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Abstract

The normal-Laplace (NL) distribution results from convolving inde-
pendent normally distributed and Laplace distributed components. It is
the distribution of the stopped state of a Brownian motion with normally
distributed starting value if the stopping hazard rate is constant. Proper-
ties of the NL distribution discussed in the article include its shape and tail
behaviour (fatter than the normal), its moments and its infinitely divisibil-
ity. The double Pareto-lognormal distribution is that of an exponentiated
normal-Laplace random variable and provides a useful parametric form
for modelling size distributions. The generalized normal-Laplace (GNL)
distribution is both infinitely divisible and closed under summation. It
is possible to construct a Lévy process whose increments follow the GNL
distribution. Such a Lévy motion can be used to model the movement
of the logarithmic price of a financial asset. An option pricing formula is
derived for such an asset.
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1 Introduction.

Although the normal (Gaussian) distribution plays a central role in basic statis-

tics, it has long been recognized that the empirical distributions of many phe-

nomena modelled by the normal distribution sometimes do not follow closely to

the Gausssian shape. For example E. B. Wilson (1923) in a paper in the Journal

of the American Statistical Assciation stated that “the frequency we actually

meet in everyday work in economics, biometrics, or vital statistics often fails

to conform closely to the so-called normal distribution”. In recent years the

huge burst of research interest in financial modelling along with the availability

of high frequency price data and the concomitant realisation that logarithmic

price returns do not follow exactly a normal distribution (see e.g Rydberg,

2000), as previously assumed, has led to a search for more realistic alternative

parametric models.

Distributions can of course differ from one another in myriad ways, but those

for which empirical distributions modelled by the normal tend to differ from the

normal can be broadly classified into two kinds viz. the presence of skewness;

and the fact of having fatter tails than the normal (leptokurtosis).

A number of alternative parametric forms have been used to deal with the

presence of leptokurtososis, ranging from the Student-t (including the t(1) or

Cauchy) distribution to the logistic and Laplace distributions. The Laplace dis-

tribution can be extended to an asymmetric form (skew-Laplace) as well as to

the generalized Laplace distribution (Kotz et al., 2001). Other distributions of

this type, which are parameter rich and can incorporate both skewness and

2



kurtososis are the generalized hyperbolic distribution (Barndorff Nielsen, 1977;

Eberlein and Keller, 1995) and its subclass the normal inverse Gaussian distri-

bution (Barndorff Nielsen, 1997). These latter distributions have all been used

recently in finance to model logarithmic price returns.

It is the purpose of this paper to present a new distribution which (in its

symmetric form) behaves somewhat like the normal distribution in the middle

of its range, and like the Laplace distribution in its tails. This distribution,

named herin as the normal-Laplace distribution results from convolving inde-

pendent normal and Laplace components. Skewness can be introduced into the

distribution by using a skew-Laplace component in the convolution.

In Sec. 2 the distribution is defined and its genesis and properties are dis-

cussed. In Sec. 3 the double Pareto-lognormal distribution (which is that of an

exponentiated normal-Laplace random variable) is briefly discussed along with

its use in modelling the size distribution of various phenomena. Also in Sec. 3

the generalized normal-Laplace distribution is introduced and some of its prop-

erties discussed. In Sec. 4 the construction of a Lévy process (termed Brownian-

Laplace motion) whose increments follow the generalized normal-Laplace distri-

bution is described along with its potenetial use in financial modelling. This

includes the determination of the option value of a European call option for

an asset whose logarithmic price follows Brownian-Laplace motion. In Sec. 5

parameter estimation for the normal-Laplace and generalized normal-Laplace

distributions is discussed.
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2 The Normal-Laplace distribution.

Definition.

The basic normal-Laplace distribution can be defined in terms of its cumulative

distribution function (cdf) which for all real y is

F (y) = Φ

(

y − µ

σ

)

− φ

(

y − µ

σ

)

βR(ασ − (y − µ)/σ) − αR(βσ + (y − µ)/σ)

α + β
,

(1)

where Φ and φ are the cdf and probability density function (pdf) of a standard

normal random variable and R is Mills’ ratio :

R(z) =
Φc(z)

φ(z)
=

1 − Φ(z)

φ(z)
.

