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Abstract7

The paper considers the statistical analysis of fire-interval charts8

based on fire-scar data. Estimation of the fire interval (expected time9

between scar-registering fires at any location) by maximum likelihood10

is presented. Because of the fact that fires spread, causing a lack of11

independence in scar registration at distinct sites, an over-dispersed12

binomial model is used leading to a two-variable quasi-likelihood func-13

tion. From this, point estimates, standard errors and approximate14

confidence intervals for fire interval and related quantities can be de-15

rived. Methods of testing for the significance of spatial and temporal16

differences are also discussed. A simple example using artificial data17

is given to illustrate the computational steps involved, and an analysis18

of real fire-scar data is presented.

19

Keywords: composite fire interval chart; fire scars; surface fires;20

overdispersion; quasi-likelihood; Blue Mountains.21

2



1 Introduction.22

Fire frequency studies have traditionally collected data as time-since-fire23

maps (Heinselman 1973) or as composite fire interval charts (Dieterich 1980).24

Time-since-fire maps have been used in regions in which crown fires predom-25

inate so that trees often have only one or rarely a few fire scars. These26

studies thus consist of a map constructed from fire scars and other evidence27

of the last fire. After partitioning the map into spatially homogeneous ar-28

eas, survivorship distributions can be constructed, from which a statistical29

reconstruction of the fire-frequency history can be obtained, including the30

identification of change points that separate epochs of assumed constant fire31

frequency (see Reed (1998, 2000) and Reed et al. (1998) for a discussion of32

the statistical isssues).33

In contrast, composite fire interval charts have been used in regions in34

which surface fires predominate so that trees usually have multiple scars.35

These studies consist of a collection of fire event chronologies based on indi-36

vidual trees with multiple scars or on plots with several trees from which a37

single fire chronology is constructed. A histogram of fire intervals can be con-38

structed using the data from each chronology. Traditionally a simple average39

or median is calculated from the histogram of fire intervals and confidence40

intervals obtained using a Student-t procedure. Recently, Grissino-Mayer41

(1999, see also Johnson 1979) has used a Weibull distribution to estimate42

the fire frequency parameters.43
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Several statistical issues are important in the composite fire interval ap-44

proach. Collecting multiple scar chronologies must have a proper sampling45

design for any statistical estimate to be valid. In other words, every pos-46

sible chronology must have an equal chance of being chosen in a sample of47

chronologies. One cannot just choose trees or plots with the most scars or48

ones easily accessible (Johnson and Gutsell, 1994). Also not all trees are49

scarred in a particular fire. Baker and Ehle (2001) have discussed this and50

other concerns with field methods, data collection and processing.51

The traditional method of simply calculating a Student-t confidence inter-52

val using the observed intervals between scars on all trees in the sample, while53

easy to compute, is not really valid. The assumptions behind the Student-t54

procedure are that the data are independent observations from a normal dis-55

tribution. Both of these assumptions are likely violated for fire interval data.56

First their distribution will typically not be normal. This can be seen in Fig.57

1, which presents a frequency plot of all intervals between scars on individual58

trees for the Dugout region of the Blue Mountains in eastern Oregon (see Sec.59

4.2). The data are clearly not normally distributed. Indeed their distribution60

looks closer to an exponential distribution, which is what would be expected61

with a constant hazard of burning. A second and probably more serious62

violation of assumptions concerns that of independence e.g. two successive63

fires may both be recorded on each of two (or more) separate sample objects,64

leading to two (or more) identical fire intervals. While the lack of normality65

may not affect point estimates too much, lack of independence certainly can,66
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and both violations of assumptions will render confidence intervals invalid.67

The objective of this paper is to remedy the shortcomings in the tradi-68

tional procedure by developing a statistical methodology, based on the max-69

imum likelihood paradigm for analyzing composite fire interval charts, in70

particular for estimating (with point estimates and confidence intervals) the71

expected time between fires at any location, or its inverse the fire frequency.72

