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Abstract

This article deals with the theoretical size (number of species) dis-
tribution of live genera, arising from a simple model of macroevolution
in which speciations and extinctions are assumed to occur indepen-
dently and at random, and in which new genera are formed by the
random splitting of existing genera. Mathematically the distribution
is that of the state of a homogeneous birth-and-death process after an
exponentially distributed time. An ordinary differential equation for
the generating function of the distribution is derived and solved and a
recurrence relation for computing the probabilities in the distribution
presented. Some properties of the distribution, including asymptotic
behaviour, are examined and the distribution of the time since estab-
lishment of a genus of a given size derived. Fitting the distribution to
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empirical taxon size distributions by maximum likelihood is discussed
and two examples are presented
Keywords: Birth-and-death process, taxon size distribution, asymp-
totic methods, Yule model.

1 Introduction.

Empirical abundance distributions of the numbers of species per genus (and

at higher taxonomic levels of numbers of sub-taxa per taxon) reveal a consid-

erable degree of regularity: they are all extremely long-tailed; they have their

mode at one (i.e. the monospecific genus is the most frequent); and when the

frequency of genera of size n is plotted against genus size n on logarithmic

axes, the points fall close to a straight line, at least for genera up to a certain

size, suggesting power-law behaviour in the distribution. These commonal-

ities appear to hold both for living taxa and for fossil taxa and have been

recognized for a long time (Yule, 1924; Corbet, 1942). Burlando (1990, 1993)

gives many examples of abundance distributions exhibiting these properties,

and speculates that the power-law behaviour results from fractal dynamics

in the underlying evolutionary process.

Yule (1942) presented a mathematical theory of macroevolution to explain

observed abundance distributions, introducing and developing the theory of

the eponymous Yule process (or homogeneous pure birth process). He derived

the probability distribution of the number of species in a genus at a fixed time

after its establishment, and under the assumption that genera are formed in a

process stochastically similar to that in which species are formed, derived the

2



distribution of genus sizes over genera in a family. This is now called the Yule

distribution, and is known to exhibit power-law behaviour asymptotically,

and to follow close to a power-law over the whole of its range. Yule however

observed that in the extreme upper tail (genus sizes greater than about thirty)

empirical distributions seemed to decay faster than a power-law, and he

claimed that this was due to finite time effects - i.e. as a result of the fact

that no genus in a given family could have been in existence for longer than

a finite time, determined by the time of origin of the family.

In his model Yule ignored extinctions, claiming that in the main these

have been due cataclysmic events. Yule’s model can thus be thought of as

a model of adaptive radiation. An obvious way to extend the model is to

allow for random individual extinctions in addition to speciations, employ-

ing a homogeneous birth and death process and thus leading to a model of

neutral macroevolution. This has been proposed by Raup (1985), who in an

appendix presented standard mathematical results on such processes. He did

not however give results analogous to Yule’s for the size of a living genus,

possibly because his main interest is in paleobiology 1. An alternative ap-

proach was adopted by Chu and Adami (1999), who used a Galton-Watson

branching process model, from which they derived an iterative scheme for

determining taxon abundance distributions. However the discrete nature of

1The size of a fossil taxon is the number of sub-taxa which have existed in the taxon at
any time prior to extinction, which, of course, if individual non-catastrophic extinctions
are possible, is not the same as the number existing at the final time of extinction. We
consider the size distribution of fossil taxa in a forthcoming paper (Reed & Hughes, 2001)
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time in their model, and the fact that at each time step a sub-taxon can give

rise to zero, one, two, . . . etc. new sub-taxa renders it less realistic than the

birth-and-death process model proposed by Raup. Kemp (1995) considered a

variant of the Yule model in which the task of the taxonomist is modelled as a

birth and death process (‘lumping’ two species corresponding to a death and

‘splitting’ a species to a birth) and derived logarithmic and polylogarithmic

distributions for genus size.