The location parameter µ can assume any real value while the scale parameter

σ and the other two parameters α and β, which determine tail behaviour, are

assumed to be positive.

The corresponding density (pdf)is

f(y) =
αβ

α + β
φ

(

y − µ

σ

)

[R (ασ − (y − µ)/σ) + R (βσ + (y − µ)/σ)] . (2)

We shall write

Y ∼ NL(µ, σ2, α, β) (3)

to indicate that a random variable Y has such a distribution.

Genesis.

The distribution arises as the convolution of a normal distribution and an asym-

metric Laplace i.e Y ∼ NL(µ, σ2, α, β) can be represented as

Y
d
= Z + W (4)
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where Z and W are independent random variables with Z ∼ N(µ, σ2) and W

following an asymmetric Laplace distribution with pdf

fW (w) =

{

αβ
α+β eβw, for w ≤ 0
αβ

α+β e−αw, for w > 0
(5)

Such a convolution might naturally occur if a Brownian motion

dX = νdt + τdw (6)

with initial state X0 ∼ N(µ, σ2) were to be observed at an exponentially dis-

tributed time T ; or put another way if such a Brownian motion were stopped

(or “killed”, or observed) with a constant hazard rate λ, and the stopped state

X(T ) observed. This follows from the fact that the state of the Brownian mo-

tion (6) with fixed (non-random) initial state after an exponentially distributed

time follows an asymmetric Laplace distribution (e.g. Kotz et al., 2001, p. 145).

Thus for example, if the logarithmic price of a stock or other financial as-

set {log Pt}t≥0 followed Brownian motion, as has been widely assumed, the

log(price) at the time of the first trade on a fixed day n, say, could be expected

to follow a distribution close to a normal-Laplace. This is because the log(price)

at the start of day n would be normally distributed, while under the assumption

that trades on day n occur in a Poisson process, the time until the first trade

would be exponentially distributed.

Some properties.

Since a Laplace random variable can be represented as the difference between

two exponentially distributed variates (Kotz et al., 2001) it follows from (4) that
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an NL(µ, σ2, α, β) random variable can be expressed as

Y
d
= µ + σZ + E1/α − E2/β (7)

where E1, E2 are independent standard exponential deviates and Z is a standard

normal deviate independent of E1 and E2. This provides a conveneient way to

simulate pseudo-random numbers from the NL distribution.

Kotz et al., (2001, p. 149) provide several other representations of asymmet-

ric Laplace random variables. With suitable adjustment (addition of a N(µ, σ2)

component) these all carry over for normal-Laplace random variables. Some

other properties are:

• Shape and tail behaviour. The normal-Laplace pdf is smooth (differentiable)

and has a single mode. It decays to zero as y → ±∞. In the case α = β

it is symmetric and bell-shaped, occupying a intermediate position between a

normal and a Laplace distribution. Fig. 1 shows the NL(0, 1/3, 1/
√

3, 1/
√

3)

distribution (solid curve), which has mean zero and variance 1 along with the

normal (dot-dash) and Laplace (dashed) distributions with the same mean and

variance. Tha parameters α and β determine the behaviour in the left and right

tails repectively. A small values of either of these parameters corresponds to

heavyiness in the corresponding tail. Fig. 2 shows the NL(0,1,1,β) pdf for values

of β = 1, 1/2, 1/3, 1/4 and 1/5; while Fig. 3 shows the symmetric NL(0,1,α, α)

pdf for values of α = 2, 1, 3/4 and 1/2.

In comparison with the N(µ, σ2) distribution, the NL(µ, σ2, α, β) distribution

will always have more weight in the tails, in the sense that for y suitably small

F (y) > Φ((y − µ)/σ), while for y suitably large 1 − F (y) > 1 − Φ((y − µ)/σ).

6



This follows from the expression (1) for the cdf, since the term βR(ασ − (y −

µ)/σ)−αR(βσ + (y − µ)/σ) is decreasing in y from ∞ to −∞ over the interval

(−∞,∞).

