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A new parametric (3-parameter) survival distribution, the lognormal-power function distri-
bution, with flexible behaviour is introduced. Its hazard rate function can be either unimodal,
monotonically decreasing or can exhibit a bathtub shape. Special cases include the lognormal
distribution and the power function distribution, with finite support. Regions of parameter
space where the various forms of the hazard-rate function prevail are established analytically.
The distribution lends itself readily to accelerated life (AL) regression modelling. Applications
to five datasets taken from the literature are given. Also it is shown how the distribution can
behave like a Weibull distribution (with negative aging) for certain parameter values.

Keywords: lognormal-power function distribution; bathtub hazard; AL regression; paramet-
ric hazard rate function; survival analysis.

1. Introduction.

The parametric survival distributions most commonly used in regression modelling
(e.g. Weibull, lognormal, log-logistic etc.) have unimodal or monotone hazard rate
functions and are incapable of modelling a bathtub shaped hazard, in spite of the
fact that such bathtub hazards are quite common, especially in studies of animal
survival from birth and of the failure of certain types of equipment.

Notable exceptions to this are the three-parameter generalized Weibull (GW)
distribution [10] which not only can be used in accelerated life (AL) regression
modelling, but also permits fully parametric proportional hazards (PH) regression
modelling; the three-parameter generalized gamma (GG) distribution (see e.g. [2])
and the four-parameter generalized F (GF) distribution (see e.g. [3]). One diffi-
culty with the GW distribution is the fact that in the case of a bathtub hazard
it has finite support and the maximum likelihood (ML) estimate of the thresh-
old parameter is an order statistic. In consequence the standard ML second-order
asymptotics do not hold. ML estimation for the GG and GF distributions require
numerical optimization, and problems involving the convergence of numerical rou-
tines have been reported, although the problem is greatly ameliorated by using the
re-parameterization suggested by Prentice [12].

In this paper a new parametric distribution, with three parameters, is intro-
duced for which the hazard rate can exhibit a bathtub shape. In addition it can
be unimodal or monotonically decreasing. The distribution is that of the product
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of independent random variables, one following a lognormal distribution, and the
other a power-function distribution with finite support. It turns out to be a special
case (with the right-hand tail parameter set to infinity) of the double-Pareto log-
normal distribution introduced in [13]. The new distribution can be thought of as
arising from a (frailty-type) mixture model where each individual in the population
has a lognormal, LN(µ, σ2), survival distribution, with the individual medians (eµ)
across the population following a power-law distribution.

The new distribution provides an alternative to the GG, GF and GW distribu-
tions for parametric modelling of data exhibiting a bathtub hazard. Unlike the
bathtub form of the GW, the new distribution does not suffer from the non-
regularity in ML estimation (except in one special case when one parameter is
zero), and experience has shown that numerical maximization of the likelihood
function works well.

In the following section the distribution is defined and some basic properties de-
rived. Section 3 summarizes the possible shapes of the hazard-rate function (proofs
are in an Appendix). Regression formulations and estimation are discussed in the
short Sections 4 and 5, while Section 6 presents examples using a variety of survival
data taken from the literature. Comparisons of the fit with that of the 3-parameter
GW and GG distributions are given for examples involving bathtub hazards.

2. The model.

We consider a model for survival time T with

Y = log T = µ+ σZ − 1
β
E (1)

where σ and β are non-negative parameters, µ is a real parameter and Z and E
are independent and follow respectively standard normal and standard exponential
distributions i.e. Z ∼ N(0, 1) and E ∼ EXPON(1). The distribution of Y is in fact
a special case of a normal-Laplace distribution [13] with the right-tail parameter α
set equal to infinity i.e. Y ∼ NL(µ, σ2,∞, β). Properties of the normal-Laplace dis-
tribution can be invoked to establish the survivor function and probability density
function (pdf) of Y as

SY (y) = φ

(
y − µ
σ

)[
R

(
y − µ
σ

)
−R

(
βσ +

y − µ
σ

)]
(2)

and

fY (y) = βφ

(
y − µ
σ

)
R

(
βσ +

y − µ
σ

)
(3)

where R is Mills’ ratio of the complementary cumulative distribution function (cdf)
to the pdf of a standard normal distribution:

R(z) =
Φc(z)
φ(z)

.