In this paper we consider the birth and death process model proposed

by Raup. It can be thought of as a null model in which speciations and

extinctions occur independently and at random. Thus it does not include the

possibility of episodic mass extinctions caused by cataclysmic events (Raup,

1985, 1991). We derive results for the size distribution of living genera and

for the distribution of time since establishment for genera of a given size.

The properties of the distributions are examined, and the statistical issues

of fitting the abundance distribution to empirical data considered.

2 A null model for speciations and extinc-

tions.

Consider a genus which begins with one species (or more generally a taxon

with one member) at time t = 0. Suppose that in time (t, t + h) there is

a probability λh + o(h) that any given species may split into two distinct

species (a speciation), and a probability µh+o(h) that the individual species

alone becomes extinct. Suppose further that all speciations and individual
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extinctions are independent. Let Nt denote the number of species currently

alive at time t and let

pn(t) = Pr{Nt = n}. (1)

Then for h > 0,

pn(t+ h) = [1− n(λ+ µ)h+ o(h)]pn(t)

+[λh+ o(h)](n− 1)pn−1(t)

+[µh+ o(h)](n+ 1)pn+1(t) + o(h). (2)

The first term on the right-hand side corresponds to no change in Nt in the

time interval (t, t+ h), the second to one birth (speciation), and the third to

one death (extinction). All other events have probability o(h). Subtracting

pn(t) from both sides, dividing by h and letting h→ 0, yields the differential-

difference equation

d

dt
pn(t) = −(λ+ µ)npn(t) + λ(n− 1)pn−1(t) + µ(n+ 1)pn+1(t), (3)

with initial condition

pn(0) = 1 if n = 1; pn(0) = 0 otherwise.

Now let

φ(z; t) =
∞∑
n=0

pn(t)zn (4)

be the generating function for Nt. Multiplying both sides of (3) by zn and

summing over n = 0, . . . ,∞ yields the partial differential equation

φt = (λz − µ)(z − 1)φz, (5)
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with initial condition

φ(z, 0) = z (6)

This can readily be solved by the method of characteristics (see e.g. Bailey,

1964) to yield

φ(z, t) =


µ(1− z)− (µ− λz) exp[−t(λ− µ)]

λ(1− z)− (µ− λz) exp[−t(λ− µ)]
if λ 6= µ,

1− (1− z)/[1 + λt(1− z)]−1 if λ = µ,

(7)

From this the well-known formulas for the probability mass function (p.m.f)

of N(t) can be derived:

p0(t) =
µ− µe−t(λ−µ)

λ− µe−t(λ−µ)
; (8)

pn(t) = =
(λ− µ)2e−t(λ−µ)

[λ− µe−t(λ−µ)]2

{
λ− λe−t(λ−µ)

λ− µe−t(λ−µ)

}n−1

, n ≥ 1, (9)

for λ = µ and

p0(t) =
λt

1 + λt
; pn(t) =

(λt)n−1

(1 + λt)n+1
, n ≥ 1. (10)

in the case λ = µ.

Since different genera in a family will have originated at different times,

in order to obtain the p.m.f (or generating function) of the unconditional

distribution of genus size N̄ say, {pn(t)} (or φ(z, t)) must be integrated with

respect to the distribution of t over genera. Following Yule, it seems reason-

able to assume that new genera originated from old by a process analogous

to that of speciation. Under this assumption the time since origin of any

genus will be exponentially distributed with parameter ρ (where ρh+ o(h) is
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the probability of any genus splitting in time (t, t + h)). It follows that the

p.m.f of the unconditional (marginal) distribution of genus size, N̄ , is

qn = Pr(N̄ = n) =
∫ ∞

0
pn(t)ρe−ρtdt for n = 0, 1, . . . (11)

and its generating function

φ̄(z) =
∫ ∞

0
φ(z, t)ρe−ρtdt. (12)

Neither of the integrals in (11) or (12) have simple closed-form expressions.