The main novelty of the procedure involves incorporating into the analysis73

the fact that the same fire may register scars on several sample objects. This74

is achieved by developing a model in which the occurrence of fires and the75

spread of fires are handled separately. The null model of survival analysis (a76

constant hazard rate) is used for the former, while the contagious effect of fire77

spread is handled by using an overdispersed binomial distribution. For such78

a model the probability of any object recording a scar is the same, but these79

events are assumed to not be independent, with contagion present. Because80

the number of sample objects vulnerable to scarring changes over time, in81

order to use the overdispersed binomial distribution the period over which82

observations are made must be divided into non-overlapping epochs within83

which the number of vulnerable sample objects remains constant. These84

ideas are developed in greater detail in the following sections.85

The paper starts by establishing a terminology and notation (Sec. 2).86

In Sec. 3 a model is developed and estimation by maximum likelihood dis-87

cussed. Methods for testing for differences (both spatial and temporal) in88

fire frequency are also discussed. In Sec. 4 a simple example using artificial89
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data is given to illustrate the calculations involved, and this is followed by90

a more complete example using real data kindly made available by Emily91

Heyendahl (Heyendahl et al. 2001).92

For the reader’s convenience a list of symbols and their meanings is given93

in Table 5.94

2 Definitions and notation.95

Typically fire-scar data will come from a number of sites at which den-96

drochronological observations are made on sampled trees, as well as possibly97

on other objects such as logs, stumps, snags, etc. Because sampled trees98

likely will have originated at different times (and logs, stumps, etc. ceased99

growing at different times), sampled objects in general will have been vul-100

nerable to scarring over different periods. For the purpose of analysis, we101

shall consider the past as divided into distinct epochs, during each of which102

a constant number of sampled objects are assumed to have been vulnera-103

ble to scarring. Thus the first (oldest) epoch will comprise the time from104

the date of establishment of the oldest sampled object until the date of its105

demise or of the establishment of the next oldest sampled object, whichever106

is earlier. During this period only one object will have been vulnerable. The107

next epoch, during which one or two sampled objects will have been vulner-108

able, will comprise the time between the establishment of the second oldest109

object and either the establishment of the third oldest object or the death of110

one of the previously established objects. In general we shall suppose that111
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there are M epochs, which, if we set as the time origin the date of estab-112

lishment of the oldest sampled object, comprise the time intervals 0 − T1,113

T1 − T2, . . . . . . , TM−1 − TM .114

Let the number of objects vulnerable to scarring during epoch j be de-115

noted by Nj, (j = 1, . . . ,M). A special case is when all sampled objects are116

live trees, originating at distinct dates. In this case N1 = 1, N2 = 2, . . . NM =117

M . More generally, the sequence {Nj} will increase (or decrease) between118

epochs separated by the establishment (or death) of an object. Let the num-119

ber of distinct dates at which fires were recorded during epoch j be denoted120

by nj and let the numbers of scars on sampled objects recorded at each121

of these dates be denoted by xj,1, xj,2, . . . , xj,nj
, respectively. Thus, during122

epoch j there will be xj· =
∑nj

r=1 xj,r scars recorded providing evidence of at123

least nj fires during that epoch.124

We note that if more than one scar is registered at any time, it will be125

assumed that they were caused by the same fire. Without more complete126

geographical information, there is no way to distinguish separate fires which127

occur in the same year.128

3 Model, assumptions and maximum likeli-129

hood estimation.130

In order to analyze data of the type described above it is necessary to make131

some assumptions about the way in which it was generated. Thus we assume132

that the study area is homogenous with respect to fire hazard, and that133
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this has been unchanging over time. (Later we relax these assumptions and134

allow for different hazards in different sub-regions and also allow a temporally135

varying hazard which is constant over intervals separated by change points).136

We model this by assuming that there is an unchanging area-wide hazard of137

scarring, λ, i.e. we assume that the probability of a fire, which registers a scar138

somewhere in the study area during an infinitesimal time interval (t, t + h)139

is λh + o(h) for all t, 0 ≤ t ≤ TM . (Note that the term hazard of burning140

was used to denote the per-annum probability of fire at a location computed141

instantaneously i.e. over an infinitesimal interval – see Johnson and Gutsell142

(1994) and Reed et al. (1998). Here the term area-wide hazard of scarring is143

used to denote the per annum probability of a fire leaving a scar, somewhere144

in the study area).145

If such a fire occurs, it may or may not leave a scar on any particular146

sample object. Assume that the probability that a scar-registering fire in the147

