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ABSTRACT. This article deals with the theoretical size distribution of gene and
protein families in complete genomes. A simple evolutionary model for the
development of such families in which genes in a family are formed or selected
against independently and at random, and in which new families are formed
by the random splitting of existing families, is used to derive the resulting size
distribution. Mathematically this turns out to be the distribution of the state
of a homogeneous birth-and-death process after an exponentially distributed
time, which it is shown will under certain conditions exhibit the power-law
behaviour observed for gene and protein family sizes.

1. Introduction. Gene families comprise genes with a high degree of similarity in
structure and function, which are presumed to have evolved from a single ancestral
gene. Protein families similarly comprise proteins sharing sequence similarity and
function. It has been observed that the size distributions of both gene families [4]
and protein families [1] exhibit power-law behaviour over a wide range. While such
distributions are characteristic of complex processes that exhibit self-organized crit-
icality [3], they can also result from simpler mechanisms (see [6]). In this article
we show the observed power-law behaviour in the distribution of gene and protein
family sizes can be explained using a simple birth-and-death process model for the
evolution of families. The model can be fitted by maximum likelihood to family
size data, and in an example is shown to provide a very good fit. The model as-
sumes that new genes in a family arise from mutations of existing genes (occurring
independently and at random at a fixed probability rate) and that individual genes
in a family can be eliminated (again independently and at random at a fixed prob-
ability rate). Furthermore new families arise from the random splitting of existing
families (again at a fixed probability rate). The model is very similar to that used
in a recent paper [5] to explain genus size distributions, and is a development of
the model of Yule [7], proposed almost eighty years ago.
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2. The model. Consider a gene family which begins with one gene (at time ¢ = 0).
Suppose that in time (¢, + h) there is a probability Ah + o(h) that any given gene
may mutate and create in addition to replicates of itself, a new gene in the family (a
speciation); and a probability ph+o(h) that the individual gene alone is selected out
of the genome (an extinction). Suppose further that all speciations and extinctions
are independent. Under these assumptions, N;, the number of genes in the family
in existence at time ¢ follows a homogeneous birth-and death process (see e.g. [2])
for which the probability mass function (p.m.f.)

pn(t) = Pr{N; = n} (1)
satisfies the differential-difference equation
d
Epn(t) = _(/\ + :U/)npn(t) + A(n - l)pnfl(t) + /J/(TL + l)pn+1 (t)a (2)

with initial condition
pn(0)=1ifn=1; p,(0) =0 otherwise.
Now let

$(zt) =Y pa(t)z" (3)

be the generating function for N;. Multiplying both sides of (2) by 2" and summing

over n =0, ..., 00 yields the partial differential equation
¢ = Az = p)(z = 1., (4)
with initial condition
¢(2,0) = z. ()
This can readily be solved by the method of characteristics (see e.g. [2]) to yield
1—2)—(p—A —t(A —
ot
—z) — (b — Az) exp[—t(A —
o(z,1) = : P : (6)
1—(1—=2)/[L+At(1—2)]"" if A = p.

From this the well-known formulas for the p.m.f. of N(t) can be derived. In the
case A #

_ pe—t—n)
_ p—pe .
po(t) = N et (7)
n—1
. (>\ — ,u/)Qe_t(A_I") >\ — Ae_t(A_l")
) = N wE A 0 "2 h (8)

Since different gene families will have will have originated at different times, in
order to obtain the p.m.f. (or generating function) of the unconditional distribution
of family size N say, the p.m.f. {p,(t)} or the generating function ¢(z,t) must
be integrated with respect to the distribution of ¢ over gene families. It seems
reasonable to assume that any gene family originated when an individual gene in
an existing family mutated to a form so different from others in the family that
it could no longer be considered a member of that family. Let us suppose that
such radical mutations can occur in any existing family in a time interval of length
h with probability ph + o(h). This implies that the number of families follows a
Yule process [7], and that the time in existence of any family will follow a truncated
exponential distribution (the truncation time being the time since the establishment
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of the first gene family). Since evolution has been happening for a very long time,
this truncation can essentially be ignored, so that the p.m.f. of the distribution of
current gene family size, N, is

gn =Pr(N =n) = / pn(t)pe Ptdt for n =0,1,. .. (9)
0

and its generating function is

(2) = / " oz, typertt. (10)

¢

Neither of the integrals in (9) or (10) have simple closed-form expressions. However
by returning to the partial differential equation (4), multiplying throughout by
pe~ "t and integrating with respect to t between 0 and oo, one arrives at the following

ordinary differential equation for ¢(z):

dp -

Oz = W)z = D)5 = p(e) = —p2. (11)
While this can be solved in terms of Lerch’s phi function (see [5]), the form
is not particulary useful. However a series solution can be obtained by equating
coefficients of powers of z on both sides of (11), yielding the following recursion for

the p.m.f. {g,}
(1= DAn_t — [0+ 1) + plan + (14 Dsgss =0, forn>2  (12)

