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Abstract

A stochastic model for the spread of a sexually transmitted disease
(STD) is presented. To reflect varying degrees of promiscuity among
individuals it is assumed that the infectivity of any infected individ-
ual is proportional to the number of previous contacts the individual
has had with other infected individuals. In both the simple single-sex
model and in the more complex two-sex model, the tree graphs of the
infection exhibit scale-free network behaviour (i.e. power-law behav-
iour in the upper tail of the degree distribution). The distributions
of the size of the infection and of the ring number (distance from the
original source of the infection) are determined.

Keywords: SFN; STD; preferential attachment; ring number, Yule
tree; Reed-Hughes tree
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1 Introduction.

It has been widely recognized, e.g. [1, 2], that networks of human sexual

partners are scale-free i.e. the distribution of the number of contacts over

all individuals in the network has a long upper tail which exhibits power-law

behaviour. The implications of this for the spread of a sexually transmitted

disease (STD), and for possible immmunization strategies have been also

been noted [3, 2].

In view of the scale-free nature of networks of sexual contacts, one would

expect that the evolving tree network of the spread of an STD (two nodes

linked if one infected the other or vice versa) would also exhibit scale-free

behaviour, although this has not apparently been verified from data. In this

article a simple model for the spread of an STD is presented which yields such

behaviour. The essential ingredient of the model, which produces the scale-

free behaviour, is the phenomenon of preferential attachment [4] in which an

individual who has already infected a large number of others is more likely

to infect a new individual than one who has previously infected few or no

others.

To demonstrate this two simple single-sex stochastic network models

(Yule tree and Reed-Hughes tree) whose properties have been discussed else-

where [5] are compared in Sec. 2. The way the size of the epidemic grows is

similar for both models, as is the behaviour of the distance of an infected in-

dividual from the primary source of the infection. However the models differ
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in the resulting degree distributions, with the Yule tree model producing a

geometric degree distribution (which is not scale-free) and the Reed-Hughes

tree model producing a scale-free degree distribution, with exponent 3 (inde-

pendent of model parameters). The Reed-Hughes tree model has preferential

attachment, while the Yule tree model does not.

In Sec.3 the Reed-Hughes tree model, with preferential attachment, is

extended to include two sexes, leading to a bipartite graph with a tree struc-

ture. For this model it is shown that the degree distributions of males and

females both are scale-free with the exponents 2 + ρ/λ and 2 + λ/ρ, where λ

and ρ are parameters reflecting the infectivity of males and females, respec-

tively. These results are shown to be consistent with numerical estimates

obtained by Liljeros [1] for a network of Swedish sexual contacts.

2 Single-sex models.

Chan et al. [5] considered two models of evolving trees which can be consid-

ered as models of the spread of a persistent disease in a large population. In

both models infected individuals are represented by nodes with two nodes A

and B considered connected if A infected B or vice versa. It is assumed that

one individual introduced the infection into the community at time t = 0

and that in the infinitesimal time increment (t, t + h) any infected individ-

ual i can infect a new individual with probability λi(t)h + o(h) and that all

new infections are independent. The two models differ in the assumptions

concerning the infection rate functions λi(t).
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(i) Yule tree. In this model it is assumed that λi(t) ≡ λ (constant) for

all i and t so that all individuals are equally likely to spread the disease at

all times. The number of infected individuals N(t) follows a Yule process

(homogeneous birth process) (see e.g. [6]) and so it follows that N(t) is

geometrically distributed with

E(N(t)) = eλt, var(N(t)) = eλt(eλt − 1)

Furthermore Chan et al. [5] obtain an expression for the distribution of the

degree (connectivity), K(t) of a randomly selected node at time t and show

that as t→∞

pk(t) = P (K(t) = k) → 2−k, for k = 1, 2, . . . (1)

Thus at a suitable large time after the introduction of the infection, the

distribution of the number of people infected by infected individuals follows

a geometric distribution with parameter 1/2 on 1, 2, . . ..

Chan et al. [5] also consider the distribution of the ring number, R(t)

(number of links back to the primal infection) over the whole tree, and show

that Rt has a Poisson-like1 distribution

P (R(t) = r) =
(λt)r+1

(eλt − 1)(r + 1)!
r = 1, . . . (2)

which has mean value λt(1− e−λt)−1 − 1 ∼ λt (as t→∞).

