tail with exponent ρ/λ + 1 and indeed as
Yule showed, exhibits almost linear behaviour in the log-log plot, over the whole range.

3 Power-law behaviour in evolving biological networks We shall consider various
models for the evolution of a network, in which new nodes enter stochastically. The networks
considered will be what have been termed ‘scale-free’ networks (see the reviews of Albert
and Barabási 2002 and Dorogovtsev and Mendes 2002). The basic idea of such networks
is that nodes that are well-connected are more likely to establish new connections than are
nodes that are less well connected. The typical example of such a network is the World-Wide
Web where, when new sites are added to the web, they are more likely to have links to sites
such as Google, Adobe etc. that are already well-connected, than to weakly connected sites.
Existing models of scale-free networks (see Albert and Barabási 2002) assume that a new
node is added to the network in each period and it connects to a fixed number of existing
nodes, with the probability of connection to any given existing node being proportional to
that node’s current connectivity. We shall consider a model of this type later, but first
we consider a simple model, which possibly is more appropriate in biological applications,
which gives rise to a scale-free network with a tree structure. This model will then be
extended to allow for any network structure.

3.1 A model for an evolving tree-structured network Suppose when there are n
nodes in the network, with varying connectivities,3 any node can connect to an external
isolated node, thereby bringing it into the network, with well-connected nodes being more
likely to do this than less well-connected nodes. Specifically for a node in the network, with
connectivity ki at time time t, suppose that the probability of it bringing a new node into the
network in the infinitesimal time interval (t, t+ h] is λkih+ o(h). Thus the well-connected
nodes are much more likely to establish a new connection than the less well-connected
nodes. Now denote the number of nodes in the network at time t by N(t) and the number
connected to a specific node (call it node ∗) by K(t). Let pk,n(t) = Pr{K(t) = k,N(t) = n}.
Then

pk,n(t+ h) = pk−1,n−1(t)λ(k − 1)h+ pk,n−1(t)λh
∑
i6=∗

ki

+pk,n(t)
(

1− λh
n∑
i=1

ki

)
+ o(h).(23)

3By the ‘connectivity’ of a node, we mean the number of other nodes that are directly linked to it. In
other contexts, this number is called the ‘valence’, the ‘coordination number’, or the ‘degree’.
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When N(t) = n, we know that
∑n
i=1 ki = 2n − 2, since the system evolves from one in

which
∑n
i=1 ki = 2 when n = 2, and the addition of each new node to the network increases

the sum over connectivities of all nodes by 2. In the limit h → 0, the recurrence relation
(23) yields the differential-difference equation

d

dt
pk,n(t) = λ(k − 1)pk−1,n−1(t) + λ(2n− 4− k)pk,n−1(t)− λ(2n− 2)pk,n(t).(24)

Summing this over n (from 1 to infinity) yields a differential-difference equation for the
marginal distribution of K(t):

d

dt
pk(t) = λ(k − 1)pk−1(t)− λkpk(t).(25)

This is the equation of a Yule process (Bailey, 1964, p.85) with parameter λ. It follows from
standard results that K(t) has a negative binomial distribution with parameters k0 = K(0)
and e−λt. In particular with k0 = 1 this reduces to a geometric distribution with

pk(t) = e−λt(1− e−λt)k−1, for k = 1, 2, . . .(26)

But the connectivities of nodes do not follow a geometric distribution, the reason being that
they will have been present in the network for different lengths of time. To take this factor
into account the distribution (26) must be integrated with respect to the distribution of the
time t that nodes have been in existence.

One can determine this by first summing (24) from k from 1 infinity, to yield an evolution
equation for the marginal distribution of N(t):

d

dt
pn(t) = 2λ(n− 2)pn−1(t)− 2λ(n− 1)pn(t).(27)

This is the equation of a non-homogeneous birth process with

Pr{birth in (t, t+ h] | N(t) = n)} = 2λ(n− 1).(28)

From this it follows that the number of new nodes, U(t) = N(t)− n0, connected in (0, t] is
a birth process with immigration and has a negative binomial distribution. Such a process
is an ‘order statistic’ process (see e.g. Feigin 1979), which means that the times of births
since the start of the process have the same joint distribution as those of the order statistics
of a sample of independent identically distributed random variables: in this case of random
variables with a truncated exponential distribution, that is, with p.d.f.

f(t) =
2λe−2λt

1− e−2λT
(29)

where T is the elapsed time since the founding of the network (see Feigin 1979, p. 300). This
means that the time since the introduction of any existing node (say the specified node ∗)
will have this distribution. Assuming the time T elapsed since the founding of the network,
is large, to a good approximation, the time since the introduction of node ∗ will have an
exponential distribution with p.d.f. f(t) = 2λe−2λt on (0,∞).

It follows that the distribution of the connectivity of node ∗ at the current time, will be
given by the state of a Yule process (governed by (25)) after an exponentially distributed
time, that is, the state of an a process growing exponetially in expectation, after an expo-
nentially distributed time. It is not difficult to show (by integrating (26) with respect to
the exponential density that the p.m.f. of the connectivity K∗ of node ∗ is

p∗k =
2Γ(3)Γ(k)
Γ(k + 3)

=
4

k(k + 1)(k + 2)
,(30)
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a Yule distribution which exhibits power-law behaviour with exponent −3. It is interesting
to note that unlike the Yule distribution in Sec. 2.2, this distribution does not depend on
any parameters. This is one way in which the network can be said to be scale-free.