However by returning to the partial differential equation (5), multiplying

throughout by ρe−ρt and integrating with respect to t between 0 and∞, one

arrives at the following ordinary differential equation for φ̄(z):

(λz − µ)(z − 1)
dφ̄

dz
− ρφ̄(z) = −ρz. (13)

This can be solved using the integrating factor

exp

(
−
∫ z ρdz

(λz − 1)(z − 1)

)
∝


∣∣∣∣∣ z − 1

λz − µ

∣∣∣∣∣
ρ

|λ−µ|

if λ 6= µ,

exp
(
−ρ

λ(z−1)

)
if λ = µ

(14)

and integrating between z and µ
λ

for λ > µ and between z and 1 for λ ≥ µ.

The result is

φ̄(z) =



1− ρ

λ
L

(
µ− λz
λ− λz

,
ρ

λ− µ

)
if λ > µ,

1− ρ
λ

exp
(
− ρ
λ(z−1)

)
E1

(
− ρ
λ(z−1)

)
if λ = µ,

µ
λ
− ρ

λ
L
(
λ−λz
µ−λz ,

ρ
µ−λ

)
if λ < µ.

(15)
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where L is Lerch’s phi function

L(x, θ) =
∞∑
n=0

xn

(n+ θ)
(16)

and E1 is the exponential integral function

E1(x) =
∫ ∞

1

e−xt

t
dt. (17)

In principle, the p.m.f {qn} of genus size can be obtained by expanding the

generating function (15) as a Taylor series around z = 0. However this is not

practical beyond a few terms. The p.m.f can be computed numerically by

numerical integration of (11). However this can be slow and unreliable for

larger values of n, and when |λ−µ| is small. An alternative method described

in Section 5 relies on the asymptotic behaviour of qn which is described in

the next section.

3 Properties of the p.m.f. of genus size.

Although there are three parameters in the model, a glance at (7) - (12) will

confirm that in determining the p.m.f {qn}n=0,1,... they are not independent

and that the p.m.f can be expressed in terms of any two ratios of the three

parameters2. We shall use the two ratios λ̃ = λ/ρ and µ̃ = µ/ρ.

Yule (1924) observed that for his model (µ = 0), the plot of the p.m.f (the

Yule distribution) on logarithmic axes was almost linear. How is this property

2Alternatively we could set one of the parameters to unity, which effectively means
defining the unit of time (e.g. setting µ = 1 is equivalent to defining the unit of time as
the expected time for a species to exist before becoming extinct).
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affected by the inclusion of the possibility of extinctions in the model? Fig.1

gives logarithmic plots with λ̃ = 10 and µ̃ = 10, 9, 8 and 03. It can be seen

that the inclusion of the possibility of extinctions introduces some curvature

into the plots. However if µ̃ is small the curvature is negligible. It is only as

µ̃ approaches λ̃ that the curvature becomes significant. Changing the value

of λ̃ seems to have little effect on this conclusion.

The expected size of a genus is

E(N̄) =
{
ρ/(ρ+ µ− λ), if λ < µ+ ρ;
∞, if λ ≥ µ+ ρ.

(18)

This can be established by evaluating the first derivative of φ̄ at s = 1 or

more easily by evaluating the integral
∫∞

0 e(λ−µ)tρe−ρtdt. The corresponding

expected value for a genus, given that it is non-empty (i.e. of a live genus)

can be obtained by dividing E(N̄) by 1− q0.

The asymptotic behaviour of qn in the three cases (a) λ > µ; (b) λ < µ

and (c) λ = µ is examined in the Appendix, where it is shown that:

(a) for λ > µ

qn ∼ c1n
−(ρ/(λ−µ)+1); (19)

(b) for λ < µ

qn ∼ c2

(
λ

µ

)n
n−(ρ/(µ−λ)+1); (20)

and (c) for λ = µ

qn+1 ∼
π1/2(ρ/λ)5/4

n3/4
exp[−2(ρ/λ)1/2n1/2]. (21)

3For the method used for computing the probabilities in the p.m.f, see Sec.5
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where c1 and c2 are constants. Thus for λ > µ the p.m.f of genus size exhibits

power-law behaviour asymptotically; while when λ < µ asymptotically the

p.m.f decays faster than a power law. In the threshold case λ = µ the decay

is also faster than a power law, being of a stretched exponential form.