While this model may be suitable for some persistent diseases (e.g. oral

herpes), it is probably not suitable for most STDs. Studies on networks

1In fact Rt + 1 has a zero-truncated Poisson distribution.
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of sexual partners (e.g. [1]) seem to suggest that the degree (number of

partners) distribution follows close to a power-law (scale-free) distribution.

One would expect then that in a tree representing the spread of an STD,

the degree distribution would similarly follow close to a power-law, rather

than the geometric distribution of the Yule tree. A model which relaxes the

homogeneous infectivity assumption and which yields such a distribution is

(ii) Reed-Hughes tree. In this model the infection rate functions λi(t) are

modelled as

λi(t) = µKi(t)

where Ki(t) is the degree of node i at time t. Thus individuals who have

already infected many others are assumed to be more likely to infect new

individuals than those who have infected few or no others. This assumption

is meant to reflect the fact that some individuals are more promiscuous than

others. The fact that an individual has already infected a large number of

others is an indicator of that individual’s promiscuity, and therefore it seems

reasonable to assume a higher probability for further infections for such an

individual. It would probably be more realistic to assume a distribution of the

infectivity parameter λi over the population (i.e. λi varying with the i), or

failing that, that λi(t) depends on the previous number of sexual partners of

individual i by time t. However neither of these assumptions lead to a model,

which can be easily analyzed. In contrast the assumption λi(t) = µKi(t) does

lead to a analytically tractable model and although it is a simplifiaction it

does capture something of the essence of the variation in promiscuity over
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the population.

Chan et al. [5] show that for this model with the clock started (t = 0)

when a second person is infected (N(0) = 2), the number of individuals,

N(t), infected by time t follows a geometric distribution (on 2, 3, . . .) with

E(N(t)) = 1 + e2µt, var(N(t)) = e2µt(e2µt − 1).

This is very similar to that for the Yule tree. However the degree distribution

of a randomly selected node, asymptotically follows a Yule distribution [8, p.

276].

pk(t) = P (K(t) = k) → 4

k(k + 1)(k + 2)
∼ 4

k3
, for k = 1, 2, . . . (3)

So for this model, after the infection has spread within the community, the

number of individuals infected by any one individual, in the upper-tail, fol-

lows a power-law (or scale-free) distribution with exponent -3. Note that this

distribution does not have a finite variance, which has important implications

concerning the epidemic threshold [7, 9, 2].

Chan et al. [5] use mean-field methods (using a deterministic approxima-

tion to the stochastic model in which probabilities are replaced by propor-

tions) to obtain the following approximation to the distribution of the ring

number

P (R(t) = r) ≈ eµt(µt)r−1

(e2µt + 1)(r − 1)!
r = 1, 2, . . . (4)

with P (R(t) = 0) ≈ 1/(e2µt + 1). By comparing this distribution with the

results of simulations they show that the approximation is quite good. They
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also obtain an approximate expression for the ring number distribution in

terms of the size of the network.

The distribution (4) is similar to a Poisson distribution and has mean

value (µt+1)(1+e−2µt)−1 ∼ µt (as t→∞). (Note that for this model, since

it is assumed two individuals are infected at t = 0, the ring number is the

distance to either of these two individuals).

The two models yield similar results concerning the growth of the infec-

tion in the community (exponential in expectation, with a geometric distri-

bution for the number infected) and for the distribution of the ring number

(both Poisson-like and asymptotically linear in t). However they differ con-

siderably in the degree distribution – the Yule tree model yields a geometric

distribution with parameter 1/2, while the Reed-Hughes tree model yields

a distribution following a power-law with exponent −3 in the upper tail.

The second (Reed-Hughes) tree model seems more appropriate for an STD

in that it recognizes non-homogeneity in infectivities and that it produces a

scale-free network in agreement with the empirical results of Liljeros et al. [1]

on a network of sexual partners. Indeed the predicted power-law exponent

of 3 is quite close to the empirical values determined by Liljeros et al. for

the Swedish network (3.1± 0.3 for females and 2.6± 0.3 for males). To ob-

tain different distributions for males and females, one needs a two-sex model.

Such a model, analogous to the Reed-Hughes tree model above, is developed

in the next section.
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3 A two-sex model.

