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Abstract

This paper examines the distribution of areas burned in forest
fires. Empirical size distributions, derived from extensive fire records,
for six regions in North America are presented. While they show
some commonalities it appears that a simple power-law distribution
of sizes, as has been suggested by some authors, is too simple to de-
scribe the distributions over their full range. A stochastic model for
the spread and extinguishment of fires is used to examine conditions
for power-law behaviour and deviations from it. The concept of the
extinguishment growth rate ratio (EGRR) is developed. A null model
with constant EGRR leads to a power-law distribution, but this does
not appear to hold empirically for the data sets examined. Some alter-
native parametric forms for the size distribution are presented, with a
four-parameter ‘competing hazards’ model providing the overall best
fit.

Keywords: Fire area, power-law, size distribution, extinguishment
growth rate ratio, self-organized criticality.



1 Introduction.

A number of recent papers have examined the size-distribution of wildfires
(Malamud et. al., 1998; Ricotta et al, 1999; Cumming, 2000). In all
three cases the claim has been made that empirical size-distributions ex-
hibit power-law behaviour. In the first two papers it is argued that the
observed power-law behaviour is consistent with the self-organized criticality
(SOC) arising in simple dynamical systems models. Malamud et al. argue for
power-law behaviour from what physicists call the“forest-fire model” (Bak
et al., 1990) while Ricotta et al. use the “sandpile model” (Bak et al., 1988)
as a metaphor. In contrast Cumming makes no claim based on theory —
only that the best-fitting parametric distribution that he can find is a trun-
cated exponential distribution for the logarithm of area, or in other words
a truncated power-law (or Pareto) distribution for area. An earlier paper
(Baker, 1989) claims that the size-distribution is exponential. In this article
we first examine whether evidence from fire records supports a single form
for the size distribution, and if so whether it could be as simple as a power
law. We then examine conditions for power-law behaviour using a simple
stochastic process model for the growth and extinguishment of fires. Finally
we offer some new parametric forms for the size distribution and discuss their

properties and fit.



2 Empirical fire size distributions.

Fig. 1 shows logarithmic cumulative frequency plots ¢.e. plots of the cumu-
lative proportion of all fires (ordinate) as big or bigger than a given level
(abscissa), with both axes on logarithmic scales for six sets of data'. Fig.
2 shows plots of a nonparametric estimate (Silverman, 1986) of the density
(plotted on logarithmic scale) for the logarithm of area for the same six data
sets. Even though there are some differences (e.g. between the plots in the
top row and those in the bottom row), there are enough similarities to sug-
gest the possibility of them following a single parametric form. Could this
form be as simple as a power law (Pareto distribution) as claimed by some
authors?

If X is a random variable denoting area, with its probability density
function (pdf) following a power law (or Pareto) distribution i.e. fx(z)
7% then S(zr) = P(X > z) oc 27 and logS(z) = ¢; — (a — 1)log(z).
Thus if there is power-law behaviour the plots in Fig. 1 should each contain
points close to a straight line of negative slope. Also the pdf of ¥ = log(X)
is fy(y) o< exp(—(a — 1)y), so that log fy(y) = ¢ — (a — 1)y, and the plots

in Fig. 2. should also contain points close to a straight line. Clearly this is

12536 fires in Sierra Nevada U.S TForest Service Land, 1908-1992 (McK-
elvey and Busse, 1996); 1795 fires in Nez Perce National Forest, 1870-1994;
884 fires in Clearwater National Forest, 1910-1992; 3190 fires in Yosemite Na-
tional Park, 1930-1999 (all unpublished USDA Forest Service data); 5478 fires
in N. E. Alberta 1961-1998 (Alberta Environment.  Forest Protection webpage
http://www/gov.ab.ca/env /forests/fpd) and 2544 fires in Northwest Territories, 1992-
1999 (Northwest Territories Department of Resources, Wildlife and Economic Develop-
ment webpage http://216.108.146.3 /Fires/Fires%20Archive/firesarchive.htm)



not the case, although there is evidence of straight line behaviour (and thus
power-law behaviour in the underlying distribution) over a limited range of
sizes e.g. for the middle range for N. E. Alberta and Yosemite data sets.

