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Abstract

A stochastic model for the generation of observed income distributions
is used to provide an explanation for the Pareto law of incomes. The basic
assumptions of the model are that the evolution of individual incomes
follows Gibrat’s law and that the population or workforce is growing at
a fixed (probabilistic) rate. Analysis of the model suggests that Paretian
behaviour can occur in either or both tails of an income distribution.
Examination of the empirical distribution of total money income in the
USA confirms Paretian behaviour in both tails. What determines the
magnitude of the power-law (Pareto) exponents is discussed.
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1 Introduction.

The discovery more than 100 years ago by V. Pareto (1897) that many in-
come distributions exhibited power-law behaviour in the upper tail' has led
over the years to many attempts to explain this phenomenon (Pareto’s law of
incomes) and to find a satisfactory parametric form which can be fitted to any
income distribution. During the 1950’s and 60’s there was a lot of activity along
these lines using stochastic modelling of the evolution of incomes. The papers
of Champernowne (1953), Rutherford (1955) and Mandelbrot (1960) are the
most noteworthy of this work. Although there have been a number of other
refinements and alternative models proposed (for summaries see Ord, 1975 and
Dagum, 1983), none seems to have provided much of an improvement in terms
of explanatory power over the model of Champernowne. More recent work has
eschewed process modelling, instead focusing on finding alternative parametric
distributions which provide a good fit to a wide range of observed data, and
for which the parameters have a meaningful economic interpretation (see e.g.
Bordley et al., 1996; Dagum, 1996). Exceptions are the papers of Parker (1999)
which presented a model which is claimed to explain why incomes should follow
a generalised beta distribution — a distribution which has been shown to pro-
vide a good fit to much empirical income data (McDonald, 1984; Bordley et al.,
1996); and of Solomon and Richmond (2001) which offered an explanation for

the power-law behaviour of wealth distributions and other phenomena based on

IPareto plotted the the number of incomes above a level = against z, both on logarithmic
scales for many jurisdictions and found that the plotted points lay close to a straight line of
negative slope



the Lotka-Volterra model of population biology.

In this article, in Sec. 2, a model in the spirit of the earlier work of Cham-
pernowne (1953) and others is presented which provides an explanation of why
Pareto’s law should hold. In addition the model predicts that a Pareto-type law
may hold in the lower-tail of income distributions (i.e. that a logarithmic plot
of the number people earning less than x against x, should yield points close
to a straight line. Examination of a number of empirical income distributions
indicates that this often appears to be the case.

A discussion of what determines the magnitude of the power-law (Pareto)
exponents in both tails is presented in Sec. 3 and an analogous continuous-time

model briefly discussed in Sec. 4.
2 The model and analysis.

In the tradition of Champernowne (1953), Rutherford (1955) and other earlier
authors, we consider a discrete-time stochastic model for the evolution of the
income of an individual. Let X,, denote the income of an individual in period n,
and suppose that it is related to the individual’s income in the previous period
by

Xn=04r,—1)Xn-1 (1)

where {r, }n=0,1,... are the per-period rates of growth in the individual’s income.

Letting Z,, = 1 + r, denote per-reriod growth factors we have

Xn=7Zn1Xn_1. (2)



We shall assume that {Z,,}n=0,1,... are independent, identically distributed, con-
tinuous, non-negative random variables. This model is simply Gibrat’s law of
proportional effects (Gibrat, 1931) and is compatible with Champerenowne’s
(1953) logarithmic random walk model.

Clearly by iterating (2) the state the individual’s income in period N is

N—1
Xn =X0Z0Z1Zs... Zn1 = Xo ] Z, (3)

i=0

where X, represents the starting income of the individual. Gibrat showed
that for large fixed IV, the distribution of X should be approximately lognor-
mal. However it is well-known that empirical income distributions are poorly
approximated by a lognormal distribution. The reason for this is that over
the whole population or workforce, the parameters N (time since entry into
the workforce?) and X; (starting income) vary. To take this into account
we need to consider a mixture of (approximately lognormal) distributions (of
Xy =Xy Hﬁigl Z;) with mixing parameters X, and N.

The distribution of N over the whole workforce (i.e. of the time since entry
of individuals) will reflect the history of the entry and exit from the workforce
via its current ‘age’ profile. For example if the workforce has been growing at
a fixed rate there will be more younger workers than older ones. In fact in this
case the time in the workforce of an individual will have a truncated exponential
distribution; this distribution also results if the workforce is growing stochasti-

cally (in a Yule process) at a fixed average rate (see Reed and Hughes, 2002a).

2Note that the expression “entry into the workforce” is appropriate for discussion of earned
income. When discussing income from all sources it would be more accurate to use the
expression “first receipt of income”. For the sake of simplicity the former expression will be
used throughout.