Again consider an evolving tree with two individuals of opposite sex, A and

B, considered connected if A infected B or vice versa. If homosexual infec-

tions are ignored, the tree will form a bi-partite graph, with the two parts

corresponding to infected males and infected females. Let

M(t) denote number of males infected by time t;

N(t) denote number of females infected by time t;

L(t) denote the number of links between males and females time t; and

K(t) denote the degree of a specified infected male * at time t;

Assume now that in the infinitesimal interval (t, t+h] a male i with degree

ki can infect a new female with probability λkih+ o(h); and that a female j

with degree fj can infect a new male with probability ρfjh + o(h) and that

all infections are independent. Under these assumptions the following states

of (M,N,L,K) at t could lead to state (M = m,N = n, L = l,K = k) at

t+ h, with the given probabilities:

prior state event probability

(m− 1, n, l − 1, k) female infects male ρ(l − 1)h+ o(h)

(m,n− 1, l − 1, k) male other than * infects female λ(l − 1− k)h+ o(h)

(m,n− 1, l − 1, k − 1) male * infects female λ(k − 1)h+ o(h)

(m,n, l, k) no infection 1− (λ+ ρ)lh+ o(h)
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Thus letting

pm,n,l,k(t) = P(M(t) = m,N(t) = n, L(t) = l,K(t) = k)

and using the Law of Total Probability one obtains

pm,n,l,k(t+ h) = ρ(l − 1)hpm−1,n,l−1,k(t) + λ(l − 1− k)hpm,n−1,l−1,k(t)

+λ(k − 1)hpm,n−1,l−1,k−1(t) + [1− (λ+ ρ)lh]pm,n,l,k(t) + o(h)

(5)

On subtracting pm,n,l,k(t) from both sides, dividing by h and letting h → 0

one obtains the following Kolmogorov forwards equation

d

dt
pm,n,l,k = ρ(l − 1)pm−1,n,l−1,k + λ(l − 1− k)pm,n−1,l−1,k

+λ(k − 1)pm,n−1,l−1,k−1 − (λ+ ρ)lpm,n,l,k (6)

On summing out k and n one obtains the following differential equation for

pm,l = P(M(t) = m,L(t) = l)

d

dt
pm,l = ρ(l − 1)pm−1,l−1 + λ(l − 1)pm,l−1 − (λ+ ρ)lpm,l. (7)

Also on summing out m,n and l in (6) one obtains the following equation

for pk(t) = P(K(t) = k)

d

dt
pk = λ(k − 1)pk−1 − λkpk (8)

This last equation is easily recognized as the Kolmogorov equation of Yule

process [6]. If t∗ is the time of infection of individual *, then K(t∗) = 1 and
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from well-known results on the Yule process the solution to (8) with this

initial condition is, for t ≥ t∗

pk(t) = e−λ(t−t∗)(1− e−λ(t−t∗))k−1, for k = 1, 2, . . . (9)

i.e K(t) follows a geometric distribution with parameter eλ(t−t∗).

To determine the degree distribution over the whole network, one needs

to integrate this with respect to the distribution of t∗, the time of infection

of any individual. We will return to this later, but first we consider how the

size of the epidemic evolves. In the Appendix it is shown that, assuming

that the time origin (t = 0) is set at the time when the original infective

infects a person of the opposite sex (so that M(0) = 1, N(0) = 1), then M(t)

and N(t) are both geometrically distributed with probability mass functions

(pmfs)

pm(t) = P(M(t) = m) = φm(t)(1− φm(t))m−1, m = 1, 2, . . . (10)

and

pn(t) = P(N(t) = n) = φn(t)(1− φn(t))n−1, n = 1, 2, . . . (11)

where

φm(t) =
(λ+ ρ)e−(λ+ρ)t

ρ+ λe−(λ+ρ)t
, φn(t) =

(λ+ ρ)e−(λ+ρ)t

λ+ ρe−(λ+ρ)t
. (12)

The total number of infectives T (t) = M(t) + N(t) is thus the sum of two

geometric random variables, with expected value

E[T (t)] = E[M(t)] + E[N(t)] =
1

φm(t)
+

1

φn(t)
= e(λ+ρ)t + 1. (13)
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Thus in expectation, the epidemic grows (almost) exponentially at rate λ+ρ.

These results parallel those for the single-sex Reed-Hughes tree model of the

previous section.