study area leaves a scar on a given sample object is the same for all sample148

objects and denote this probability by p, and let q = 1− p. Thus the hazard149

of scarring for a particular sample object is θ = λp (the same for all sample150

objects). We shall refer to θ as the local hazard of scarring. Its reciprocal is151

the expected time between scar-causing fires (fire interval) at any location.152

Our primary objective will be to estimate θ and the fire interval FI = 1/θ.153

We now need to consider the distribution of the number of scars registered154

for a particular fire. If a given fire did or did not leave a scar on a vulnerable155

object, independently of what happened on other vulnerable objects, then156
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with N vulnerable objects, the number of scars registered would follow a157

binomial B(N, p) distribution truncated on x = 1, 2, . . . , N (i.e. excluding158

0). However the assumption of independence is unrealistic – given the fact159

that fires spread spatially there will be contagion present in the distribution.160

The presence of a contagious effect can be detected statistically by testing161

whether the numbers of scars registered for each fire in an epoch conform162

to a binomial distribution against the alternative of overdispersion, using a163

binomial dispersion test (e.g. Kendall and Stuart, 1967). The test statistic164

is165

D =
(n− 1)s2

x̄(1− x̄/N)
(1)

where x̄ and s2 are the sample mean and variance of the numbers of scars166

registered for each of the n fires in the epoch and N is the number of objects167

vulnerable. Under the null hypothesis of no contagion D ∼ χ2
n−1 asymptoti-168

cally. To demonstrate the presence of contagion we carried out this test for169

all epochs with two or more fires for data on the Dugout region of the Blue170

Mountains in eastern Oregon (see Sec. 4.2 and Table 1). It can be seen that,171

for all (seven) epochs with five or more fires, the P -value was extremely small172

(much less than 0.0001). The only epochs for which it is not highly signifi-173

cant are those with very few fires. The test is of low power in such cases so174

this is not surprising. However note that, in spite of this, for three of the four175

epochs with only two fires, the test was highly significant. One can easily176

see the overdispersion in these cases. Consider for example Epoch 12 when177

69 sample objects were vulnerable and two fires occurred, registering 1 and178
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44 scars respectively. This is extremely unlikely if scars were registered on179

distinct objects independently. Rather there is overdispersion resulting from180

the second fire spreading extensively and the first not doing so. Thus we181

have strong evidence of contagion or overdispersion and need a distribution182

which reflects this fact.183

An alternative formulation which allows for contagion effects is to assume184

that the number of scars registered follows what is known as an overdispersed185

form of the (zero truncated) binomial distribution (see e.g. Pawitan, 2001,186

p.76). Such a distribution involves an dispersion parameter φ, along with187

the binomial parameters N and p. Its mean is the same as that of the zero-188

trunctated binomial, but its variance is inflated by a factor φ, which reflects189

the degree of contagion in the formation of scars on sample objects. The case190

φ = 1 corresponds to independence (no contagion) with φ increasing with191

the degree of contagion.192

An advantage of using such a distribution is that it is a member of the193

exponential dispersion family (see e.g. Pawitan, 2001, p.97) whose prop-194

erties are well-understood and for which estimation procedures have been195

developed. To do this one constructs a quasi-likelihood function which, at196

least for inference for parameters other than the dispersion parameter φ, can197

be treated like an ordinary log-likelihood. To this end we calculate first the198

probability of observing the given data (which comprises times and num-199

bers of scars registered for each fire). Since events in distinct epochs are200
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independent, the probability of observing the full data can be expressed as201

Pr(observed data) =
M∏

j=1

Pr(observed data in epoch j) (2)

To evaluate this further, consider a generic epoch of duration τ with N sam-202

ple vulnerable objects. (Note that while discussing a generic epoch we su-203

press the epoch-identifying subscript j). Suppose that scars were left at204

n distinct dates, t1, t2, . . . , tn time units after the start of the epoch, with205

xi, (i = 1, 2, . . . , n) scars left at time ti. We can write Pr(observed data)206