The cumulative frequency plot presented by Ricotta et al.(1999) for fires
in Liguria, N. Italy has a similar form to those in Fig. 1. Those authors
offered an explanation for what they claimed was power law behaviour in the
empirical distribution. However it was only after they had removed approx-
imately the largest 1.5% fires (those bigger than 100 ha.) and the smallest
50% of all fires (those smaller than 1 ha.) that something approximating
a straight line plot could be obtained. Similar data massaging (eliminating
unwanted points) could produce straight line plots over a limited range at
least for the N. E. Alberta and Yosemite data.

In the next section we present a simple stochastic process model for the
growth and extinguishment of fires, and use it to determine conditions for

power-law behaviour.

3 A model for the process determining fire
size.

Wildfires share with many biological entities the fact that they grow in time
in a monotonic and stochastic way and also die in a stochastic way. A
realistic mathematical model should include both of these aspects i.e. it
should include a monotone stochastic process with a stochastic stopping (or

‘killing’, or extinguishment) rule.



The growth of a fire is a very complicated affair, depending on weather,
topography, fuel types, and other factors. It is difficult to include all such
factors in a simple model, but since we are concerned only with the final
area of the fire we need only be concerned with the growth, in time, of the
area burned. We shall do this by specifying the growth in area burned as a
stochastic process, ignoring shape and other spatial aspects. It seems reason-
able to assume that growth is size-dependent ¢.e. that the rate of growth in
area depends on the current area. For example for an idealized disk-shaped
fire on flat homogeneous terrain, with its front moving outwards at a con-
stant velocity the rate of growth in area is proportional to the square root
of area. For more general size-dependent stochastic growth we seek a mono-

tone stochastic process which generalizes the ordinary differential equation

(o.d.e.)

dX
_— = X

with p(X) > 0. A stochastic differential equation (sde) version of this will
not provide a good model, because sample paths of sdes are not monotone.
As an alternative we consider a pure birth process model (e.g. Tuckwell,
1988), in continuous time but with discrete states, labeled 1,2,3,... efc..
These states can be defined in terms of ‘marker sizes’ zi, 2y, x3, ... etc. (e.g.
at levels 1,2,3,... ha.; or 1,2,3,... m?) with the process considered to be in
state j at time t if the area X (¢) burned by that time, exceeds marker size
x;, but not marker size x4y (i.e. z; < X(t) < z;11). For simplicity we shall

suppose that the marker sizes are equally spaced so that z;,1 —z; = A, for



all j. Let

and suppose that, if the process is in state j at time t, the probability of it
being in state j +1 an infinitesimal time later, at time ¢ + dt, is \;dt + o(dt);
the probability of it still being in state j is 1—\;dt+o(dt); and the probability
of it being in some higher state is o(dt). For this process the ezpected growth

in size in the infinitesimal interval (¢,¢ + dt) given X () = z; is
E(X(@+dt)— X)X (t) =z;) = \jAdt + o(dt) = u(z;)dt + o(dt),

so that
E (dX[X(t)) = p(X(t))dt + o(dt),

which provides a stochastic generalization of the o.d.e. model above.
Also, from standard birth-death process results, the expected time to

grow from state jo to ji is

j1q J1 A
Si=%

=y D))

If A — 0, the above sum converges to
X1 dy
[ i
(where X, and X; are the sizes corresponding to jo, and j;) which is the
time to grow from level X to level X in the deterministic model dX/dt =

#(X). Thus for a fine mesh (A small), our model can be regarded as being

a stochastic growth model, which generalizes the o.d.e. model.
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To illustrate the growth model consider the simple case with a constant
expected proportional growth rate, i.e. with p(X) = pX (p a constant). In
this case A\; = p(z;)/A = ju and the process is a homogeneous pure birth
(or Yule) process (e.g. Tuckwell, 1988), a stochastic version of exponential
growth, with E(X (¢)) = Xoet" and var (X (¢)) = Xoe?#t(1 — e™#t),

The extinguishment of the fire needs to be modelled stochastically. This

can be done mathematically using a ‘killing rate’ function

.1
k(t):(}gh%P(T<t+dt|T>t),

where T is the time of extinguishment, or ‘killing’. Typically the probability
of extinguishment will be size-dependent, with, other things being equal, a
big fire being less likely to go out than a small fire. Thus we shall assume

that

where v(z) is a non-increasing function. Let v; = v(z;),j =1,2,..., so that
the probability of the fire going out in the infinitesimal interval (¢,t + dt),
given that it was in size class j at time ¢ is v;dt + o(dt). We shall refer to
v(x) as the extinguishment rate.