~A+p+p)q +2uq = —p (13)
—pqo + pgr = 0. (14)
The p.m.f. {G,} of the size of a non-extinct gene family is obtained as
~ an
qn 1 _ qO ) n ) ) ( 5)

3. Power-law behaviour in the family size distribution. It is shown in this
section that in the case A > pu, the distribution of family size exhibits power-law
behaviour in the upper tail. Consider (from (9) and (8))

o o=pt()\ — )2 tA—H) () = \e tA-w) "
Gni1 = / pe " i)@_ 2 -t dh. (16)
0 [)\ — pe l/«)] A — ue t( )

The factor in braces is strictly increasing in ¢ from zero at t = 0, approaching unity
as t — oco. Effecting a change of variable from ¢ to 7 with

t= (A=)~ logln(l — u/N)/7], (17)
gives for n — oo,
e t-m " n
{%} ~fi-2 e (18)
so that in (16)
Py BN o [T e
Gnt1 ~ )\(1 )\) n /0 e ’T dr. (19)

The integral can be evaluated as a gamma function. The important conclusion is
that for large n, the p.m.f. exhibits power-law behaviour i.e.

qn ~ cln’("/(’\”‘)“), (20)
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where

e =2 ()"0 - ) 21)

It follows that g, will also exhibit asymptotic power-law behaviour with exponent
—(p/(A—p) +1).

For A < p, it can be shown that ¢, does not exhibit exact power-law behaviour,
but rather behaves in a ‘stretched exponential’ form.

4. A special case - no extinctions. If the extinction rate parameter p is set to
zero, the birth-and-death process reduces to the Yule process and the resulting size
distribution is the eponymous Yule distribution [7] with p.m.f.

_ (3) L(p/A +1)I'(n)
" N T(p/A+n+1)

This exhibits power-law behaviour in the upper-tail, and indeed as Yule showed,
exhibits almost linear behaviour in the log-log plot, over the whole range.

, forn=1,2,.... (22)

5. Fitting the model to data. The model can be fitted to gene family size data
by estimating model parameters by maximum likelihood (ML). The log-likelihood
is

N N N
€= filoggi = filogg —log(1—q0) Y _ fi (23)
i=1 i=1 i=1

Although there are three parameters in the model, the p.m.f. {g;} depends only on
the two ratios A/p = A, say, and u/p = M, say. To calculate numerically the log-
likelihood for given values of A and M, the recursion (12) can be iterated backwards
from the asymptotic value (20) for a suitably large n. ML estimates of A and M
can be found by numerically maximizing the log-likelihood.

This has been done for data on 71 gene families of cytochrome P450'. The ML
estimates are:

A =3.134; M = 2.759.

It should be noted that these estimates are highly correlated and confidence inter-
vals for individual parameters very wide (95% confidence intervals using the profile
log-likelihoods are: 0.72 — 81.4 for A and 0 — 90.0 for M). Thus although the ML
estimates suggests that the rates of mutation and extinction of individual genes are
about three times the rate at which new families are formed, it is quite plausible,
based on the data alone, that they are up to a factor of 80 or so larger—or even
smaller. Fig. 1 shows the observed frequencies (natural and binned) of gene families
of various sizes along with the expected frequencies using the above ML estimates
(joined by a solid line for illustration purposes). The chi-squared goodness of fit test
(on binned data) suggests an extremely good fit (1.459 on 6 degrees of freedom).

It should be noted that the data are consistent (P-value = 0.23, for a likelihood
ratio test) with the extinction parameter p being zero, i.e. with the Yule model.
For the Yule model, the MLE of A is 0.907 (chi-square statistic = 1.890 on 7 degrees
of freedom). While the Yule model thus seems to fit the data well statistically, the
MLE for the model suggests that new gene families emerge at a slower probabilistic
rate than new genes within a family, which from a biological point of view, seems

IData from http://arabidopsis.org/info/genefamily/p450.html, a website of the Arabidopsis
Information Resource (TAIR).
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implausible. The expected frequencies using the MLE of A under the Yule model
are illustrated by the dotted line in Fig. 1.

6. Conclusions. Earlier authors have shown empirically that the size distributions
of gene and protein families exhibit power-law behaviour. This paper offers a simple
evolutionary model which predicts a theoretical size distribution which exhibits such
behaviour and which can be fitted to family-size data by maximum likelihood. The
model is one of neutral evolution in the sense that mutations creating new genes
(or new families) and extinctions of genes occur independently and at random.
It can be thought of as a null model, in that it does not include interactions in
the evolution of genes, temporal heterogeneity or other complex aspects, but can
nonetheless explain the observed size distributions of gene and protein families.
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FIGURE 1. The size distribution of cytochrome P450 gene families.
The crosses show the observed frequencies. Note that larger sizes
occur once only. The boxes show the same data binned for larger
less frequent sizes. The solid line shows the expected frequencies
using the ML estimates of model parameters A and M, while the
dotted line uses the ML estimate of A with M set at zero.