= Pr(x1, x2, . . . , xn scars registered|fires at t1, t2, . . . tn) Pr(fires occurred at207

t1, t2, . . . tn) = Px|tPt, say.208

Consider first the probability Pt. Under the assumed model, the prob-209

ability (density) of observing fire-registering scars at times t1, t2, . . . , tn, in210

the study area, with no fires registered at other times can be obtained as211

the product of exponential densities for times between fires multiplied by the212

probabilty of no fire between tn and τ . Precisely213

Pt =
[
λe−λt1

] [
λe−λ(t2−t1)

] [
λe−λ(t3−t2)

]
. . .

[
λe−λ(tn−tn−1)

] [
e−λ(τ−tn)

]
= λne−λτ . (3)

At time t1, the probabilty of x1 scars being registered is given by the proba-214

bility mass function (pmf) f(x1; N, p, φ) of the overdispersed zero-truncated215

binomial distribution. Thus the probability of x1, x2, . . . , xn scars being ob-216

served, conditional on fires occurring at times t1, t2, . . . , tn, is217

Px|t =
n∏

r=1

f(xr; N, p, φ) (4)
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so that for the epoch218

Pr(observed data) = λne−λτ
n∏

r=1

f(xr; N, p, φ) (5)

and for the full data set219

Pr(observed data) = λn·e−λT
M∏

j=1

nj∏
r=1

f(xj,r; Nj, p, φ) (6)

where T = TM is the full time for which observations are available and220

n· =
∑M

j=1 nj is the total number of fires over that period. In order to221

construct a quasi-likelihood it is not necessary to have an explicit expression222

for f(x; N, p, φ). Rather all we need to know is that its logarithm is of the223

form224

225

log(f(x; N, p, φ)) =
x log(p/q) + log qN − log(1− qN)

φ
+ c(φ, data) (7)

(see e.g. Pawitan, 2001), where q = 1− p and c(φ, data) does not depend on226

the parameters λ and p. Note that the numerator of the first term is the log-227

arithm of the zero-truncated binomial pmf
(

N
x

)
pxqn−x/(1− qN) apart from228

the constant term not involving p, which is absorbed into the c(φ, data) term229

in (7). In particular with φ = 1 equation (7) is simply the log-likelihood for230

one observation from a zero-truncated binomial distribution. The more gen-231

eral form (with φ unspecified) allows for overdispersion in the zero-truncated232

binomial distribution.233

Taking the logarithm of equation (6) (and ignoring terms involving only234
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φ and the data) one gets the quasi-likelihood235

Q = n· log λ− λT +

(
1

φ

)x·· log

(
1− q

q

)
+

M∑
j=1

nj

(
log qNj − log(1− qNj)

)
(8)

where x·· =
∑M

j=1

∑nj

r=1 xj,r is the total number of scars observed for the236

study, and n· =
∑M

j=1 nj is the total number of fires observed. Note that237

Q is not a full log-likelihood because it does not include the contribution of238

the parameter φ via the term c(φ, data); however it correctly includes the239

contributions to the log-likelihood of the other parameters λ and p (via q).240

To obtain maximum likelihood estimates (MLEs) of λ and q one can set the241

derivatives of Q with respect to λ and q equal to zero. This leads to the242

following estimating equations for the MLEs of λ and q:243

λ = n·/T

x·· = (1− q)
M∑

j=1

njNj

1− qNj
. (9)

The second (polynomial) equation in q needs to be solved numerically. The244

first yields the MLE of the area-wide hazard of scarring λ as simply the245

number of fires producing scars observed per unit time. The MLEs q̂ and λ̂246

are independent.247

To estimate the dispersion parameter φ, a moment estimator can be used248

(see e.g. Patiwan, 2001, p. 165). This yields249

φ̂ =
1

n.− 1

M∑
j=1

1

V (q̂, Nj)

nj∑
r=1

[
xj,r −

Nj(1− q̂)

1− q̂Nj

]2

(10)
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where250

V (q, N) = N
q(1− q)