Note that for a live (non-empty) genus, the p.m.f is obtained by dividing

the qn by 1− q0. The constants in the formulas for the asymptotic behaviour

of the p.m.f require similar adjustment. The above asymptotic formulas are

useful in computing the p.m.f (see Sec. 5).

4 Time since establishment of a genus.

Under the assumptions in Section 2, it is possible to derive the distribution

of the time since establishment, T , of a genus currently containing n > 0

species. From Bayes’ theorem, the density of the time since establishment is

f(t|n) ∝ ρe−ρt
pn(t)

1− p0(t)
(22)

with the constant of proportionality being (1− q0)/qn. Thus from (8) - (10)

for λ 6= µ

f(t|n) ∝ e−(λ−µ+ρ)t

λ− µe−(λ−µ)t

(
λ− λe−(λ−µ)t

λ− λe−(λ−µ)t

)n−1

t > 0 (23)

while for λ = µ it is

f(t|n) ∝ e−ρt
(λt)n−1

(1 + λt)n
t > 0 (24)

Fig. 2 shows the density of T for genera containing respectively, 1,10,100

and 453 species, using estimated parameter values for N. American vascular
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plants (see Section 6). The time unit is the expected time for a genus to give

rise to a new genus (1/ρ).

5 Computation of the p.m.f. of genus size.

From the differential equation (13) for the generating function φ̄(z) it is

possible to obtain a recurrence relation for the probabilities {qn} in the p.m.f

of N̄ . This is done simply by identifying the coefficient of zn on each side of

the equation. This yields

(n− 1)λqn−1 − [n(λ+ µ) + ρ]qn + (n+ 1)µqn+1 = 0, and (25)

−(λ+ µ+ ρ)q1 + 2µq2 = −ρ (26)

−ρq0 + µq1 = 0. (27)

While it is possible to iterate this recursion forwards from q0, unless one uses

very high precision arithmetic, round-off error soon becomes a problem. A

better alternative is to iterate it backwards from a large value ν say of n, using

the asymptotic results for qν and qν+1. In detail the method works as follows:

first write qn = cXn and suppose that for large ν, qν has the asymptotic form

derived Sec.3. This means, in the case λ > µ that Xν = ν−(ρ/λ+1); and in

the case λ < µ that Xν = (λ/µ)νν−(ρ/λ+1) etc. The recursion (25) holds

for Xn as well as for qn, and the next step involves iterating (25) backwards

(starting with Xν+1 and Xν) to obtain X2. But X2 can also be expressed in

terms of q0 (using (26) and (27)) as (ρ(µ + (λ + µ + ρ)q0)/2cµ2 and q0 can
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be evaluated as φ̄(0), using (15) (or, more slowly, by numerically evaluating

the integral (11)). Thus the constant c can be evaluated as

c =
ρ(µ+ (λ+ µ+ ρ)q0)

2µ2X2

. (28)

The probabilities qn are then determined as qn = cXn, and the probability

that a non-empty genus is of size n is given by cXn/(1− q0).

6 Maximum likelihood estimation.

We consider data of the type given in Yule (1924), Burlando (1990, 1993)

where the numbers of species in each of many genera in a family are recorded.

Thus suppose fi genera containing i species (i = 1, . . . , N , say) are observed.

Assuming independence the log-likelihood for such data is

` =
N∑
i=1

fi log qi − log(1− q0)
N∑
i=1

fi (29)

the latter term being present because only living (non-empty) genera are ob-

served. The parameters λ, µ and ρ enter the log-likelihood via the qi, but as

noted before only two ratios the three are needed to determine the likelihood

completely. As before we shall use λ̃ = λ/ρ and µ̃ = µ/ρ. Numerical com-

putation of the log-likelihood, for particular values of λ̃ and µ̃ involves first

calculating the qn by the method outlined in Sec.5. To fit the model by max-

imum likelihood (ML) the log-likelihood must be maximized (numerically)

with respect to λ̃ and µ̃.