To determine the distribution of the times t∗ at which males are infected

the notion of an order-statistic process [10] can be employed. Such processes

are point processes with the property that the joint distribution of the ordered

event times in say [0, T ] have the same distribution as the order statistics of

independent identically distributed random variables (iid rvs) with support

on [0, T ]. The best known example is the Poisson process whose ordered

event times on [0, T ] have the same joint distribution as the order statistics

of iid rvs uniformly distributed on [0, T ]. Puri [11] provides necessary and

sufficient conditions for a birth process to be an order-statistic process. The

conditions are in terms of the birth rate function. For the process {M(t)}

(whose events are new infections of males) this is

θm(t) = lim
h→0

[P(M(t+ h) = m+ 1|M(t) = m)/h]

= lim
h→0

[ ∞∑
l=1

P (M(t+ h) = m+ 1|M(t) = m,L(t) = l) P(L(t) = l|M(t) = m)/h

]
= ρ E[L(t)|M(t) = m]. (14)

In the Appendix it is shown that the distribution of L(t) conditional on

M(t) = m is negative binomial with pmf

P (L(t) = l|M(t) = m) =

(
l − 1

m− 1

)
π(t)m[1− π(t)]l−m, l = m,m+ 1, . . .

(15)
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where

π(t) =
ρ+ λe−(λ+ρ)t

λ+ ρ

so that

θm(t) = ρE[L(t)|M(t) = m] =
ρm

π(t)
=

ρm(λ+ ρ)

ρ+ λe−(λ+ρ)t)
. (16)

This is easily confirmed to satisfy Puri’s [11] necessary and sufficient con-

ditions (with Puri’s L(i) = Γ(i) and h(t) = ρe(λ+ρ)t) so that {M(t)} is

confirmed to be an order statistic process. From this it is easy to show [10,

Thm.2] that the joint distribution of the times of new male infections in (0, t]

are iid random variables with probability density function (pdf)

f(t∗) =
(λ+ ρ)e−(λ+ρ)(t−t∗)

1− e−(λ+ρ)t
, 0 < t∗ ≤ t. (17)

The distribution of infection times over all nodes in the network is obtained by

a mixture of this distribution with an atomic distribution at 0 (corresponding

to the original male infective) with mixing weights α1 = 1− 1/E(M(t)) and

α0 = 1/E(M(t)). Integrating the pmf (9) of the degree of node * with repect

to this mixed distribution yields the pmf p̃k of the degree disribution of a

randomly selected node in the network at time t

p̃k = α0e
−λ(t)(1−e−λ(t))k−1+α1

∫ t

0
e−λ(t−t∗)(1−e−λ(t−t∗))k−1 (λ+ ρ)e−(λ+ρ)(t−t∗)

1− e−(λ+ρ)t
dt∗

Using the fact that M(t) is geometrically distributed it follows that

α0 = E

(
1

M(t)

)
= − φm(t)

1− φm(t)
log φm(t).
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As t→∞, α0 → 0 and α1 → 1; hence letting τ = t− t∗ it follows that

p̃k →
∫ ∞

0
e−λτ (1− e−λτ )k−1(λ+ ρ)e−(λ+ρ)τdτ

=

(
λ+ ρ

λ

)
Γ(k)Γ(ρ/λ+ 2)

Γ(k + 2 + ρ/λ)
, (18)

a Yule distribution (Johnson et al., 1993, p.276) for which

p̃k ∼
[
(λ+ ρ)Γ(2 + ρ/λ)

λ

]
k−(2+ρ/λ), (k →∞). (19)

So at a suitably long time after the introduction of the infection the degree

distribution of males in the network will be scale-free with exponent 2+ρ/λ.

In an exactly similar way one can establish that the degree distribution of

females in the network will be scale-free with parameter 2 + λ/ρ. Typically

one would expect λ > ρ (males more promiscuous on average than females)

which would lead to a smaller power-law exponent (i.e a degree distribution

with a longer tail) for males than females. This is in agreement with the

results of Liljeros [1] in their study of a network of sexual partners. They

obtained 95% confidence intervals of 2.6 ± 0.3 for males and 3.1 ± 0.3 for

females for the power-law exponents. Values of the ratio λ/ρ in the range

1.11 – 1.40 yield exponents 2 + ρ/λ and 2 + λ/ρ lying within these two

confidence intervals.

It is possible to use mean-field theory to obtain an expression for the gen-

erating function of the approximate ring number distribution, using methods

analogous to those of Chan et al. [5]. However it is very complicated and no

simple closed-form expressions for the corresponding approximate probabil-

ities are available. Nonetheless it is possible to use the generating function
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to obtain numerically the approximate ring number probabilities, for given

parameter values, by expanding the generating function using a symbolic

mathematics software such as Maple IX[12]. The derivation of the generating

function for the mean-field approximation to ring number distribution (for

males and females) is outlined in the Appendix.