With these assumptions the final size (the size of the fire when extinguish-
ment occurs) can be determined from a more general result of Berman and
Frydman (1996). Let X denote the state when the process is killed. Then

- v, N pi A 1
:PX: 1) = J ? = J

(1)



v;
ulz;)”

where p; = & =
]
Note that we can write
j—1
fi=0; 11 (1 -6:),
i=1
where

Z/j _ ,O]A
Z/j + )‘j 1 + p]A

0; =

In this form it is clear that 6; constitutes a discrete hazard function, being
the probability of extinguishment in size-class j, given that the process has
reached that class. The product [[?Z; (1 — 6;) constitutes a survivor function
(i.e. it equals P(X > j)). If it converges (as j — oc) to a positive value
there is a non-zero probability of the process never being killed. In this case
the distribution of X is improper, having a non-zero probability at infinity.

We can get a similar result passing to the continuum limit, i.e. dividing

by A and then letting A — 0, yields a density for X of the form

T

fxl@) = p(a)exp (= [ pla')ia) (2)

0

where p(z) = % Here p(x) is the hazard rate function (i.e. p(z)dz repre-

sents the probability that X is less than = + dx given that it exceeds x). The
corresponding survivor function is

Z

Sx(z)=P (X > :r) = exp (—/x p(m')dm'.) (3)

0
Equations (2) and (3) both describe the distribution of final fire size in the
model. The empirical cumulative distributions plotted in Fig. 1 are sample

equivalents of Sg(x) in (3).



3.1 Conditions for power-law behaviour.

Power-law behaviour in the distribution of fire size is represented by straight-
line behaviour in the plot of log Sg(z) vs. logz. If the density fx(z) is
changing faster (respectively slower) than a power-law, then there will be
concavity (respectively convexity) in the plot of log(Sg(z) vs. logz. For
the density to behave asymptotically like a power law, log Sg(z) must be
asymptotically linear in logx.

The concavity/convexity of the plot of log S (z) vs. logx can be deter-
mined from the ratio of extinguishment rate v(x) to the proportional ex-
pected growth rate in area p(z)/x. We shall call this the extinguishment-
growth-rate ratio (EGRR) and write it

zv(x)
()

EGRR = = R(x), say.

In the Appendix it is shown that the EGRR is related to the pdf fx(z) and

the survivor function Sg(z) of the final size X by

and that this is the negative slope of the graph of log (Sx(x)) vs. logz. This
means that a non-parametric estimate of the EGRR can be found from a
histogram-based estimate of the density (e.g. Silverman, 1986), as in Fig.
2. Fig. 3 shows such estimates (both EGRR and area on logarithmic scales)
for the six data sets introduced in Section 2. They all follow rather similar

forms.
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Clearly for there to be power-law behaviour on an interval, the EGRR
must be constant on that interval (so that log Sg(x) is linear in log z there).
On the other hand if the EGRR is increasing over an interval, the graph
of log Sg(x) ws. logx will be concave there, and the distribution of X will
be changing faster than a power-law; while if the EGRR is decreasing the
graph will be convex, and the distribution of X changing more slowly than
a power-law.

Thus power law behaviour will occur on intervals where the EGRR is con-
stant. This can be seen empirically by observing in Fig. 3 that the estimated
EGRR is approximately constant in the middle range for the Yosemite and
N. E. Alberta data. This corresponds to approximately linear behaviour in
the corresponding panels of Fig. 1 and Fig. 2.

Power-law behaviour over the whole range of sizes, as for example claimed
by Malamud et al. (1998), requires that the EGRR be constant at all sizes,
or in other words that at all times and sizes, the probability of the fire being
extinguished (in an infinitesimal time interval of length dt) be a constant
multiple of the expected increment in size (as a proportion of current size) in
the infinitesimal time interval, given that the fire is not extinguished. This is
a highly restrictive condition, and there seems to be no obvious reason why
it should hold.

A more limited form of power-law behaviour is that it should occur

asymptotically in the upper-tail of the distribution z.e. fg(z) ~ 2z * ! and
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Sg(x) ~x7“ as ¥ — oo?. It is shown in the Appendix that a necessary and
sufficient condition for upper-tail power-law behaviour is that the EGRR
converges to a positive limit, as x — co.