We illustrate with using two datasets (a) N. American vascular plants

(Qian and Ricklefs, 2000) which has 1829 genera, the largest having 453
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species; (b) the data on snakes used by Yule (1924) with 293 genera, the

largest having 97 species.

North American vascular plants.

Fig. 3 shows a plot of the frequencies fi of genera of size i against i (loga-

rithmic axes) both ungrouped (crosses) and grouped for the rarer large genus

sizes (boxes). Also shown is the fitted distribution (curved line)(
N∑
i=1

fi

)
q̂i

1− q̂0

, i = 1, 2, . . . , N (30)

where the q̂i are the probabilities in the p.m.f evaluated using the M.L esti-

mates of parameter ratios λ̃ and µ̃). The log-likelihood surface has a narrow

ridge close to the line λ̃ = µ̃, and hence the ML estimates are highly cor-

related. Because of this fact it is better to consider a transformation of the

parameters. Thus consider

θ1 = λ̃+ µ̃ θ2 = λ̃− µ̃. (31)

Fig 4 shows a contour plot of the log-likelihood in (θ1, θ2)-space, with contours

corresponding to 1%, 5% and 10% likelihood regions, or approximate 99%,

95% and 90% confidence regions4. It can be seen that with a high degree

of confidence we can conclude that the difference λ̃ − µ̃ lies between about

0.2 and 0.8; and that the average of λ̃ and µ̃ is between 5 and 15. The ML

estimates of λ̃ and µ̃ are respectively 9.008 and 8.478. Although the estimates

4For a discussion of likelihood intervals and regions see e.g. Kalbfleisch, 1985. Their
interpretation as approximate confidence regions is based on asymptotic likelihood ratio
theory.
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are close there is strong evidence to indicate that they are not equal - the line

θ2 = 0 lies well outside of the 99% confidence region5. Thus we can conclude

that there is a small but important difference between the speciation and

extinction rates.

The chi-square goodness-of-fit statistic using the 40 groups (as shown by

boxes in Fig. 3) is 74.32 which is highly significant. However bearing in

mind the fact that there are 1829 genera, this is hardly surprising. Given

the way that the frequencies of genera of sizes in the range 80-120 occur, it

seems likely that any parametrically parsimonious distribution, would exhibit

a similarly large chi-square statistic.

The fitted distribution in Fig. 3 exhibits some curvature even though

asymptotically it is linear (power-law behaviour prevails). Yule (1924) at-

tributed the departures from linearity that he observed to finite time effects.

An alternative explanation is the presence of ongoing individual extinctions.

Snakes.

Fig. 5 shows observed and fitted frequencies of genera over the range of genus

sizes. The M.L. estimates were 10.007 for λ̃ and 9.991 for µ̃, which are very

close and close to those for N. American vascular plants. In fact there is

no evidence of a significant difference between λ̃ and µ̃ (P= 0.93). If they

are assumed equal the ML estimate of their common value is 9.831 and a

95% confidence interval for it is (7.22, 13.69). Thus although the individual

5In fact the likelihood ratio (Royall, 1997) for the hypothesis λ̃ = µ̃ versus the alterna-
tive of inequality is less than 10−5.
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estimates for speciation and extinction rates are similar for vascular plants

and snakes, in the former case, unlike in the latter, there is strong evidence

that the two rates differ. Possible reasons for this are the smaller sample size

for the snake data, and also shortcomings in the data which dates from 1893

(see Yule,1924).

The chi-square goodness-of-fit statistic using 17 groups is 21.57 (P =

0.09). The fitted distribution (Fig.5) for snakes exhibits a similar degree of

curvature to that for vascular plants.

7 Concluding remarks.

In this article we have investigated some of the properties of genus size dis-

tribution arising from a ‘null model’ in which speciations and extinctions

occur independently and at random, and in which new genera are created in

an analogous way to species. The resulting distribution, which depends on

two independent parameters, is shown to be capable of exhibiting behaviour

qualitatively similar to observed size distributions. It always has its mode at

one (the monospecific genus has the highest probability of occurring), and

when the probability of a genus of size n is plotted against n on logarithmic

axes, the points initially lie close to a straight line, and if any curvature is

present it is always in a downward direction.