A second way of formulating a model for the evolution of a tree-structured network,
which gives the same result as above, is closer to the more familiar model of the evolution
of scale-free networks (Albert and Barabási, 2002). However rather than assuming a fixed
number of new nodes is added to the network in every period, assume instead that new
nodes are created in a Yule process at rate 2λ, and that any new node will connect to
one of the existing nodes, with probabilities proportional to the current connectivities of
these existing nodes. After some steps this yields an ode for pk(t) the same as (25) and in
consequence a geometric distribution for K(t) the same as (26). Since the Yule process is an
order statistic process it follows that the time elapsed since the introduction of a specified
node ∗ will follow a truncated exponential distribution on (0, T ), again with parameter 2λ,
and thence to a good approximation that the distribution of the current connectivity of
node ∗ will follow the Yule distribution (30).

3.2 The evolution of networks where new internal links can be established We
now consider a model for the evolution of more complicated networks, in which any node
can establish a new connection with an exterior, isolated node, as before, and in addition
can establish a new connection with any existing node in the network. Let N(t) and K(t)
denote the number of nodes in the network and the connectivity of a specified node ∗, say
at time t, as before. In addition let M(t) denote the total number of links in the network,
so that

K(t) +
∑
i6=∗

K(t) = 2M(t).(31)

A state of the system in which K(t) = k,M(t) = m,N(t) = n will be denoted by (k,m, n)
for brevity. In the infinitesimal interval (t, t+ h] the following transitions that add one link
to the network can occur:

(k − 1,m− 1, n− 1) → (k,m, n) [new link from ∗ to external node]

(k,m− 1, n− 1) → (k,m, n) [new link from node other than ∗
to external node]

(k − 1,m− 1, n) → (k,m, n) [new link from ∗ to an existing node]

(k,m− 1, n) → (k,m, n) [new internal link not involving ∗]

As before, assume that in the infinitesimal interval (t, t+h] any existing node i can establish
a new external link with probability λkih + o(h), so that the probabilities associated with
the first two transitions are λ(k − 1)h+ o(h) and

λ
(∑
i6=∗

ki

)
h+ o(h) = λ[2(m− 1)− k)]h+ o(h),

respectively. Assume further that any existing node i can establish a new internal link
with probability νkih + o(h), so that for a transition of the third kind the probability is
ν(k − 1)h+ o(h), and for a transition of the fourth kind the probability is

ν
(∑
i6=∗

ki

)
h+ o(h) = ν[2(m− 1)− k]h+ o(h).
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With these assumptions we deduce the evolution equation

d

dt
pk,m,n(t) = λ(k − 1)pk−1,m−1,n−1(t) + λ[2(m− 1)− k]pk,m−1,n−1(t)

+ν(k − 1)pk−1,m−1,n(t) + ν[2(m− 1)− k]pk,m−1,n(t)
−[λk + λ(2m− k) + νk + ν(2m− k)]pk,m,n(t).(32)

Summing this over n = 1, 2, . . . and m = 1, 2, . . . yields

d

dt
pk(t) = (λ+ ν)(k − 1)pk−1(t)− (λ+ ν)kpk(t),(33)

which is the same as (25) with λ replaced by λ+ ν. Also summing over k = 1, 2, . . . yields

d

dt
pm,n(t) = 2λ(m− 1)pm−1,n−1(t) + 2ν(m− 1)pm−1,n(t)− 2(λ+ ν)mpm,n(t).(34)

The solution of (33) with k0 = 1 yields a geometric distribution for K(t) as before (equation
(26)), but with parameter e−(λ+ν)t rather than e−λt.

To solve (34) define the generating function

φ(s, z, t) =
∞∑

m,n=1

pm,n(t)smzn.(35)

Multiplying (34) by smzn and summing over m and n yields the following partial differential
equation for φ:

φt(s, z, t) = 2s[λsz + νs− (λ+ ν)]φs(s, z, t).(36)

This equation can be solved (with initial condition M(0) = m0, N(0) = n0) by the method
of characteristics to yield

φ(s, z, t) = zn0

[
s(λ+ ν)

(λ+ ν)e2(λ+ν)t + s(λz + ν)(1− e2(λ+ν)t)

]m0

.(37)

It follows that both N(t) and M(t) have negative binomial distributions. In particular
U(t) = N(t) − n0, the number of new nodes established in (0, t] has a negative binomial
distribution with p.m.f.