A weaker form of upper-tail power-law behaviour can occur when R(z) —
0 as x — oo. It is shown in the Appendix that in this case that the distri-
bution of X is improper, i.e. Sg(z) — S, > 0 so that there is a nonzero
probability that X is infinite. An fire of infinite extent is of course an ar-
tifact of the model and can never occur in practice. This leads naturally
to the question of where the model fails to reflect reality. We see at least
two simplifications made in the model which relate to this. The first is that
there is no upper bound on the variable X, whereas in reality there is an
upper limit on fire size imposed by geography, e.g. trivially by the area of
the continent in which it occurs. Secondly the model is time-homogeneous,
and neglects factors such as a change in the seasons. Sometimes large fires
are extinguished only when summer ends and autumn precipitation occurs,
as for example with fires in Montana in 2000. This is hard to model and is
not included explicitly in our model. One can confine attention to finite fires
by conditioning on the event that X is finite. The conditional distribution
of X, given that X is finite, can exhibit asymptotic power-law behaviour. In
the Appendix it is shown that this will occur if and only if R(z) ~ 2= for

some o > 0. Figs. 1, 2 and 3 suggest that no form of upper-tail power-law

2We use the standard notation for asymptotic equivalence i.e. f(z) ~ g(x) as z — oo

indicates lim,_, o, (%) exists and is strictly positive
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behaviour occurs for any of the six data sets under study.

3.2 A special case.

Consider the plausible special case in which the growth function is of the
form p(X) = coX '™ where 0 < b < 1, with the extreme cases corresponding
to exponential growth (b = 0) and linear growth (b = 1). Intermediate cases
could be quite important. To see this consider a highly idealized fire which
maintains a fixed shape (e.g. a circular fire, or an elliptical fire, with ratio
of major and minor axes remaining constant). If such a fire were to grow
outward with the front moving at a fixed velocity, its area X, say, would
grow according to dX/dt = ¢X'/2, so that X would scale with t as 2. If the
shape of the fire was not regular, but instead a fractal with its area related to
a length dimension L by a power-law relationship X o< L'/ 0 < b < 1, and
the length dimension was growing at a fixed velocity (front moving at fixed
velocity), then dX/dt oc X'~%, and X would scale as ¢t'/*. The stochastic
versions of this model could allow for irregularities in fuel, topography, wind
etc. Indeed repeated simulations of a simple percolation model for the spread
of a fire in a homogeneous forest suggest that the mean area burnt ¢ time
steps after initiation, scales as t? with 8 > 1, lending support to this model
form. The EGRR for the special case is R(z) = z°v(z). This is constant
on an interval (leading to power-law behaviour there) only if v(z) oc % on
the interval; and tends to a positive limit (leading to upper-tail power law

b

behaviour) only if v(z) ~ z7°. It would seem to be only through a fluke
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that such conditions could hold. However conditional® upper-tail power-law
behaviour could occur under slightly less restrictive conditions, namely when
v(z) ~ 2 ¢ with e > 0.

There is an interesting particular case in which full power-law behaviour
would occur. This is when both the growth rate and the extinguishment rate
are independent of size, i.e. where there is stochastic exponential growth
(u(x) x x) and a constant extinguishment probability (v = constant). In
this case the EGRR is constant, and a power-law distribution would re-
sult. We can think of this as a null model and examine how growth and
extinguishment rates might deviate from constant, null values. Firstly, a
size-independent extinguishment rate seems unlikely, in that other things
being equal, a big fire would probably be less likely to go out due to a given
rainstorm, etc. than a small fire. Similarly, exponential growth in fire size
seems unlikely. For example, for a circular fire spreading outwards, expo-
nential growth in area would require the velocity of the front to increase
exponentially in time. Considerations such as these would suggest that both
the expected proportional growth rate, and the extinguishment probability
to decline with size. Whether their ratio should increase or decrease is not
obvious. The empirical plots of the EGRR (Fig. 3) suggest that it increases
with size, and thus that, overall, the pdf of fire size fx(x) should decay with

x faster than a power law.

3 Asymptotic power-law behaviour in the distribution of size conditional on it being
finite, as described in Sec. 3.1.
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3.3 Multiple causes of extinguishment.