Alternatively, avoiding the use of Mills’ ratio,

SY (y) = Φc

(
y − µ
σ

)
− exp{β(y − µ) + β2σ2/2} Φc

(
βσ +

y − µ
σ

)
(4)
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Figure 1. Some possible shapes of the hazard rate function for the lognormal-power function distribution.
For all plots µ = 0.5, while β = 1.5 (top row) with β = 0.5 (bottom row) and σ = 0.3 (left hand panels)
with σ = 0.8 (right-hand panels).

fY (y) = β exp{β(y − µ) + β2σ2/2} Φc

(
βσ +

y − µ
σ

)
(5)

The corresponding survivor function and density of T are

ST (t) = SY (log t) and fT (t) =
1
t
fY (log t) (6)

The hazard-rate function for T is

h(t) =
βR (βσ + (log t− µ)/σ)

t [R ((log t− µ)/σ)−R (βσ + (log t− µ)/σ)]
. (7)

The shape of this hazard-rate function is quite flexible (see Figure 1) and can be:
monotone decreasing; unimodal; or of a form which has two turning points, at first
decreasing to a local minimum then increasing to a local maximum before finally
decreasing. In this last case, the hazard-rate exhibits a bathtub shape over the
early part of the range.

The mean and variance of the survival time T are:

E(T ) =
β

β + 1
eµ+σ2/2; var(T ) = βe2µ+σ2

[
eσ

2

β + 2
− β

(β + 1)2

]

Two special cases of the distribution governed by (1) warrant attention. The
first arises in the limit as β →∞. From (1) it is seen that in this case the survival
distribution is simply the lognormal. The second arises when σ = 0. In this case T
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has a power-function distribution with finite support on (0, eµ) and pdf

f(t) = βe−βµtβ−1. (8)

thereon. The hazard-rate function is

h(t) =
βtβ−1

eβµ − tβ
for 0 < t < eµ (9)

This hazard rate has a vertical asymptote at t = eµ. Furthermore if β > 1 it is
increasing from 0 over (0, eµ); while if β < 1 it is U-shaped on (0, eµ), with vertical
asymptotes at 0 and eµ and a minimum at (1 − β)1/βeµ; in the intermediate case
(β = 1) it increases from e−µ.

We shall refer the distribution of T defined by (1) as a lognormal-power func-
tion (lNpf) distribution, because the distribution of such a T can be represented
as a product of independent rvs with respectively lognormal and power-function
distributions. Likewise we shall refer to the hazard-rate (9) as a lognormal-power
function hazard rate.

The upper tail of this distribution behaves like the lognormal distribution, but
there is much greater flexibility in the left-hand part of the distribution (t < eµ)
including the possibility of a bathtub shaped hazard. This is discussed further in
the following Section.

The lognormal-power function distribution can be thought of as arising from a
(frailty-type) mixture model where each individual in the population has a log-
normal, LN(m,σ2) survival distribution, with the parameter m being distributed
across the population as µ− E/β, i.e. with density

f(m) = βe−βµeβm for m < µ.

For such a model the individual median survival times, exp(m) = t0.5 say, would
be distributed across the population with density

f(t0.5) = βe−βµ tβ−1
0.5 for 0 < t0.5 < eµ,

a power-function distribution. If β < 1 this is decreasing (more individuals with
shorter median lifetimes); if β > 1 it is increasing (more individuals with longer
median lifetimes); and if β = 1 it is constant (a uniform distribution of median
lifetimes). It will be seen in the next Section that the shape of the hazard-rate
function (7) has different forms depending on how β compares with 1.