To a first approximation we can ignore the truncation, and assume an expo-
nential distribution, or its equivalent in discrete time, a geometric distribution.
Thus we shall assume that N follows a geometric distribution with probability

mass function (pmf)
fn(n) =Pr(N =n) =pg" ', forn=12,... (4)

where 0 < p < 1 and ¢ = 1 —p. This model corresponds to a workforce growing
at an average (proportional) rate A = p/q per period.

Now let X be a random variable denoting the current income of an individual
ie. X =X, Hf\;}l Z;, where N is now considered a random variable with pmf
(4). We show in the Appendix that the distribution of X will exhibit power-
law (Paretian) behaviour in the upper tail if Pr(Z; > 1) is non-zero; and will
exhibit power-law (Paretian) behaviour in the lower-tail if Pr(Z; < 1) is non-
zero. Precisely if we denote the probability density function (pdf) of X by fg(z),
and its cumulative distribution function (cdf) by F'g(z), then, if an individual’s
income can increase (i.e. there is a non-zero probability that the growth rate r;

is positive)
fe(@)~ciz7® 1-Fg(x)=Pr(X >z)~c2™® asz—o00 (5)

where a, c¢; and ¢y are positive constants; and if there if an individual’s income
can decrease (i.e. there is a non-zero probability that the growth rate in any

period, r;, is negative) then

fe(@) ~ez 2Pty Fg(x)=Pr(X <z)~cs2°, asz—0 (6)



where 3, c3 and ¢4 are positive constants. The result (5) is the usual Pareto law;
while the result (6) is a lower-tail Pareto law.

Although Champernowne (1953) pointed out that many empirical income
distributions exhibited Paretian lower-tail behaviour (i.e. logarithmic plots of
number of incomes less than x against « have points close to a straight line) the
fact doesn’t seem to be widely acknowledged. The model of this paper predicts
such behaviour. The plot in Fig 1 for money incomes in the USA (and many

other plots not shown) confirm its existence.

3 Determinants of the magnitude of the Pareto
exponents.

Details of ‘comparative statics’ for the Pareto exponents o and 3 in the upper
and lower tail of the distribution of current incomes, under the model of Sec. 2
are given in the Appendix. A small value of the upper-tail exponent « corre-
sponds to a very long upper tail (extreme inequality). In a similar fashion we
shall refer to a small 8 as corresponding to a distribution with a long lower tail.
Of course the lower tail is always bounded by zero, but for small 5 there will
be more probability concentrated near zero. Indeed if 3 is less than one the pdf
will be decreasing at the lower end.

The results can be summarized as follows:

e the upper-tail exponent « will be smaller (longer upper tail) in cases where
(a) the workforce is growing slower on average (more older workers); and

(b) the growth of individual incomes is faster on average, and exhibits



more variability, than in cases where the opposite of (a) and (b) hold.

e The lower-tail exponent 8 will be smaller (long lower tail) in cases where
(c¢) the workforce is growing slower on average; and (d) the growth of
individual incomes is slower on average and exhibits more variability, than

in cases where the opposite of (¢) and (d) hold.

Thus rapid growth in the workforce and low variability in the growth of
individual incomes cause both exponents to be large - reduce inequality The
effect of the average rate of growth for individual incomes has opposite efefcts
on the upper and lower tail exponents. When a high average growth rate in
individual incomes prevails there will be a longer upper tail and a shorter lower
tail, than in the corresponding case with a lower positive, or even negative,

average growth rate.

4 A continuous-time model.

Reed (2003) considers a continuous-time version of the model presented here,
in which the income of an individual is assumed to follow geometric Brownian
motion (GBM):

dX = pXdt + o Xdw

where pu and o are mean drift and variance parameters (rate and volatility of
growth) and dw is white noise (the increment of a Wiener process with dw ~
N(0,dt)). In addition starting incomes are assumed to follow another GBM
with different parameters (so that the starting incomes at any fixed time are

lognormally distributed). Thus the model is both more general than the model



of this paper in that it allows for variations in starting incomes, but less general
in that it does not have the flexibility of allowing different distributions for
the random per-period growth factors for individual incomes (the Z; in (2)).
For example it does not include the possibility that an individual’s income be
monotonically increasing, with probability one, as would occur in the model (2)
if Pr(Z; >1)=1.