Yule (1924) considered a similar model, but without the possibility of

extinctions. In its simplest form Yule’s model produced power-law behaviour

- linear logarithmic plots of probability vs. size, but Yule observed that
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in empirical logarithmic plots there were often departures from linearity at

higher abundance levels. He attributed this as being due to finite time effects.

This paper has shown that another possible explanation is the presence of

individual extinctions, occurring at random. In principle it would be possible

to include multiple extinctions - indeed it is possible to set up a recurrence

analogous to that in Section 3 in the case when the probability of j extinctions

occurring in the infinitesimal interval (t, t+ dt) in a genus of size n is µn,jdt.

Such a model could lead to episodic mass extinctions, as has been observed

in the fossil record (Raup, 1985, 1991). However there are difficulties in

analysing such a model and furthermore it is not obvious how such multiple

extinction probabilities should be specified.

When the abundance distribution derived from the model was fitted to

observed species abundance data, it provided a good fit, and furthermore

provided rather similar estimates for vascular plants and for snakes. In both

cases the estimates of extinction and speciation rates were close. It is possible

that the fossil record could provide data on extinctions which could be used

to test the model.

A related problem, dealt with in a forthcoming paper (Reed and Hughes,

2001), concerns the size distribution of extinct fossil genera (or higher taxa).

Under similar assumptions concerning speciations and individual extinctions,

and including the possibility of catastrophic extinctions in which all species

in a genus (or sub-taxa in a taxon) are destroyed, to determine the size distri-

bution one needs to determine the distribution of the number of species which
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have ever existed in the genus, before it became extinct. Mathematically this

is a more difficult problem, but expressions for the generating function of

the distribution can be obtained. In addition it is possible to determine the

distribution of the lifetime of a genus. It should be possible to fit this model

to empirical fossil abundance distributions and to taxon lifetime data.
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Appendix. Asymptotic behaviour of the genus

size distribution.

The asymptotic behaviour of the p.m.f of genus size qn, as n→∞ is examined

in the three cases given in Sec.3.

Case (a) λ > µ

Consider

qn+1 =
∫ ∞

0

ρe−ρt(λ− µ)2e−t(λ−µ)

[λ− µe−t(λ−µ)]2

{
λ− λe−t(λ−µ)

λ− µe−t(λ−µ)

}n
dt. (32)
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The factor in braces is strictly increasing in t from zero at t = 0, approaching

unity as t→∞. Effecting a change of variable from t to τ with

t = (λ− µ)−1 log[(n(1− µ/λ)/τ ], (33)

we have as as n→∞,{
λ− λe−t(λ−µ)

λ− µe−t(λ−µ)

}n
∼
{

1− τ

n

}n
→ e−τ . (34)

so that in (32)

qn+1 ∼
ρ

λ

(
1− µ

λ

)−ρ/(λ−µ)
n−1−ρ/(λ−µ)

∫ ∞
0

e−ττ ρ/(λ−µ)dτ. (35)

The integral can be evaluated as a gamma function. The important conclu-

sion is that for large n, the p.m.f exhibits power-law behaviour i.e.

qn ∼ c1n
−(ρ/(λ−µ)+1). (36)

where

c1 =
ρ

λ

(
1− µ

λ

)−ρ/(λ−µ)
Γ(1 + ρ/(λ− µ)) (37)

The reason for the divergence of E(N̄) when λ > µ + ρ is now apparent

since in this case the exponent of n in (36) lies between -1 and -2.