3. Some properties of the lognormal-power function hazard rate function.

Glaser [5] and Marshall & Olkin [8] provide sufficient conditions for a hazard-rate
function to be monotone increasing or decreasing, unimodal or of bathtub shape.
Unfortunately these conditions are not easy to apply for the lNpf model. In the
Appendix other methods are used to examine the behaviour of the hazard-rate
function. There it is shown that β is a critical parameter. If β > 1 (and σ > 0) the
hazard-rate is qualitatively shaped like that of the lognormal distribution i.e. it is
unimodal, with h(0) = 0 and h(t)→ 0 as t→∞. On the other hand if β < 1, the
hazard-rate function has a vertical asymptote at zero and, depending on the value
of σ is either (a) monotonically decreasing to a limiting value of zero (as t→∞),
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Figure 2. How parameter values determine the shape of the hazard rate function. In Region 1 (β > 1),
the hazard rate function is unimodal; in Region 2 (β < 1 and σ < σ?(β)) it has two turning points, and
can exhibit a bathtub shape for smaller vales of t while in Region 0 (β < 1 and σ > σ?(β)) the hazard
rate is monotonically decreasing (0 turning points).

or (b) at first decreases to a local minimum, then increases to a local maximum and
subsequently decreases to a limiting value of zero (as t → ∞). In this latter case,
for values of t less than the local maximum, the hazard-rate function has a bathtub
shape. The latter case (b) occurs for σ suitably small (σ < σ?(β)) and the former
case (a) for σ > σ?(β). The partition of the parameter space into three regions
corresponding to different forms of the hazard-rate function is shown in Figure 2.
The examples presented in Figure 1, correspond to four points on a rectangular
grid in β-σ parameter space.

In the Appendix it is shown how the boundary (β = σ?(β)) separating Regions
0 and 2 (corresponding to forms (a) and (b) above) can be computed numerically.
When σ = 0 the hazard rate is either increasing (β ≥ 1) or bathtub shaped (β < 1)
as mentioned in the previous section.

The lNpf distribution can mimic the Weibull distribution for certain parameter
values. Figure 3 shows an example of this. Plotted are the hazard-rate function,
h(t), and a doubly-logarithmic plot of the cumulative hazard H(t) = − log(S(t))
against t, for parameter values µ = 15, σ = .7 and β = .2. For a Weibull hazard,
logH(t) is linear in log(t). The linearity of the plot in the right-hand panel of
Figure 3 demonstrates the closeness of the lNpf hazard-rate to that of a Weibull
distribution. In the Appendix it is shown analytically how for large µ and small
βσ the lNpf distribution will behave like a Weibull distribution for t << eµ.
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Figure 3. An illustration of how the lNpf distribution can behave like a Weibull distribution over a limited
range. Plotted are the hazard rate function (l. hand panel) and the cumulative hazard, with both axes
logarithmic (r. hand panel) for the lNpf distribution with µ = 15, σ = 0.7 and β = 0.2. The fact that the
logarithmic plot of the cumulative hazard is virtually linear over the range shown, indicates how well it
mimics a Weibull distribution over this range.

4. Regression models.

The construction of an accelerated life (AL) regression model is straightforward
from (1). With covariates X, one can write the AL model as

Y = log T = γTX + σZ − 1
β
E (10)

where γT is a vector of regression coefficients, including an intercept term. Again
the mixture interpretation of Sec.2 can be applied i.e. one can consider each
unit following a lognormal survival time with the mean parameter (of the nor-
mal log(survival time)) depending on covariates and a random effect −E/β.

The class of lNpf models is not closed under the proportional hazards assumption.
However an extended four-parameter class of hazard models with

h(t) = θhT (t) S(t) = [ST (t)]θ, (11)

where hT and ST are the lNpf hazard rate (7) and survivor (6) functions, is closed
in this way, so that a fully parametric PH regression specification (in which the
covariates influence θ) can be obtained.

5. Estimation.

Maximum likelihood (ML) estimation can be conducted in the usual way for sur-
vival time data. If there are no covariates and exact failure times t1, t2, . . . , td along
with τ1, τ2, . . . , , τn−d (right) censoring times are observed, the log-likelihood func-
tion can be computed as

`(µ, σ, β) =
d∑
i=1

log fY (log ti) +
n−d∑
j=1

logSY (log τj) (12)



August 12, 2010 11:8 Journal of Applied Statistics Draft.5

Journal of Applied Statistics 7

where fY and SY are as given in (3) and (2). If there are covariates X present, the
log-likelihood (in γT , σ and β) for the AL regression model is of the same form,
but with µ replaced γTX.