It is difficult to decide theoretically on the behaviour of the EGRR. However
some thought about the causes of extinguishment may help shed some light.
Extinguishment of a small fire could come about because of lack of fuel
in surrounding areas. For a fire to go out for this reason, it would need
to go out everywhere on its boundary, the length of which is likely to be
related to area through a power-law relationship. Thus a reasonable model for
the extinguishment rate from this cause might be of the form cexp (—Az?),
(c,A\,;a > 0). Note that this becomes small quite rapidly as x increases.
Another cause of extinguishment is precipitation. Several days of heavy
rainfall could extinguish a fire of any size, but lesser precipitation might
only be sufficient to extinguish smaller fires, with its effect on larger fires
being to slow the growth. Thus it seems that a reasonable model for the
extinguishment rate due to rainfall could be of the form 7 (x) where 7 is a
decreasing function, decreasing more slowly than the previous term. Another
cause of extinguishment could be intervention by fire-fighting crews. This is
hard to model, since proximity to human settlements, commercial value of
the standing timber etc. are likely to be the major determinants of the extent
of fire-fighting efforts. However many people involved in fire fighting believe
that suppression cannot put out very large fires. The effect of suppression
efforts on such fires is more likely to be in reducing the spread (e.g. by putting
lines around the back and sides of fires) rather than in actually extinguishing

the fires. In this respect the effect of suppression could be thought of as being
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similar to that of rainfall. Because of this we will not model extinguishment
through suppression separately, but rather consider the term 7(z) to cover
both precipitation and suppression.

Combining these competing causes gives an overall extinguishment rate
of the form

v(z) = cexp(—Az?) + 7(z)

and an EGRR of the form

If p(x) o< z°, the first term will decay with x beyond a certain point. Whether
the second term increases or decreases depends on how fast m(z) declines
compared with p(x)/z. The plots of non-parametric estimates of the EGRR
in Fig. 3 suggest that in all cases the EGRR increases, beyond the very

smallest sizes. This is true even for the Northwest Territories, where many

zm(x)

u(z)

fires are not actively combatted, which suggests that the second term

increases with size.

4 Some parametric forms for the distribution
of area.

In this section we present three parametric forms for the distribution of area.
They have been derived by examining the plots of nonparametric estimates
of the EGRR in Figs. 3 and of the hazard rate p(z) in Fig. 4 as well as the

theoretical discussion above.

16



4.1 Model I - Weibull (2 parameters)

The plots of the nonparametric estimates of the hazard rate in Fig. 4, sug-
gest approximately a linear relationship, when both hazard and area are in

logarithmic scales. This suggests a hazard rate of the form

p(x) = az™,

with b > 0 which, at least for b < 1, is a Weibull hazard. The corresponding
pdf is

fr(a) = aaexp {— (@ - g )}

where z( is the minimum observable size for a fire. The EGRR is R(z) =
az'~®, so that power-law behaviour would occur everywhere if b = 1, and
nowhere if b < 1. For b > 1 asymptotic power-law behaviour for the distri-
bution of X, conditional on X being finite, would occur.

The model can be fitted by maximum likelihood under the assumption

of independent observations*. The log-likelihood for n such observations

(1,29, ...,x,) from the above distribution is

ti(a,b) =nloga—b>_ x; — . ¢ 2 (Zx}_b - nx(l)_b>
i=1 o i=1

This can be maximized analytically with respect to a, yielding

X n(1-1b)
a =
im " =z

“Even if the observations are not independent the procedure of maximizing the log-
likelihood can be justified as providing mazimum likeness estimates (Barndorff-Nielsen,
19770) i.e. estimates which minimize the discrimination information between the distri-
bution of the data and the fitted distribution
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which when substituted into ¢; yields a ‘concentrated’ (or profile) log-likelihood
?,(b) = nlog(1 —b) — nlog <zn: b — n:v(l]b> - bzn: log z;.
i=1 i=1
This can be maximized numerically with respect to b to yield maximum
likelihood estimates (MLEs) of b and then of a. Table 1 shows these estimates
and the corresponding maximized log-likelihood for the six data sets, in each
case using the smallest observed fire as the value for zy.

The goodness of fit of the model can be assessed by examining Q-Q
(quantile-quantile) plots of the observed and fitted distributions. These are
displayed in Fig. 5 (both axes logarithmic). The fit appears to be satis-
factory for the three data sets in the top row, but a little less satisfactory
for those in the bottom row. Note however that the deviation from the 45
degree line is in a different direction for the Northwest Territories data, than
for Yosemite and N.E. Alberta. In the latter two cases the fitted quantiles
at the upper end of the distribution are too large, whereas for the Northwest

Territories data, they are too small.