1− qN

[
1− N(1− q)qN−1

1− qN

]
(11)

is the variance of the zero-truncated binomial distribution. (Note that when251

Nj = 1 and nj = 1, both the numerator and denominator of the summand252

(at j) in equation (10) are zero. In this case, since there is clearly no overdis-253

persion, the summand is one. Also when nj = 0 the summand is zero.) To254

compute the sums of squares in equation (10) it may be more convenient to255

use the alternative form256

nj∑
r=1

x2
j,r − 2

Nj(1− q̂)

1− q̂Nj

nj∑
r=1

xj,r +
njN

2
j (1− q̂)2

(1− q̂Nj)2

The MLE of the local hazard of scarring is θ̂ = λ̂p̂ = λ̂(1 − q̂) and its257

reciprocal 1/θ̂ is the MLE of the fire interval FI (expected time between fires258

at any given location).259

The standard error of the MLE λ̂ can be computed (as the square root260

of the inverse of the observed information) as261

sλ̂ =
√

n./T.

In a similar fashion the standard error of q̂ can be computed:262

263

sq̂ =
√

φ̂

 x··

(1− q̂)2
+

∑M
j=1 njNj − x··

q̂2
+

M∑
j=1

njNj q̂
Nj−2

(
Nj − 1 + q̂Nj

)
(1− q̂Nj)2

−1/2

and then the standard error of θ̂ can be calculated using264

sθ̂ =
[
s2

λ̂
s2

q̂ + (1− q̂)2s2
λ̂

+ λ̂2s2
q̂

]1/2
(12)
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The standard error of the fire interval can be calculated (from the observed265

information after re-parameterization, or by the delta-method) as266

sF̂ I =
1

θ̂

[
s2

λ̂

λ̂2
+

s2
q̂

(1− q̂)2)

]1/2

and a 100(1 − α)% confidence interval for the fire interval found as F̂ I ±267

zα/2sF̂ I , where zα/2 is the 100(α/2) percentage point of the standard normal268

distribution..269

For computing a P-value for testing the equality of the fire interval in two270

distinct regions, one can compare the observed value of the test statistic271

ˆFI1 − ˆFI2√
s2

ˆFI1
+ s2

ˆFI2

(13)

with a standard normal distribution.272

3.1 Testing for temporal changes.273

It is straightforward to test whether the fire interval changed at any pre-274

specified time (e.g. time of settlement by Europeans) – one can simply275

divide the data into two parts, before and after the hypothesized change276

point, and compute a P-value using the test statistic given in equation (13).277

However, if one wishes to use scar data to identify change points, one faces the278

same selection bias problems that one does when using time-since-fire data279

(Reed et al., 1998). To overcome that problem two methods were proposed280

by Reed (1998, 2000), the first based on an iterative step-wise procedure281

and the second on the use of the Bayes’ Information Criterion (BIC). While282
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application of the first method to scar data is not immediately obvious, that283

of the second should be straightforward.284

4 Examples.285

In this section two examples are given. The first uses a very simple artificial286

dataset and is presented to illustrate the calculations required. The second287

uses real data for the Blue Mountains of eastern Oregon.288

4.1 Artificial data.289

Fig. 2 shows (fake) data for fire scars occurring over a 110-year period. Five290

sample objects (represented by horizontal lines) exhibit scars (represented291

by ×’s). One commenced in 1890 and was still extant in 2000; one other292

commenced in 1890 but was not present beyond 1934, etc.293

To identify the epochs for these data, we start at 1890 and observe that294

there were two objects vulnerable until the origin of a new sample tree in295

1910. Thus the first epoch is 1890-1909 with N1 = 2 sample objects and296

n1 = 2 fires (in 1895 and 1904). The earlier fire left x1,1 = 1 scar and the297

later one left x1,2 = 2 scars. The second epoch is from 1910 until 1925, when298

a new sample tree originated. In this epoch there were N2 = 3 sample objects299

and n2 = 1 fires (in 1916) which left x2,1 = 2 scars. Continuing in this way300

one finds six epochs in the time period 1890-2000 (T = 110), shown at the301

top of Fig. 1 and labelled E1-E6. Details are given in Table 2.302

The total number of distinct fires is n. = 7. All together they registered303
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x.. = 15 scars. The MLE of the area-wide hazard of scarring for all sample304