Fig. 1 shows the mean-field approximation to the ring number distrib-

ution for males and females when λ = 0.2, ρ = 0.1 and t = 10. Numerical

results using the mean field approximation suggest that, as in the single sex

mode, the expected ring number asymptotically grows linearly with time

(both for males and females).

4 Conclusions.

The main results of this article concern a simple two-sex stochastic model

for the spread of an STD. To reflect varying degrees of promiscuity among

individuals the model assumes that the infectivity of an infected individual

is proportional to the number of previous contacts the individual has had

with other infected individuals. The proportionality coefficients are assumed

different for males and females. The main results are that the epidemic

grows exponentially in expectation, and that in the evolving bipartite tree

graph of the epidemic the degree distributions in each part of the bipartite

graph evolve towards ones with power-law (scale-free) tails, with different

power-law exponents. Also a mean field approximation the distribution of the

ring number (distance from the initial infective) is determined and numerical

15



results suggest that asymptotically the mean ring number grows linearly with

time. The resulting scale-free network is consistent both qualitativley and

quantitatively with the empirical results established for a network of Swedish

sexual partners [1].

One limitation of the model is that it allows only heterosexual infection.

A more realistic model would include the possibility of homosexual infection.

While it is possible in principle to extend the model and methods to include,

for example, four categories – heterosexual, homosexual and bisexual males

and heterosexual females – the resulting process would have many state vari-

ables and the analysis become much more complicated. One might expect

power-law degree distributions to occur in such a model. What would be

of most interest, but remains to be determined, is the way the power-law

exponents would depend on the infectivity parameters of each of the four

groups.
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Appendix

Solving the Kolmogorov equation.

Consider the Kolmogorov equation (7) for pm,l = P(M(t) = m,L(t) = l)

d

dt
pm,l = ρ(l − 1)pm−1,l−1 + λ(l − 1)pm,l−1 − (λ+ ρ)lpm,l. (i)

To solve this consider the generating function

Φ(x, y, t) =
∑
m

∑
n

∑
l

pm,n,l(t)x
myl = E

(
xM(t)yL(t)

)
. (ii)

From (7) it follows that Φ satisfies the partial differential equation

Φt = y[λy + ρxy − (λ+ ρ)]Φy. (iii)

This can be solved by the method of characteristics (see e.g. [13, p.419]).

With initial condition M(0) = 1, L(0) = 1 the solution is

Φ(x, y, t) =
xye−(λ+ρ)t

1− y
(

ρx+λ
ρ+λ

)
(1− e−(λ+ρ)t)

. (iv)

Setting y = 1 yields the generating function ofM(t). This is easily recognized

as the generating function of a geometrically distributed random variable

with parameter

φm(t) =
(λ+ ρ)e−(λ+ρ)t

ρ+ λe−(λ+ρ)t
.

Thus

pm(t) = P(M(t) = m) = φm(t)(1− φm(t))m−1, m = 1, 2, . . . (v)
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In an exactly similar way one can establish the pmf of N(t) as

pn(t) = P(N(t) = n) = φn(t)(1− φn(t))n−1, n = 1, 2, . . . (vi)

where

φn(t) =
(λ+ ρ)e−(λ+ρ)t

λ+ ρe−(λ+ρ)t
.

Conditional distribution of L(t) given M(t).

To find the conditional distribution of L(t)|M(t) = m one can first find, by

expanding (iv), the joint pmf of M(t), L(t)

pm,l = e−(λ+ρ)t

(
l − 1

m− 1

)(
ρ

λ

)m−1
[
λ(1− e−(λ+ρ)t)

λ+ ρ

]l−1

. (vii)

Dividing this by pm(t) above one obtains the conditional pmf as

pl|m =

(
l − 1

m− 1

)[
λ(1− e−(λ+ρ)t)

λ+ ρ

]l−m [
ρ+ λe−(λ+ρ)t

λ+ ρ

]m

=

(
l − 1

m− 1

)
[1− π(t)]l−mπ(t)m (viii)

where

π(t) =
ρ+ λe−(λ+ρ)t

λ+ ρ
.

The pmf (viii) can be recognized as that of a negative binomial distribution

with index m and parameter π(t). It follows from standard results that

E[L(t)|M(t) = m] =
m

π(t)
=

m(λ+ ρ)

ρ+ λe−(λ+ρ)t
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The mean-field approximation for the ring number dis-
tribution.