4.2 Model II - Competing Hazards (4 parameters).

As discussed in Section 3.3 a fire may go out for a number of reasons. The
probability of extinguishment due to lack of fuel will likely decrease quite
rapidly with size, while extinguishment due to rainfall may decrease more

slowly. To model this one can consider a hazard rate with two components,
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declining at different rates. To this end consider a hazard rate of the form

p(z) = az™ + ce™®

which has a pdf

fx(@) = ala + 0 ) exp {—a [ —ap? (e )] }

1-0 d
where § = c¢/a. The EGRR for this model is R(z) = ax'~® + cre~%. This
cannot be constant over an interval so power-law behaviour cannot occur.
However upper-tail power law behaviour can occur, as in Model I, for values
of b > 1.
The log-likelihood ¢5(a, b, 0, d) can be maximized with respect to a ana-

lytically, as for Model I, yielding a concentrated log-likelihood

~

n n 1-b _ . 1-b —dz; _ —dxo

i=1 i=1 1-0

which can be maximized numerically to obtain MLEs of b, # and d and thence
of @ and c. Table 2 gives these estimates, while Fig. 6 shows Q-Q plots for
this model. The fit for Yosemite is improved considerably and there is some
improvement in fit for N. E. Alberta and Northwest Territories. However the
fitted quantiles for North West Territories are still too small, whereas in in

all of the other cases they are too big.

4.3 Model III - Log Weibull (3 parameters).

It is not difficult to show that the hazard-rate function for ¥ = log X is

related to that for X by py(y) = eYpx(e¥) = R(e¥). Thus, Fig. 3 (apart
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from the tick marks on the abscissa) gives plots of the hazard rate for Y,
py(y), (on a log scale) against y. The monotonicity and concavity of these
plots suggest that a model of the form logpy(y) = A + blog(y + ¢) might

provide a reasonable fit. This translates to hazard rate functions of the form

pr(y) =aly+c) and px(r) = ~(log(a) + )",

which is a Weibull hazard for (Y + ¢), i.e. Y has a pdf of the form

a
b+1

fr(y) =a(y+c)’exp [— {(y + oM (go+ C)b+1}]

where yo = logzy and ¢ > —yo. The EGRR is R(z) = a(logz + ¢)®. Since
this cannot be constant on an interval, power-law behaviour is not possible.
Conditional upper-tail power-law behaviour occurs when b < 0.

The log-likelihood #3(a, b, ¢) for y1,ya, ..., y, can be maximized analyti-
cally over a (as for Model I) and substituted back into ¢35 to yield a concen-

trated log-likelihood

~

() = nlog(b+1)+5 3 log(ur0)-nlog (3 (s + 9 ~ (0 + 97}

i=1 i=1
This can be maximized numerically to yield MLEs for b and ¢ and thence of
a. Table 3 gives these estimates for the six data sets, while Fig. 7 shows Q-Q
plots for this model. The fit is very good for the three data sets in the top
row, but not so good for those in the bottom row. It is exceptionally good
for the Sierra Nevada and Clearwater.

Of the three parametric models considered, there is no single one that

provides a best fit for all six data sets. An examination of the values of
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the maximized log-likelihood, suggests that Model III is best for the Sierra
Nevada and Yosemite data sets with Model II best for all of the others.
However for the Yosemite data the Q-Q plot for Model III is unsatisfactory,
with that for Model II much better. For Sierra Nevada the Model III Q-Q
plot is satisfactory. Over all Model II seems to be the best fitting model.
While Model III is better for Sierra Nevada, its superiority over Model II in

that single case is only slight.

5 Conclusions.

While there have been several claims that the size distribution of areas burned
in forest fires follows a power-law distribution, a careful analysis of actual
data, and a theoretical investigation into conditions necessary to produce
such behaviour, suggest that the claim is exaggerated, and that power-law
behaviour, at best, only holds over a limited range of sizes. In the paper
the concept of the extinguishment-growth rate ratio (EGRR) has been in-
troduced, and related to familiar statistical concepts such as the hazard rate
and survivor function. It has been shown how a constant EGRR is neces-
sary for power-law behaviour. A constant EGRR occurs in the simple null
model in which fires grow at a constant proportional rate (with area growing
exponentially in expectation), with constant probability of extinguishment.
However such constant rates would seldom be expected to occur naturally.
Away from the null model, a constant EGRR will only occur if both the

extinguishment rate and the proportional growth rate depend on size in the
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same way. There seems to be no apparent reason why this should be the
case and thus little reason to expect power-law behaviour. Examination of
the six empirical area distributions suggests that on the whole the EGGR
increases with area, and is constant at most over a limited range of sizes for
one or two regions.

