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Abstract
A probability distribution derived from percolation theory is fitted to
large datasets on the sizes of forest fires and of oil-fields, providing ex-
cellent fits. The results lend support to modelling forest fires and oil
fields as percolation phenomena, as well as suggesting a new size dis-
tribution model which may be useful for estimating oil reserves and for
forest management under the ‘natural disturbance’ paradigm.

Forest fires and oil fields are often cited as examples of phenomena ex-
hibiting percolation behaviour (1,2). Whether a percolation model can be
anything more than a “toy” model for such complex phenomena is open to
question, although there have been some studies (3,4,5) which suggest that
percolation modelling can at least provide qualitative insights into the growth
and spread of fires. The purpose of this note is to present the results of a

statistical analysis of empirical size distributions of forest fires and oil fields,

which indicate consistency with percolation theory. Furthermore the results
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suggest a simple parametric form for the size distributions which could lead
to better estimates of oil reserves, and be of use for ecosystem based forest
management under the ‘natural disturbance’ paradigm (6).

If forest fires and oil fields can be adequately represented by a site per-
colation then the final extent of individual forest fires and of oil fields can
be considered as percolation clusters and their frequency-size distributions
should reflect cluster size distributions (cluster numbers) in two and three di-
mensions. The exact distribution of cluster size is not known. However there
are some partial results available. Below the percolation threshold all clusters
are finite and their size distribution exhibits a crossover phenomenon. Below
a crossover level s, the probability mass function (p.m.f) for cluster size S
behaves like s~ (7), while above it behaves asymptotically like s~ exp(—cs)
(s = o0) (1). Its behaviour at and immediately above the crossover level
Sp is not known, although sy is known to be related to the pair connected
correlation length & and the fractal dimension of clusters, d;, by sy = &%
(7).

Areas burnt by forest fires and volumes of oil fields are best represented
as continuous variates, with distributions described by a probability density
function (p.d.f). The form used for fitting to the data assumes that the

density behaves like 27¢ exp(—cz) for all sizes, x, above the crossover. It can

be written
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where Ey(y) is the exponential integral [ “z— dt. Note that f(r) may

not be continuous at the crossover size xy, and that it integrates to p over
0 < z < xg, and to (1 —p) over x > xy. This distribution has five parameters
(1,6, ¢,z and p) which can be estimated by maximum likelihood (ML) (8).

This model was fitted to three sets each of data on fire size and oil-field
size. The fire data comprised records of fire size (a) on U.S Forest Service
land in the Sierra Nevada (2536 fires recored between 1910-1992) (9); (b) in
Nez Perce National Forest, Idaho (1795 fires between 1900-1994) (10) and
(c) in Clearwater National Forest, Idaho (884 fires between 1900-1994) (10).
Fig.1 displays the results of the fits. The Q-Q plots in the lower panels are
extraordinarily close to the 45° line indicating superb model fits. The ML
estimates of 7 were comparable for the three zones (0.664, 0.607 and 0.847)
as were those of # (1.44, 1.55 and 1.54) and ¢ (8.08e-5, 6.55e-5 and 1.61e-5).

The oil-field data comprised volumes of discovered oil fields, (11), in (d)
West Siberian Basin (634 fields), (12) the oil province ranked largest in the
world (13) ; (e) Alberta Basin (361 fields, ranked 19) (13) and (f) Denver
Basin (742 fields, ranked 123) (14). The data for (e) and (f) came grouped
into classes of equal width on the log scale. Fig 2 displays the results of the
fits. Again the fit is excellent. The kink in the Q-Q plot for W. Siberian
Basin is artificial, being due to the fact that the volume of many fields in the
dataset was rounded to 2.00 million barrels. Also the observed quantiles in
the Q-Q plots for the grouped data (Alberta and Denver) are really upper

bounds for the quantiles, being in fact the upper cell boundaries. The ML



estimates for 7 (0.101, 0.456 and 0.583) showed some varaibility as did those
of ¢ (2.50e-4, 2.02e-3 and 5.04e-3), while those for § were more similar (1.31,
1.20 and 1.53).

The exceptionally good fits of the model to these large sets of data offers
support for the application of percolation theory for modelling forest fires
and oil fields. In both cases the distribution (1) fitted the data better than
the more familiar ones which have been proposed (e.g. lognormal, general-
ized Pareto etc.). Also it is similar to a multifractal model which has been
proposed for mineral deposits (15). Since the assumed form of the under-
lying field-size distribution is critical in the estimation of total oil and gas
reserves, the use of this new distribution could lead to improved estimates
and better decisions concerning the development and production of hydro-

carbon reserves as well as long-tem energy policy.
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Figure 1: Top panels show non-parametric density estimates (smoothed histograms)
for fire areas (log scale) in three regions of Western U.S.A (see text) along with the ML
estimates of the density (1) derived from percolation theory (dotted lines). Also shown at

the bottom (crosses) are the observed areas. The bottom panels show the quantiles of the
empirical area distributions (vertical axis - log scale) against the quantiles of the fitted
distribution derived from percolation theory. The closeness to the 45° line (especially for
Nez Perce and Sierra) indicates the exceptionally good fit of the theoretical distribution.
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Figure 2: Top left-hand panel show a non-parametric density estimate (smoothed his-
togram) for oil field size (log scale) in West Siberian Basin along with the ML estimates of
the density (1) derived from percolation theory (dotted line). Also shown at the bottom
(crosses) are the observed volumes. The other two upper panels show density histograms
(from grouped data) and ML estimates of the density (1) derived from percolation theory
(dotted lines) for Alberta and Denver Basins. The bottom left-hand panel shows the quan-
tiles of the empirical volume distributions (vertical axis - log scale) against the quantiles of
the fitted distribution derived from percolation theory. The other two lower panels show
the upper bounds of the cells into which data are grouped (providing upper bounds for the
quantiles of the empirical distribution) against the corresponding quantiles of the fitted
distribution derived from percolation theory. The closeness of the points to the 45° line
indicates the good fit of the theoretical distribution.