objects is λ̂ = 7/110 = 0.064. The MLE of q = 1 − p is found by solving305

equation (9)306

15

1− q
=

4

1− q2
+

6

1− q3
+

12

1− q4

which yields the solution q̂ = 0.3475 with the corresponding MLEs p̂ =307

0.6525, θ̂ = 0.0415 and F̂ I = 24.08 years. From equation (10) the dispersion308

parameter is estimated as φ̂ = 1.224. The standard error of the estimate of309

the fire interval is 9.91 years, yielding a 95% confidence interval of 4.7 - 43.5310

years.311

For comparison purposes we note that the mean (and standard deviation)312

of the 9 observed inter-scar intervals is 25.22 (and 20.74) years. A 95%313

confidence interval based on an assumed t8 distribution is (−22.6, 73.0) or 0314

to 73.0 years. It can be seen then that, in this example, the “traditional”315

method of estimation yields an estimate close to the new method, but a very316

different confidence interval.317

4.2 Blue Mountain data.318

For a second example we use real data collected in the Blue Mountains of319

eastern Oregon, U.S.A. by E-K. Heyerdahl (Heyerdahl 1997 and Heyerdahl320

et al. 2000 ). We use four sites: Tucannon and Imnaha (both of which have321

north and south facing hillslopes), Baker (northeast facing hillslopes) and322

Dugout (west facing hillslope).323

The south-facing slopes of Tucannon and Imnaha have dry forests domi-324
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nated by open forests of Douglas fir (Pseudotsuga menziesii (Mirbel Franco))325

and pine grass (Calamagrostis rubescens Buckl.) with some grand fir (Abies326

grandis (Dougl.) Forbes. The north-facing slopes have mesic forest domi-327

nated by grand fir and huckleberry (Vaccinium membranaceum Dougl.) and328

at higher elevations in Tucannon there is some subalpine fir (Abies lasiocarpa329

(Hoook.) Nutt.) and huckleberry (Vaccinium spp.). The Dugout and Baker330

sites are almost completely dry forest of Douglas fir and pine grass with some331

grand fir. Baker has a mesic forest with subalpine fir at higher elevations.332

Each site was divided into cells each approximately 25 ha. A one ha plot333

was placed in the center of each cell. A fire event chronology was contracted334

from fire scars and tree ages for each one ha plot. The south-facing and335

north facing parts of the the Tucannon and Imnaha sites are treated sepa-336

rately for analysis making six study areas in all. Table 3 gives estimates of337

the fire interval in the six areas. Also given in Table 3 (last two columns) is a338

point estimate using the mean of all observed inter-scar intervals and a 95%339

confidence interval using a Student-t procedure. Notice how this method340

produces estimates lower than the MLEs obtained using the method estab-341

lished in this paper. Indeed in the two cases cases with low fire incidence342

(Tucannon (N) and Inmaha (N)) the MLEs of the fire interval are larger343

than the mean estimates by a factor of about two and lie outside (above) the344

Student-t confidence intervals.345

It appears the sites cluster into three sets of two (Baker and Dugout;346

south-facing slopes of Imnaha (S) and Tucannon (S); and north-facing slopes347
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of Imnaha (N) and Tucannon(N)). The only significant differences using the348

statistic (13) are between Tucannon (S) and (i) Dugout (P=0.03) and (ii)349

Baker (P=0.04). (Note that because multiple comparisons are being consid-350

ered, these tests should be seen only as guides and not be interpreted too351

literally). Although the estimates of the fire cycle for the north-facing slopes352

of Tucannon and Imnaha are considerably larger than those of the other sites,353

they do not show up as significantly different, because of the large standard354

errrors associated with the estimates, which are based on very few fires.355

Many other studies have shown temporal changes in the fire cycle. These356

can be tested in the fashion described in Sec.3.1, by dividing the data into the357