If the NL distribution is thought of as a convolution of normal and Laplace

components, it is the Laplace component which dominates in the tails in the

sense that the tails decay exponentially i.e.

f(y) ∼ k1 e−αy (y → ∞); f(y) ∼ k2 eβy (y → −∞)

where k1 = α exp[ασ + α2σ2/2] and k2 = β exp[−βσ + β2σ2/2].

•Moment generating function (mgf). From the representation (4) it follows that

the mgf of NL(α, β, µ, σ2) is the product of the mgfs of its normal and Laplace

components. Precisely it is

MY (s) =
αβ exp(µs + σ2s2/2)

(α − s)(β + s)
. (8)

•Mean, variance and cumulants. Expanding the cumulant generating function,

KY (s) = log MY (s), yields

E(Y ) = µ + 1/α − 1/β; var(Y ) = σ2 + 1/α2 + 1/β2 (9)

Higher order cumulants are

κr = (r − 1)!
(

α−r + (−β)−r
)

, for integer r > 2. (10)

In particular

κ3 = 2/α3 − 2/β3; κ4 = 6/α4 + 6/β4. (11)

• Closure under linear transformation. The NL distribution is closed under
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linear transformation. Precisely if Y ∼ NL(α, β, µ, σ2) and a and b are any

constants, then aY + b ∼ NL(α/a, β/a, aµ + b, a2σ2).

• Infinite divisibility. The NL distribution is infinitely divisible. This follows

from writing its mgf as

MY (s) =

[

exp(
µ

n
s +

σ2

2n
s2)

(

α

α − s

)1/n (

β

β + s

)1/n
]n

for any integer n > 0 and noting that the term in square brackets is the mgf of

a random variable formed as Z +G1−G2, where Z, G1 and G2 are independent

and Z ∼ N(µ
n , σ2

n ) and G1 and G2 have gamma distributions with parameters

1/n and α and 1/n and β respectively.

Some special cases.

From the representation (4) of the NL as a convolution of normal and Laplace

components it is clear that as σ → 0, the distribution tends to an asymmetric

Laplace distribution; and as α, β → ∞, it tends to a normal distribution. If

only β = ∞ the distribution is that of the sum of independent normal and

exponential components and has a fatter tail than the normal only in the upper

tail. In this case the pdf is

f1(y) = αφ

(

y − µ

σ

)

R(ασ − (y − µ)/σ). (12)

Similarly if only α = ∞ the distribution exhibits extra-normal variation only in

the lower tail and the pdf is

f2(y) = βφ

(

y − µ

σ

)

R(βσ + (y − µ)/σ). (13)

8



Clearly the general NL(µ, σ2, α, β) pdf (2) can be represented as a mixture

of the above pdfs as

f(y) =
β

α + β
f1(y) +

α

α + β
f2(y). (14)

A special case of some importance already mentioned (Fig. 3) is the sym-

metric normal-Laplace distribution arising when α = β, with pdf

f(y) =
α

2
φ

(

y − µ

σ

)

[R (ασ − (y − µ)/σ) + R (ασ + (y − µ)/σ)] . (15)

3 Related distributions.

3.1 The double Pareto-lognormal distribution.

The double Pareto-lognormal distribution is related to the normal-Laplace dis-

tribution in the same way as the lognormal is related to the normal, i.e. a

random variable X for which log X ∼ NL(µ, σ2, α, β) is defined as following

the double Pareto-lognormal distribution. As such it could be termed the

“log normal-Laplace”. However the name ‘double Pareto-lognormal’ (which

was coined because the distribution results from the product of double Pareto

and lognormal components) has already been used (Reed & Jorgensen, 2004).

The double Pareto-lognormal (or dPlN) distribution shares many characteristics

with the log-hyperbolic distribution (Barndorff-Nielsen, 1977). For example it

exhibits power-law behaviour in both tails and has an approximately hyperbolic

shape when the pdf is plotted logarithmic axes. Like the log-hyperbolic distri-

bution, the dPlN distribution has proved useful in modelling size distributions.