For the GBM model Reed (2003) shows that if the distribution over the
workforce of the time since entry of individuals is exponential, then power-law
behaviour can be expected in both tails of the distribution of current incomes.
Furthermore the distribution of current incomes for this model is shown to be
the product of independent ‘double Pareto’ and lognormal components. Reed
(2003) names it the double Pareto-lognormal distribution and derives expressions

for its pdf and cdf in terms of four parameters o, 3, v and 72. Specifically

fr(o) = 25 oo 1Al v, m) (lme=r=er®) 4 .
oA e (2t
where
A(B,v,7) = exp(Bv + o®77/2)

and

Frle)= @ (M) — 247 [ﬁw’“A(a,u, 7)@ (logazr—ar®) | N

azB A(—B,v, 7)®° (w)]
where @ is the cumulative distribution function of a standard normal, N(0, 1),
random variable and ®¢ = 1 — ®. These closed-form expressions permit model
fitting for both ungrouped and grouped data by maximum likelihood. Properties

of this distribution and methods of fitting are discussed in Reed and Jorgensen



(to appear). Reed (2003) gives examples of the excellent fit to a number of
empirical income and earnings distributions. Thus the double Pareto-lognormal
distribution appears to offer an attractive new distribution for the modelling
of income distributions, and has the added benefit of being derived from a

theoretical model for the way in which empirical income distributions arise.

5 Discussion.

This article has presented an explanation of the Pareto law of incomes, based
on a model which uses Gibrat’s law to model the growth of individual incomes.
In this respect the model is like many earlier attempts to explain Pareto’s law
(see references in the Sec. 1). However unlike many of these earlier attempts,
the analysis of the model in this article does not assume a population in equilib-
rium. In fact it specifically assumes a population or workforce which is growing
(possibly stochastically) at a fixed mean rate. It thus recognizes the fact that
different individuals will have been in the workforce for different lengths of time.
It is this fact, coupled with the multiplicative (i.e geometric or exponential) na-
ture of growth under Gibrat’s law, which gives rise to power-law behaviour in
one or both tails of the current income distribution.

The model is a discrete-time analogue of a model presented by Reed (2003),
based on a geometric Brownian motion model for individual income growth.
The discrete model however has, in some respects, more flexibility than the
continuous-time model, in that it allows for different possible distributions for

the per-period growth factors, rather than exclusively a lognormal distribution

10



as in the GBM model e.g. growth rates can be assumed to be always positive.
With this further flexibility it is possible to show that a Pareto upper tail will
occur only if individual incomes can increase, and a Pareto lower tail will occur
only if incomes can decrease.

The way in which the ‘length’ of the Pareto tails (the magnitude of the Pareto
exponents) depends on the mean and variance of the growth rate of individual
incomes, and on the growth rate of the size of the workforce are discussed. In
many ways a posteriori these results seem obvious, but apparently have not been
recognized before. Analysis of the model also leads to the prediction of a lower-
tail Pareto law. Although the existence of such for empirical distributions was
discovered by Champernowne fifty years ago, it does not appear to be widely
known. Both of the above findings demonstrate the value of modelling in the
discovery process.

The model of course is a gross oversimplification of reality. However simpli-
fication is at the heart of modelling, and the fact that the model can provide
an explanation of an observed phenomenon, as well as predicting another unex-
pected one, suggests that the important components of the mechanism behind
Pareto’s law have been retained in the model. Pareto’s law seems to be the
consequence of a mathematical mechanism, which operates not only in the field
of incomes (see Reed and Hughes, 2002b, for further examples in biology, geog-
raphy, geneology and internet ecology). Thus although Pareto’s law operates in

the economic sphere, it does not require an explanation in economic terms.
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Appendix

We derive the Paretian tail behaviour for the model described in Sec. 2. The
derivation uses generating functions — the probability generating function (pgf),

which for a discrete random variable X with pmf fx(x), is defined as

Gx(s) =E(s¥) =) fx(z)s"

and the moment generating function (mgf) which for any random variable X is

defined as

provided the expectations exist. For a random variable N with the geometric

distribution (4) the pgf is

Gnls) = 2 )

Now let Y = log(X) where X is a random variable denoting the current

income of an individual(X = X, Hﬁigl Z;) as described in Sec. 2. Then

Y=Y+ > U (10)
where Y = log(Xy) and U; = log(Z;) for i = 0,1,...,N — 1. The mgf of Y is

) (11)

where the expectation is taken with respect to the random variables Yy, N and

N-1

Yos + Z U;s

i=0

My (s) = E(eﬂ_/) =E (exp

Uo,Uy,...,Un—_1, assumed to be independent. Using conditional expectation
this can be written

My (s) = Mo()E ([Mu ()]") (12)



where My(s) is the mgf of Yo; My (s) is the (common) mgf of the U; and the ex-
pectation is taken with respect to the random variable N. Now E ([MU(s)]N) =
G n(My(s)) so that the mgf of X can be written

pMu(s)

My (s) = Mo(s) T—gMy(s) (13)