Case (b) λ < µ

Using the change of variable

t = (µ− λ)−1 log[(n(1− λ/µ)/τ ], (38)
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we have as as {
λ− λe−t(λ−µ)

λ− µe−t(λ−µ)

}n
∼
(
λ

µ

)n
e−τ . (39)

which in (32) yields the result that as n→∞,

qn ∼ c2

(
λ

µ

)n
n−(ρ/(µ−λ)+1) (40)

where

c2 =
ρ

λ

(
1− λ

µ

)−ρ/(µ−λ)
Γ(1 + ρ/(µ− λ)) (41)

Thus when the individual extinction rate exceeds the speciation rate the

p.m.f. decays faster than a power law.

Case (c) λ = µ

In this case, we know that E(Nt) = 1 for all t, so that E(N̄) = 1, and we

may anticipate that the p.m.f. of N̄ is reasonably rapidly decaying, though

its dominant form is not obvious. Again consider

qn+1 =
∫ ∞

0

ρe−ρt

(1 + λt)2

{
λt

1 + λt

}n
dt. (42)

Inspecting the relative sizes of e−ρt and the term in braces, suggests a change

of variable from t to τ where t = n1/2τ/λ, so

qn+1 =
ρn1/2

λ

∫ ∞
0

e−(ρ/λ)n1/2τ

(1 + n1/2τ)2

{
1 +

1

n1/2τ

}−n
dτ. (43)

Noting that as n→∞,
{

1 +
1

n1/2τ

}−n1/2

→ e−τ
−1

, we see that

qn+1 ∼
ρn1/2

λ

∫ ∞
0

exp
(
−n1/2p(τ)

)
dτ

(1 + n1/2τ)2
, (44)
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where

p(τ) = (ρ/λ)τ + τ−1. (45)

The integral is now suited to the application of the method of Laplace. The

mild n-dependence of the denominator presents no obstacles, but we refrain

from writing out the details, simply noting that p(τ) is minimized at τ =

(λ/ρ)1/2, and that in the neighbourhood of this point,

p(τ) = 2(ρ/λ)1/2 + (ρ/λ)3/2[τ − (λ/ρ)1/2]2 + · · · . (46)

Hence

qn+1 ∼
ρn1/2

λ

∫ ∞
−∞

exp(−2(ρ/λ)1/2n1/2 − (ρ/λ)3/2n1/2[τ − (λ/ρ)1/2]2)dτ

(1 + n1/2(λ/ρ)1/2)2
,

(47)

and since
∫ ∞
−∞

e−x
2

dx =
√
π, the integral is now exactly evaluable, giving

qn+1 ∼
π1/2(ρ/λ)5/4

n3/4
exp[−2(ρ/λ)1/2n1/2]. (48)

and we see that the p.m.f decays faster than a power law.

Note that for a live (non-empty) genus, the p.m.f is obtained by dividing

the qn by 1− q0. The constants in the formulas for the asymptotic behaviour

of the p.m.f require similar adjustment.
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Figure 1: Logarithmic plots of the probability mass function of genus size.
The parameter λ̃ is set at 10, and µ̃ takes values (downward from top on
left-hand side) 10, 9,8 and 0. For presentation purpose the individual points
have been joined with a smooth curve.
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Figure 2: The probability density function of the time since establishment of
genera containing (from the left) 1, 10, 100 and 453 species. The parameter
values used are the maximum likelihood estimates for N. American vascular
plants. The time unit is the expected time for a genus to give rise to a new
genus (1/ρ).
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Figure 3: Logarithmic frequency plot of the observed sizes of 1829 genera of
North American vascular plants (crosses). Also shown is a similar plot with
the larger less frequent genera grouped (boxes), and the fitted distribution
(with points joined by a smooth curve for display purposes).
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Figure 4: A plot of the contours of the log-likelihood for N. American vascular
plants, expressed in terms of the parameters θ1 = λ̃ + µ̃ and θ2 = λ̃ − µ̃.
The contours correspond to (working outwards) 10%, 5% and 1% likelihood
regions, or approximate 90%, 95% and 99% confidence regions.
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Figure 5: Logarithmic frequency plot of the observed sizes of 293 genera of
snakes (crosses). Also shown is a similar plot with the larger less frequent
genera grouped (boxes), and the fitted distribution (with points joined by a
smooth curve for display purposes).
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