It has been shown to provide a very good fit to a variety of empirical size dis-
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tribution data (e.g. incomes and wealth, city sizes, particle sizes, oil field sizes

etc. – see Reed & Jorgensen, 2004).

3.2 The generalized normal-Laplace distribution.

While the NL distribution is infinitely divisible, it is not closed under the con-

volution operation i.e. sums of independent NL random variables do not them-

selves follow NL distributions. The generalized normal-Laplace is an extension

of the NL distribution for which a closure property of this type holds. The ad-

vantage of this is that for such a class of distributions one can construct a Lévy

motion for which the increments follow the given distribution. This is useful in

financial applications for obtaining an alternative stochastic process model to

Brownian motion for logarithmic prices, in which the increments (logarithmic

returns) exhibit fatter tails than the normal distribution (something that has

been widely observed in high frequency finance data).

The generalized-normal Laplace (GNL) distribution is defined as that of a

random variable X with characteristic function

φGNL(s) =

[

αβ exp(iµs − σ2s2/2)

(α − is)(β + is)

]ρ

(16)

and hence moment generating function

MGNL(s) =

[

αβ exp(µs + σ2s2/2)

(α − s)(β + s)

]ρ

(17)

where α, β, ρ and σ are positive parameters, −∞ < µ < ∞,. Let

X ∼ GNL(µ, σ2, α, β, ρ)
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denote that the random variable X follows such a distribution1. Writing the

mgf as

exp(ρµs + ρσ2s2/2)

[

α

α − s

]ρ [

β

β + s

]ρ

it can be seen that X can be represented as

X
d
= ρµ + σ

√
ρZ +

1

α
G1 −

1

β
G2 (18)

where Z,G1 and G2 are independent with Z ∼ N(0,1) and G1, G2 are gamma

random variables with scale parameter 1 and shape parameter ρ, i.e. with

probability density function (pdf)

γ(u) =
1

Γ(ρ)
uρ−1e−u.

From (16) it is easily established that the GNL is infinitely divisible. Further-

more sums of independent, identically distributed (iid) GNL random variables,

with common α and β parameters, also follow a GNL distribution.

The mean and variance of the GNL(µ, σ2, α, β, ρ) distribution are

E(Y ) = ρ

(

µ +
1

α
− 1

β

)

; var(Y ) = ρ

(

σ2 +
1

α2
+

1

β2

)

while the higher order cumulants are (for r > 2)

κr = ρ(r − 1)!

(

1

αr
+ (−1)r 1

βr

)

. (19)

Note that the coefficient of kurtosis

κ4/κ2
2 =

1

ρ

3!(α4 + β4)

(σ2α2β2 + α2 + β2)2

1The distribution with the above mgf with µ = σ
2 = 0 has been called the generalized

Laplace distribution by Kotz et al., (2001) (it has also been called the Bessel function distribu-

tion and the variance-gamma distribution by other authors). The generalized normal-Laplace
distribution defined above bears the same relation to the normal-Laplace distribution as does
the generalized Laplace to the Laplace.

11



is decreasing in ρ.

The parameters µ and σ2 influence the central location and spread of the

distribution; while α, β and ρ affect the tail behaviour. Ceteris paribus decreas-

ing α (or β) puts more weight into the upper (or lower) tail. When α = β the

distribution is symmetric and in the limiting case α = β = ∞ the GNL reduces

to a normal distribution. Also increasing ρ moves the shape of the distribution

towards normality. In the case ρ = 1 the GNL becomes an ordinary normal-

Laplace (NL) distribution. For finite values of α and β the GNL distribution,

like the NL distribution, has fatter tails than a normal distribution.

4 A Lévy motion based on the GNL distribu-

tion.

We now consider a Lévy process {Xt}t≥0, say for which the increments Xt+τ −

Xτ have characteristic function (φGNL(s))t where φGNL is the characteristic

function of the GNL(µ, σ2, α, β, ρ) defined in (16) (such a construction is always

possible for an infinitely divisible distribution - see e.g. Schoutens, 2003). It

is not difficult to show that the Lévy triplet for this process is (ρµ, ρσ2,Λ)

where Λ is the Lévy measure of asymmetric Laplace motion (see Kotz et al.,

2001, p. 198). Laplace motion has an infinite number of jumps in any finite time

interval (a pure jump process). The extension considered here adds a continuous

Brownian component to Laplace motion. We shall thus call the process {Xt}t≥0

defined above, Brownian-Laplace motion.