The mean-field approximation technique involves replacing the stochastic

system with the corresponding deterministic system in which probabilities are

replaced by proportions. Thus in the two-sex model of Sec.3, it is asssumed

that when M(t) = m,N(t) = n and L(t) = l, the number of new females

and males infected in the (t, t+ h] is λlh+ o(h) and ρlh+ o(h) respectively.

To apply this technique to determine an approximation for the ring num-

ber distribution, let

m(k, r; t) denote the number of males with degree k and ring number r;

and

n(l, r; t) denote the number of females with degree l and ring number r

at time t.

Then it follows that

d

dt
m(k, r; t) = λ(k−1)m(k−1, r; t)−λkm(k, r; t)+δk,1

∑
l≥1

ρn(l, r−1; t) (ix)

and

d

dt
n(l, r; t) = ρ(l− 1)n(k− 1, r; t)− ρkln(l, r; t) + δl,1

∑
k≥1

λm(k, r− 1; t) (x)

where δj,1 = 1 if j = 1 and is zero otherwise. The last terms on r.h.s of both

equations correspond to new infectees, while the first terms correspond to

the effect on the degree of the infecters.
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Now consider the generating functions

M(x, z; t) =
∞∑

k=1

∞∑
r=0

m(k, r; t)xkzr and N (y, z; t) =
∞∑
l=1

∞∑
r=0

n(l, r; t)ylzr

which satisfy the partial differential equations (subscripts denoting partial

derivatives)

Mt(x, z; t) = λx(x− 1)Mx(x, z; t) + ρxzNy(1, z; t) (xi)

Nt(y, z; t) = ρy(y − 1)Ny(y, z; t) + λyzMx(1, z; t). (xii)

Using the method of characteristics and the initial conditions M(0) =

N(0) = K(0) = L(0) = 1, R(0) = 0 one can show that

M(x, z; t) =
∫ t

0

ρzxψ(τ)dτ

x+ (1− x)eλ(t−τ)
+

x

x+ (1− x)eλτ
(xiii)

N (y, z; t) =
∫ t

0

λzyφ(τ)dτ

y + (1− y)eρ(t−τ)
+

y

y + (1− y)eρτ
(xiv)

where

ψ(t) = Ny(1, z; t) and φ(t) = Mx(1, z; t); (xv)

or using (xiii) and (xiv)

ψ(t) = λzeρt
∫ t

0
e−ρτφ(τ)dτ + eρt (xvi)

φ(t) = ρzeλt
∫ t

0
e−λτψ(τ)dτ + eλt. (xvii)

Differentiating this pair of equations leads to the linear system

d

dt

(
ψ
φ

)
=

(
ρ, λz
ρz, λ

)(
ψ
φ

)
+

(
ρeρt

λeλt

)
(xviii)
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with initial condition (ψ(0), φ(0))T = (1, 1), sinceM(x, z; 0) = x andN (y, z; 0) =

y. This can be readily solved:(
ψ
φ

)
= eAt

(
1
1

)
+
∫ t

0
eA(t−s)

(
ρeρs

λeλs

)
ds (xix)

where

A =

(
ρ, λz
ρz, λ

)
Now the generating functions Rm(z) and Rf (z) for the distribution of

ring numbers for males and females are given by:

Rm(z) =
M(1, z; t)

M(1, 1; t)
=

ρz
∫ t
0 ψ(τ)dτ + 1

limz→1

[
ρz
∫ t
0 ψ(τ)dτ + 1

] (xx)

Rf (z) =
N (1, z; t)

N (1, 1; t)
=

λz
∫ t
0 φ(τ)dτ + 1

limz→1

[
λz
∫ t
0 φ(τ)dτ + 1

] (xxi)

using (xiii) and (xiv). To obtain the mean-field approximation to the distri-

bution of ring numbers, one can expand the generating functions as Taylor

series about z = 0. This does not give rise to simple closed form expressions

– the matrix exponentials in (xix) involve the eigen- values and vectors of the

matrix A; integrating the solution and repeatedly differentiating to obtain

the Taylor expansion, yields expressions which rapidly become very complex

and cumbersome. However it is possible, for given numerical values of the

parameters, to use symbolic mathematics software (such as Maple IX[12]) to

obtain numerical values of the mean-field approximation to the ring number

probabilities.

The mean-field approximation of the expected ring number is given by

R′
m(1) for males and R′

f (1).
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Figure caption.

Fig. 1 Approximate ring number distributions for the two-sexx model ob-

tained using the mean-field approximation and parameter values λ = 0.1, ρ =

0.1 and t = 10. The left hand panel is for males and the right-hand panel

for females.
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