Now from standard results, the tail behaviour of the pdf of ¥ can be de-
termined from the singularities of its mgf. These occur at solutions (in s) to

My (s) = 1/q. We examine these in the three cases:

e (a) incomes always increasing: Z; > 1 (so that U; > 0) with probability

one;

o (b) incomes always decreasing: Z; < 1 (so that U; < 0) with probability

one; and

e (c) incomes able to increase and decrease: Pr(Z; > 1) > 0 and Pr(Z; <

1) > 0 so that Pr(U; > 0) > 0 and Pr(U; < 0) >0

In all cases My(0) = 1 and M{j(s) > 0, so that real zeros of My(s) — 1/q
are simple zeros. In case (a) My (s) is increasing in s with My (s) — oo as
s — oo and My(s) - 0 as s = —oo. It follows that there is a simple zero of
My (s) — 1/q (so that there is a simple pole of My (s)) at >0 (NB 1/¢ > 1).
This implies that the pdf of Y behaves asymptotically (as y — oo) like c;e=?Y;
and therefore after a change of variable that the pdf of X behaves asymptotically
as fg(z) ~ciz™27 ! (as z — o).

In case (b) My (s) is decreasing in s with My (s) = 0as s — oo and My (s) —

o0 as s = —oo. It follows that there is a simple pole of My (s) at —3 < 0. This

13



implies that the pdf of Y behaves asymptotically (as y — —o0) like c3e’y; and
therefore after a change of variable that the pdf of X behaves asymptotically as
fx(x) ~c32? ! (as ¢ — 0).

In case (c) My(s) — oo as s — oo and as s — —oo. From this fact and
the convexity of My (s) it follows that there are two simple poles of My (s),
one positive (a, say) and the other negative (—f3, say). This implies fg(z) ~
c1x7% ! (as 2 — o0) and fg(z) ~ c3z?! (as z — 0).

The asymptotic behaviour of the cdf Fg () or the complementary cdf, 1 —
F(x), follows from integration.

The way in which the exponents a and 8 depend on other quantities can
be examined by re-writing the equation My (s) = 1/¢ in terms of the cumulant

generating function

0% 5 K3 g ka4
KU(s)zlog(MU(s)):,us-l-as +§s +ES +...

where 1 and 02 are mean and variance of the U; = log Z;, and k3, k4 etc. are
higher order cumulants. The quantities a and —f are the positive and negative
roots (if they exist) of

Ky(s) = —logg

For simplicity we consider only the case (c) above where both roots exist. Similar
arguments apply in cases (a) and (b). In case (c¢) when incomes can both increase
and decrease, K;(0) = 0 with Ky decreasing for s < 0 and increasing for s > 0.
From this it follows that « and 8 both increase with —logg. In a similar way

it can be established that increasing o2 results in a decrease of both a and 8

14



(since Kyy(s) increases for all s). For an increase in u, Ky;(s) decreases if s < 0
and increases if s > 0. From this it follows that « decreases and 3 increases
with an increase in u. An increase in the third cumulant k3 (skewness) with p
and o? staying constant, has the same effect as an increase in p.

The expected growth rate per period of the workforce is A = p/q, and the
quantity § = —logq is related to this as = log(1 + \), which is an increasing
function. It follows that both a and f increase with A. Thus in a fast growing
workforce one would expect large Pareto exponents a and 5 in both tails, and for
a slower growing workforce the exponents would be smaller. In fact in the limit
as the growth rate A — 0 (so that the distribution of time in the the workforce
tends to an improper uniform distribution) both «, 8 — 0, so that the pdf fg(x)

tends to an extremely long-tailed (improper) distribution behaving like z* in

both tails.
The parameters pu and o? are the mean and variance of U; = logZ; =
log(147r;) = r;—r?/2+r}/3—. .., where the r; are random variables representing

the per period growth rates for the income of an individual. Approximately one
can consider 4 and ¢? to be the mean and variance of the growth rate of an
individual’s income (for short periods the r; will be small and higher order terms
in the power series can be ignored). Thus if individual incomes grow rapidly
on average (large p) one would expect « to be small and § to be large, and
vice versa if individual incomes grow slowly, or even negatively. If growth of
individual incomes is highly variable (large o) one would expect both Pareto

exponents to be smaller than in the case of less variability in growth.
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Figure legends.

Fig. 1 Distribution of total money income of 216 million people in USA in
2000. The left-hand panel is a plot (on logarithmic axes) of the frequency
density distribution. The centre panel (again on logarithmic axes) is a plot of
the cumulative frequency distribution in the lower tail. The linearity of the
plot confirms the lower-tail Pareto law. The right hand panel is a plot (on
logarithmic axes) of the cumulative frequency distribution in the upper tail and

reveals the familiar upper-tail Pareto law.
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