Pr{U(t) = u} =
(
m0 + u− 1

u

)
[p(t)]m0 [q(t)]u , u = 0, 1, . . .(38)

where

p(t) =
λ+ ν

λe2(λ+ν)t + ν
, q(t) = 1− p(t) =

λ(e2(λ+ν)t − 1)
λe2(λ+ν)t + ν

.(39)

As before it can be shown that U(t) is an order statistic process, in this case with

E(U(t)) = m0
λ

λ+ ν

(
e2(λ+ν)t − 1

)
.(40)

From this using the results of Feigin (1979) it follows that conditional on there being U(t) =
u new nodes established, the times elapsed since establishment of these nodes have the same
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joint distribution as a random sample of size u from the truncated exponential distribution
with p.d.f.

f(t) =
2(λ+ ν)e−2(λ+ν)t

1− e−2(λ+ν)T
,(41)

where T is the elapsed time since the founding of the network. Thus, assuming T large, we
can treat the distribution of the time since establishment of node ∗ as being approximately
exponential with parameter 2(λ+ ν).

As in the previous sub-section, the unconditional distribution of the number of connec-
tions at node ∗ can be obtained by integrating the geometric distribution

pk(t) = e−(λ+ν)t(1− e−(λ+ν)t)k−1, for k = 1, 2, . . .(42)

with respect to the exponential density with parameter 2(λ+ν), yielding the identical Yule
distribution (30) with power-law behaviour with exponent −3. As in previous examples,
the power-law distribution arises as the state of a stochastic process (for K(t)) growing
exponentially in expectation (the Yule process) after an exponentially distributed time.

As in Sec. 3.2 the distribution of conectivities is scale-free. The distributions of the size
N(T ) and total connectivity M(T ) however do depend on model parameters. Specifically if
the intial network has n0 = 2 nodes with a single (m0 = 1) link, then N(T ) has a (shifted)
geometric distribution

Pr(N(T ) = n) = p(T )[q(T )]n−2, for n = 2, 3, . . . ,(43)

where p(T ) and q(T ) are given by (39); and M(T ) has a geometric distribution with para-
meter e−2(λ+ν)T , i.e. with p.m.f. (42) but with λ+ ν replaced by 2(λ+ ν). Thus

E(N(T )) = 2 +
λ

λ+ ν
(e2(λ+ν)T − 1) and E(M(T )) = e2(λ+ν)T .(44)

We have obtained similar results for the distribution of connectivities of nodes in the
models of Sec. 3.1 and 3.2. The latter model is more general and seems to provide a
reasonable description for the growth of a network of sexual partners. It may also be
reasonable for food webs and networks of interacting proteins. If so the exponents in the
empirical distributions of connectivities should be close to 3. Estimates cited by Albert and
Barabási (2002) are 3.4 for a network of sexual partners; 2.4 for the protein network of the
yeast Saccharomyces cerevisiae; and 1.05 and 1.13 for two food webs. The first two are not
too far from the value of 3 derived in the model. Those for the food webs however are very
different, but it should be borne in mind that the food webs are rather small, the largest
having 186 nodes, so there is probably considerable sampling error in the estimates.

4 Other examples and conclusions In this article we have used stochastic models to
explain why certain distributions in biology exhibit power-law behaviour. The explanations
are in a sense special cases of a more general result which predicts power-law tails in distri-
butions which result from stopping an exponentially growing process after an exponentially
distributed time. Reed and Hughes (2002b) give other examples of distributions with power-
law tails which can be explained as the result of this mechanism. These include those of
incomes and human settlement sizes, which can be modelled as growing following geometric
Brownian motion. If the workforce is growing at a fixed rate, or if new settlements are
being created from old in a Yule process, then the time in the workforce of earners, or the
time in existence of settlements, should be approximately exponentially distributed, and
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the resulting distributions should follow power-laws in both tails, as indeed does occur for
empirical distributions of incomes and settlement sizes. Another example is that of internet
file sizes. The evolution of file sizes can be modelled as following a discrete multiplicative
process, and assuming the random creation of new files from old, it can be shown that the
time in existence of files should be approximately geomtrically distributed. This leads to
a distribution of file sizes exhibiting power-law behaviour in one or both tails. Large data
sets on WWW file sizes indicate power-law behaviour does occur at least in the upper tail.

Another example with potential application to biology is that of the distribution of the
size of family name clades. It is assumed that the number of males carrying a family name
follows a Galton–Watson branching process, and that new names arise either randomly
through immigration, or from the random splitting of existing names (e.g. through a spelling
change). With these assumptions it can be shown (Reed and Hughes 2003) that the current
distribution of the size of name clades should exhibit power-law behaviour in the upper tail.4

Indeed it seems that empirical distributions of names follow close to a power law over their
complete range of support. As pointed out in a footnote in the introduction, the mechanism
through which family names are passed on from generation to generation is very similar
to that for the transmisssion of mtDNA. Mutations in mtDNA could also be considered
similar to changes in spelling of names. This would suggest that the sizes of haplogroups
with common mtDNA should have a distribution exhibiting power-law behaviour, at least
in the upper tail. We are not familiar with data which could verify or refute this prediction.
For now we leave it as a prediction and hope that it will be confirmed and our model
validated.

The authors have elsewhere considered the distribution of the number of taxon ele-
ments that have ever existed, including both currently live and extinct species (Hughes and
Reed 2002) in a model of evolution subject to catastrophic extinction events. Power law
distributions are again obtained.
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