The EGRR and the hazard rate function can be estimated nonparamet-
rically, from a histogram-based estimate of the density function and these
nonparametric estimates can be used to suggest parametric forms for the
hazard rate and hence for the density of the distribution of fire size. In the
paper we have discussed three such forms. While none provides a perfect fit
to all of the sets of data, this is perhaps to be expected, given the differ-
ences in the terrain, climate and ecology of the six regions. The competing
hazards model (Model II) provides a good fit for all but the very largest
fires. Such fires are relatively rare, so randomness (sampling error) may be
one reason for this. Another concerns the limits (in space and time) that
occur for real fires, but which are not included in the model. For fires in the
mountainous regions (first four data sets) topographic barriers may slow the
rates of growth of large fires, e.g. with fires spreading up mountain slopes
they will eventually run into higher elevation areas, which are likely to be
wetter and with sparser vegetation, slowing the rate of growth. Eventually
when a fire front reaches a ridge it may go out. Such behaviour is less likely
in the taiga (Northwest Territories data), with flatter, more uniform terrain.

There are temporal barriers as well. The fire season does not last for ever.
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Eventually the change of season will result in even the very largest fire being
extinguished naturally. It is quite likely that this aspect is most important in
the Northwest Territories, while topographic limitations are more important
elsewhere. This could explain the fact that the observed size distribution
for the Northwest Territories data deviates in the upper tail from the fitted
distribution in the opposite direction to that for the other five regions.

The assumption behind the competing hazards model (Model II) is that
there can be more than one cause of a fire going out, and these causes may op-
erate on different spatial scales. Extinguishment through lack of fuel is likely
to be a consideration mainly for small fires, while extinguishment through
rain events will be a possibility at all sizes, even though the probability
of extinguishment through such a cause may decrease with fire size. The
competing hazards model described in Section 4.2 reflects this with the ex-
tinguishment rate being the sum of two components one decreasing rapidly

and the other slowly.
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Appendix.
Derivation of main results.

For a continuous random non-negative variable X with pdf f(z), the
survivor function is defined as

o0

S(z)=P (X > 1) = / f(a")da’

T

while the hazard rate function is defined as

1
p(z) = lim {@P (X <z +de|X > x)}

dz—0

It is easily confirmed that

S(@) =exp (= [ pa)da'),

0
f(@) = p(@)exp (= [ pla')da)
To
where zg is the minimum value that X can assume (i.e. zy = inf{z : f(z) >

0}), and that

plo) =~ - o5 S(2) = =5

We show now that the graph of log S(z) vs. logz will be linear (respec-
tively concave, convex) at some point Z if R'(Z) = 0 (respectively < 0, > 0)

where R(z) = zp(z) = %(5)) We have

x

log S(z) = —/ p(z')dx'.

Zo
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If y = logx this can be written
ey

log S(z) = —/ p(z")dz'.

Zo

so that

3—ylog S(z) = —eYp(e?) = —R(e").

Thus log S(x) is linear, concave or convex in logz at a point Z according as
to whether R(z) is constant, increasing or decreasing at Z.
For the stochastic model described in Section 3, the hazard rate was

shown to be of the form %, so that R(z) = mu"((wm)) which is the ratio of the

extinguishment rate v(z) to the proportional expected growth rate p(z)/z.
Thus it is the behaviour of the extinguishment-growth rate ratio (EGRR)
which determines whether log S(x) is linear, concave or convex in log , which
in turn determines whether the distribution of X is behaving as a power law,
or is changing faster than, or slower than a power law.