The increments Xt+τ − Xτ of this process will follow a GNL(µ, σ2, α, β, ρt)
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distribution and will have fatter tails than the normal. However as t increases

the kurtosis of the distribution drops. Exactly this sort of behaviour has been

observed in various studies on high-frequency financial data (e.g. Rydberg,

2000) - very little kurtosis in the distribution of logarithmic returns over long

intervals but increasingly fat tails as the reporting interval is shortened. Thus

Brownian-Laplace motion seems to provide a good model for the movement of

logarithmic prices.

4.1 Option pricing for assets with logarithmic prices fol-

lowing Brownian-Laplace motion.

We consider an asset whose price St is given by

St = S0 exp(Xt)

where {Xt}t≥0 is a Brownian-Laplace motion with X0 = 0 and parameters

µ, σ2, α, β, ρ. We wish to determine the risk-neutral valuation of a European

call option on the asset with strike price K at time T and a discount rate r.

It can be shown using the Esscher equivalent martingale measure (see e.g.

Schoutens, 2003, p. 77) that the option value can be expressed in a form similar

to that of the Black-Scholes formula. Precisely

OV = S0

∫ ∞

γ

d∗T
GNL(x; θ + 1)dx − e−rT K

∫ ∞

γ

d∗T
GNL(x; θ)dx (20)

where γ = log(K/S0) and

d∗T
GNL(x; θ) =

eθxd∗T
GNL(x)

∫ ∞

−∞
eθyd∗T

GNL(y)dy
(21)

is the pdf of XT under the risk-neutral measure. Here d∗T
GNL is the pdf of

the T -fold convolution of the generalized normal-Laplace, GNL(µ, σ2, α, β, ρ),
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distribution and θ is the unique solution to the following equation involving its

mgf

log MGNL(θ + 1) − log MGNL(θ) = r. (22)

The T -fold convolution of GNL(µ, σ2, α, β, ρ) is GNL(µ, σ2, α, β, ρT ) and so its

moment generating function is (17) with ρ replaced by ρT . This provides the

denominator of the expression (21) for the risk-neutral pdf.

Now let

Iθ =

∫ ∞

γ

d∗T
GNL(x; θ)dx =

1

[MGNL(θ)]
T

∫ ∞

γ

eθxd∗T
GNL(x) (23)

so that

OV = Iθ+1 − Iθ.

Thus to evaluate the option value we need only evaluate the integral in (23).

This can be done using the representation (18) of a GNL random variable as

the sum of normal and positive and negative gamma components. Precisely the

integral can be written

∫ ∞

0

g(u;α)

∫ ∞

0

g(v;β)

∫ ∞

γ

eθx 1

σ
√

ρT
φ

(

x − u + v − µρT

σ
√

ρT

)

dxdvdu (24)

where

g(x; a) =
aρT

Γ(ρT )
xρT−1e−ax

is the pdf of a gamma random variable with scale parameter a and shape para-

meter ρT ; and φ is the pdf of a standard normal deviate. After completing the

square in x and evaluating the x integral in terms of Φc, the complementary cdf
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of a standard normal, the integral can be expressed

∫ ∞

0

g(u;α − θ)

∫ ∞

0

g(v;β + θ)Φc

(

γ − u + v − µρT − θσ2ρT

σ
√

ρT

)

dvdu. (25)

For given parameter values the double integral (25) can be evaluated numer-

ically quite quickly and thence via (24) and (23) the option value computed.