epochs defined by the hypothesized change points. Earlier studies (Heinsel-358

man, 1973; Johnson et al., 1990; Masters, 1990; Bergeron and Archambault,359

1993; Yarie, 1998; Weir et al., 2000) suggest that the 1890s and 1730s marked360

changes in the fire regime. Three epochs: (i) pre-1730, (ii) 1730 - 1889 and361

(iii) 1890-1994 were thus considered. Table 4 gives estimates of the fire cycle362

for these three epochs in the four dry regions.363

It can be seen that, for Baker, Dugout and Tucannon, the early and late364

periods have estimates of the fire cycle, which are longer than those for the365

middle period. However, in no case is the difference strongly significant (the366

strongest evidence of a difference is between early and middle periods for367

Tucannon and Dugout – both with (one-sided) P = 0.06). The common368

pattern exhibited in the three regions suggests that the lack of evidence of369

differences could be due to the poor power of the test, because of the relatively370
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small numbers of fires recorded. This is especially true of the late periods,371

for which the standard errors of estimates of the fire cycle are very large.372

The Inmaha sites exhibits a temporal pattern different from the other three,373

with the estimates of the fire cycle in the middle period being longer than374

those in the early and late periods.375

5 Conclusions.376

This paper presents, for the first time, sound statistical methods for analyz-377

ing fire history studies from ecosystems with multiple-scarred trees. Using378

these methods along with a statistically valid sampling design will help in379

evaluating the historic range of variations of fire in a surface-fire system such380

as open canopied ponderosa pine and Douglas fir forests.381

One of the most important points revealed in the application of the382

method is that, in many multiple-scarred tree fire history studies, the sam-383

ple of chronologies is too small to draw unambiguous conclusions, a point384

made earlier by Baker and Ehle (2001). This limitation can be seen in the385

Heyerdahl et al. (2001) study where, even though a large number of fires386

burned the whole study area, confidence intervals are still quite wide in some387

instances. If the sample area is further divided to study spatial and/or tem-388

poral changes this problem is exacerbated.389

It has been claimed that there is a significant problem in composite fire390

interval studies in that, as the sample size increases, the estimate of the391

mean fire interval decreases towards one - a fire every year - simply because392
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evidence of more fires is found as more trees and objects are sampled (Arno393

and Petersen, 1983; Baker and Ehle, 2001). This difficulty emanates from394

the lack of distinction between the area-wide hazard λ and the local hazard395

θ = λp and their reciprocals (area-wide and local fire intervals). The estimate396

of the area-wide fire interval would indeed tend downwards as the number of397

sampled objects increased, but it is not true that estimates of the local fire398

interval would necessarily decrease (because the effect on the estimate of the399

parameter p could be in either direction). However, in concordance with the400

usual results of increasing sample size, the standard error of the estimate of401

the local fire interval would decrease.402
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Figure Caption.

Fig.1 A frquency plot of intervals between scars on all sample objects in
the Dugout region of the Blue Mountains in eastern Oregon. Note how the
distribution is far from normal (as required for the validity of the Student-t
procedure).

Fig.2 A composite fire-interval chart (artificial data) for the example of Sec.
4.1. There are five sample objects – two originated in 1890, one in 1909, one
in 1924 and the last in 1937. Of these all but two were still in existence in
2000. Fire scars are marked by crosses and the distinct epochs shown at the
top of the figure as E1, E2, etc.
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Epoch No. of objects No. of fires Nos. of scars P-value
j Nj nj xjr, r = 1 . . . , nj

1 53 3 51, 1, 1 **
4 59 2 2, 1 .56
10 67 3 1, 1, 2 .48
11 68 4 1, 1, 1, 5 .10
12 69 2 1, 44 **
13 70 7 5, 2, 1, 1, 2, 1, 57 **
14 71 5 8, 1, 29, 1, 64 **
15 72 10 1, 3, 23, 2, 66, 1, 9, 1, 1, 7 **
16 71 8 16, 8, 12, 7, 36, 2, 1, 60 **
17 70 6 2, 3, 22, 31, 12, 51 **
18 68 3 1, 3, 32 **
19 66 10 27, 2, 47, 1, 5, 3, 21, 23, 1, 35 **
20 65 5 11, 6, 54, 1, 47 **
24 56 3 5, 4, 7 .62
25 53 2 2, 21 **
29 38 2 3, 16 .0006
34 12 3 2, 1, 5 .14