For asymptotic power-law behaviour in the upper tail we require that
f(z) ~ 27" and Siz) ~ 27 as x — oo. This will be met if and only
if log S(z) ~ —alogx as logxz — oo. This condition will certainly be met
if R(z) - Ro > 0 (z — o0); but will not be met if R(z) diverges as
x — o0, since in this case the slope of log S(z) against logz will diverge.
The only case that remains to be resolved is when R(z) — 0 (z — o0).
It is not difficult to show that R(z) — 0 if and only if S(z) — S, > 0.
In this case the distribution of X is improper in that there is a nonzero

probability (= S.) that X is infinite. Clearly in this case asymptotic power-
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law behaviour cannot occur. However it is possible that for the conditional
distribution of X, given that X is finite, can exhibit power-law behaviour
i.e. that

S(z) — Seo

P(X2$|X<OO) :W ~ ¢

A necessary and sufficient condition for this is that R(z) ~ z~*.
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a b 14

Sierra Nevada 0.0523 0.583 -33928.84
Nez Perce 0.0489 0.554 -22783.08
Clearwater 0.110 0.723 -9274.02
Yosemite 0.301 0.792 -26910.61
N. E. Alberta 0.279 0.815 -53130.46

North West Territories  0.163 0.878 -27384.24

Table 1: Maximum likelihood estimates of the two parameters (a and b) of the
Weibull model (Model I) with the corresponding maximized log-likelihoods..

a b ¢ d /
Sierra Nevada* 0.0651 0.622 -0.0629 0.616 -33912.02
Nez Perce* 0.0668 0.601 -0.0239 0.134 -22756.85
Clearwater 0.0898 0.689 0.275 1.893 -9263.81
Yosemite 0.126 0.681 3.320 2.709 -26404.20
N. E. Alberta 0.106 0.725 1.196 0.873 -52396.16

North West Territories  0.117 0.852 0.196 0.413 -27270.08

Table 2: Maximum likelihood estimates of the four parameters (a,b, ¢ and
d) of the competing hazards model (Model IT) with the corresponding maxi-
mized log-likelihoods. Note that in the two cases marked with an asterix (*),
the MLE of ¢ is negative. If one restricts c to be positive, ¢ = 0 in both cases.
In this case the corresponding MLEs of b and the maximized log-likelihood
are those given for Model I in Table 1.
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a b

Sierra Nevada 32.13e-5 3.334
Nez Perce 0.0041e-5 5.960
Clearwater 0.167e-5 4.218
Yosemite 9583.8e-5 0.737
N. E. Alberta 7939.2e-5 0.971

North West Territories  7.798e-5 2.587

~

c
3.867
10.362
14.227
6.340
4.748
19.461

14
-33898.28
-22773.63

-9268.48
-26208.80
-52486.30
-27383.15

Table 3: Maximum likelihood estimates of the three parameters (a,b and c)
of the log-Weibull model (Model IIT) with the corresponding maximized log-
likelihoods. Note that to make the maximized log-likelihood compatible with
that for Models I & II, the quantity Y1, logz; + nlogn — n was added to
05(b, ¢). The first term corresponds to the Jacobian for the change of variable
from z to y = log z, while the other terms correspond to constants omitted

from ¢; and ¢,.
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Figure Captions.

Fig. 1. Cumulative frequency plots (empirical survivor functions) with logarithmic
axes for the size distribution of areas burned for the six datasets described in Sec.2.
Area is measured in hectares.

Fig. 2. Nonparametric estimates of the density for the distribution of the natural
logarithm of areas burned for the six datasets described in Sec. 2.

Fig. 3. Nonparametric estimates of the extinguishment growth rate ratio (EGRR)
derived from the density estimates in Fig. 2, for the six datasets described in Sec. 2.

Fig. 4. Nonparametric estimates of the hazard rate function, derived from the density
estimates in Fig. 2, for the six datasets described in Sec. 2.

Fig. 5. Q-Q plots showing the quantiles of the observed distribution versus that of
the fitted distribution using the Weibull model (Model 1), with logarithmic scales on
both axes. Systematic departures from the 45 degree line suggest model lack of fit.

Fig. 6. Q-Q plots showing the quantiles of the observed distribution versus that of
the fitted distribution using the Competing Hazards model (Model 1), with logarithmic
scales on both axes. Systematic departures from the 45 degree line suggest model lack
of fit. Note that if all parameters in the model are constrained to positive values, the
plots for Sierra Nevada and Nez Perce should be replaced by the corresponding ones
in Fig. 5.

Fig. 7. Q-Q plots showing the quantiles of the observed distribution versus that of
the fitted distribution using the Log Weibull model (Model I1), with logarithmic scales
on both axes. Systematic departures from the 45 degree line suggest model lack of
fit.
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