Fig. 4 shows the difference (vertical axis) between the Black-Scholes option

value (assuming a normal distribution for logarithmic daily returns) and the

option value assuming a GNL distribution for various values of the current stock

price (horizontal axis). The strike price was set at K = 1 and the discount rate at

r = 0.05 per annum. The distribution of daily logarthmic returns was assumed

to be GNL(µ = 0, σ2 = 0.02, α = 17.5, β = 17.5, ρ = 0.1). This has mean

zero and variance of 0.00165, which was used in computing the Black-Scholes

option value. The coefficient of kurtosis is 4.68, which is close to the value of

4.73 observed for a sequence of 929 logarithmic returns for IBM common stock

over the period Jan, 1999 - Sept., 2003. The three curves correspond to exercise

dates T = 10, 30 and 60 days in advance.

It can be seen in Fig. 4 that “at the money” (S = 1) the Black-Scholes

price is too high. Although the difference is less than one tenth of one cent it

amounts to about 1.5 percent (for T = 10) of the Black-Scholes option value.

The corresponding percentages for T = 30 and T = 60 are about 0.5 percent

and about 0.3 percent. The reason why the difference decreases as T increases

is that distribution of log-returns (GNL(µ, σ2, α, β, ρT )) is closer to normality

for larger T (a central limit effect).

Far enough “in the money” (S > 1) or “out of the money” (S < 1) the
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Black-Scholes valuation is too low. This is because the normal model fails to

anticipate more extreme fluctuations, which are slightly more likely to occur

with the GNL distributed daily returns.

5 Estimation for NL and GNL distributions.

For the NL distribution maximum likelihood estimation of parameters can be

carried out numerically since there is a closed-form expression for the pdf. In fact

it is shown in Reed & Jorgensen, (2003) how one can estimate µ analytically

and then maximize numerically the concentrated (profile) log-likelihood over

the remaining three parameters. Another approach, also discussed by Reed &

Jorgensen, uses the EM-algorithm (considering an NL random variable as the

sum of normal and Laplace components, with one regarded as missing data).

Things are more difficult for the GNL distribution, since there is no apparent

closed-form expression for the pdf. It may be possible to use the EM-algorithm,

but calculating the conditional expectations required appears to be a formidable

task. Parameter estimates can be obtained by the method of moments (solving

the equations produced by setting the first five sample cumulants equal to their

theoretical counterparts, using (19)). This can be achieved by solving numeri-

cally a pair of equations (in α and β) and then obtaining the solutions for the

other parameters by substitution. One drawback with the method of moments

is that it is difficult to impose constraints on parameters (such as requiring es-

timates of α, β, ρ and σ2 be positive) and estimates which are unsatisfactory in

this respect may sometimes occur.
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Reed, W. J. and M. Jorgensen, 2004. The double Pareto-lognormal distribu-
tion - A new parametric model for size distributions. Com. Stats - Theory &
Methods, 33:1733-1753.

Rydberg, T. H., 2000. Realistic statistical modelling of financial data. Inter.
Stat. Rev., 68, 233-258.
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Figure Captions.

Figure 1 Solid curve – the normal-Laplace density with µ = 0, σ2 = 1/3, α =
1/
√

3, β = 1/
√

3 which has mean 0 and variance 1; dot-dash curve – standard
normal density; and dashed curve – the Laplace density with mean zero and
variance 1.

Figure 2 The density of the NL(0,1,1,β) for (moving down the peaks) β =
1, 1/2, 1/3, 1/4 and 1/5.

Figure 3 The density of the symmetric normal-Laplace distribution (NL(0,1,α, α))
for (moving down the peaks) α = 2, 1, 3/4 and 1/2.

Figure 4 The difference between option values for a European call option using
a normal distribution (Black-Scholes option value) and a generalized normal-
Laplace (GNL) distribution for the log(price) increments. The horizontal axis
shows the current stock price, S, and the vertical axis the difference in option
values. The strike price was set at K = 1; the per-annum discount rate at r =
0.05; the GNL parameter values at µ = 0, σ2 = 0.02, α = 17.5, β = 17.5, ρ = 0.1;
and the normal distribution for computing the Black-Scholes option value had
mean 0 and variance 0.00165, the same as those of the GNL. The three curves
correspond to excercise times (moving down the peaks) T = 10, 30 and 60 days
ahead.
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