Table 1: Data and binomial dispersion test for scars in Dugout region. All
epochs with two or more fires are included. The null hypothesis is that
the number of scars is binomially distributed. P-values less than .0001 are
denoted by **

Epoch j 1 2 3 4 5 6

Date 1890-1909 1910-1925 1926-1934 1935-1937 1938-1970 1971-2000
Nj 2 3 4 3 4 3
nj 2 1 1 0 2 1
tj,r 5, 14 26 39 - 68, 75 95
xj,r 1, 2 2 3 - 3, 1 3

Table 2: Fake data (shown graphically in Fig. 1) used for illustrating calcu-
lations in Sec. 4.1.
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Site MLE of FI standard estimated 95% CI Mean 95% Student-t
(aspect) (years) error dispersion, φ̂ for FI (years) CI for FI

Tucannon (N) 183.5.0 102.3 6.92 0 - 384.0 102.6 47.2 - 158.0

Tucannon (S) 42.2 8.8 8.05 24.9 - 59.4 34.0 0 - 88.6

Imnaha (N) 118.2 79.8 21.16 0 - 274.6 50.3 12.9 - 87.6

Imnaha (S) 34.2 13.23 57.32 8.2 - 60.1 26.0 0 - 55.4

Baker (NE) 23.0 3.78 9.84 15.6 - 30.4 16.1 0 - 47.7

Dugout (W) 21.7 3.65 28.06 14.5 - 28.8 15.6 0 - 35.6

Table 3: Estimates of the fire interval for sites in the Blue Mountains. The
penultimate column is the mean of all observed inter-scar intervals, which has
been suggested as an estimator of FI. The the last column is a 95% Student-t
confidence interval (CI) based on observed inter-scar intervals. (Note that
for all confidence intervals if the lower limit is negative it is reported as zero).

Site epoch MLE of FI standard estimated 95% confidence
(years) error dispersion, φ̂ interval for FI

late 87.4 71.60 20.59 0 - 227.7
Baker middle 22.3 5.72 10.34 11.1 - 33.5

early 15.7 3.46 8.00 8.9 - 22.5

late 35.9 17.29 41.66 2.0 - 69.8
Dugout middle 13.8 3.08 29.85 7.8 - 19.9

early 26.9 7.73 13.38 11.7 - 42.0

late 68.4 43.96 21.53 0 - 154.5

Tucannon (S) middle 22.4 5.21 5.33 12.2 - 32.6
early 68.3 28.50 2.86 12.4 - 124.1

late 30.9 36.23 197.42 0 -101.9

Imnaha (S) middle 48.4 23.10 21.93 3.1 - 93.7
early 37.8 9.73 4.13 18.7 -56.9

Table 4: Estimates of the fire interval for three epochs (late: 1890-1994;
middle: 1730-1889; early: pre-1730) in dry sites in the Blue Mountains.
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T1, T2, . . . Time of the end of Epochs 1, 2 . . .
M Number of epochs
T = TM Total length of period under study
Nj Number of sample objects vulnerable in Epoch j
nj Number of fires in Epoch j
n. =

∑M
j=1 nj Total number of fires

xj,r Number of scars left by the rth. fire in Epoch j
x.. =

∑M
j=1

∑nj

r=1 xj,r Total nuber of scars
λ Area-wide hazard of scarring
p Probability that a fire leaves a scar on a given sample object
q 1− p
θ = λp Local hazard of scarring
FI = 1/θ Fire interval - expected time between scars on a given sample object
φ Overdispersion parameter
τ Length of a generic epoch
t1, t2, . . . Times at which scars were left in generic epoch
Q quasi likelihood

λ̂, q̂ etc. MLE of λ, q etc.
V (q, N) Variance function (equation (11))

sλ̂ Standard error of MLE λ̂
sq̂ Standard error of MLE q̂

sθ̂ Standard error of MLE θ̂

sF̂ I Standard error of MLE F̂ I

Table 5: Table of symbols used in the text.
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