For grouped survival data, with fi failing between times t(i) and t(i+1), the log-
likelihood is

`(µ, σ, β) =
m−1∑
i=0

fi log[SY (log t(i))− SY (log(t(i+1))] (13)

where t0 = 0 and t(m) =∞.
In computing the likelihood it is probably easiest to use the forms (4) and (5)

avoiding Mills ratio and using exp(pnorm(x, lower=FALSE, log=TRUE) in R or S-
Plus to compute Φc(x). However very good approximations can be obtained for
Mills ratio using the expansion in terms of Tchebycheff-Hermite polynomials pre-
sented by Ruben (1962).

The log-likelihood must be maximized numerically. As starting values one can
first fit a log-normal distribution and use the estimates obtained along with an
arbitary positive value for β e.g. 1. For the examples in the following section the
Nelder-Mead simplex algorithm was used with the R routine optim. In fitting the
model to many datasets the author has not experienced any difficulty in obtaining
convergence (except in cases when the optimum is on the boundary of parameter
space) within a minute or two. In the two examples below (6.3 and 6.4) where the
optimum is on the boundary of parameter space, the maximization routine failed to
converge, stopping near to the boundary. Refitting the appropriate reduced model
(power function or lognormal) then yielded a maximized log-likelihood equal to (or
very slightly higher) than that obtained when the optimization routine stopped.

6. Examples.

In this section the lNpf distribution is applied to five datasets taken from the lit-
erature. All but Example 4 involve bathtub shaped hazards. The examples include
both grouped and ungrouped data and some involve covariates with examples of
both AL and PH regression. In two of the examples (Examples 3 and 4) the best
fitting lNpf distribution turns out to be respectively a power function distribution
and a lognormal distribution.

6.1 Electrical appliances.

Lawless [7] presents data on the number of cycles until failure for sixty electrical
appliances in a life test. He fitted, in a somewhat informal way, a two-component
mixture of Weibull distributions. Fitting an lNpf distribution yields ML estimates
(with asymptotic standard errors): µ̂ = 8.539 (0.137), σ̂ = 0.340 (0.077) and β̂ =
0.679 (0.230). The asymptotic correlations between µ̂ and both σ̂ and β̂ are negative
(-0.573 and -0.574, respectively), while that between σ̂ and β̂ is positive (0.341).
The maximized log-likelihood had a value of 519.205. A glance at Figure 2 reveals
that the point in parameter space (σ̂, β̂) falls in Region 2, so the fitted hazard
will have two turning points. This fitted hazard is plotted in Figure 4 (right)
along with the fitted survivor function and Kaplan-Meier estimate (left). Lawless
computes expected frequencies for the fitted Weibull mixture, after grouping the
data into 9 cells. Using the same grouping, the fitted frequencies computed for the
lNpf model turn out to be closer to the observed frequencies than those of the
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Figure 4. Example 1. Electrical appliances. The left-hand panel shows the fitted (MLE) lNpf survivor
function and the non-parametric Kaplan-Meier estimate of the survivor function. The right-hand panel
shows the fitted (MLE) hazard-rate function. Note the bathtub shape.

Weibull mixture yielding a Pearson χ2 statistic of 2.87 (5 df) compared with 6.84
(3 df) for the Weibull mixture. Using the former value in a χ2 goodness of fit test
yields a P-value of 0.72, confirming the apparent good fit seen in Figure 4.

Fitting the (3-parameter) generalized Weibull (GW) and (3-parameter) gener-
alized gamma (GG) distributions by maximum likelihood also yielded bathtub
shaped fitted hazard-rate functions. The resulting values of the maximized log-
likelihood were 519.15 and 519.59 respectively. Thus in terms of the Akaike Infor-
mation Criterion (AIC) the lNpf, GW and GG distributions all provide very similar
fits, with the GW marginally better than the lNpf, which in turn is marginally bet-
ter than the GG.

We now consider an example using grouped data and no covariates.

6.2 Bird lifetimes.

Paranjpe and Rajarshi [11] fitted three parametric models to data from Deevey
[4] on the age at death (grouped into one-year classes) for five bird species. They
compared the fit of the Weibull distribution with what they called the exponential
and the double exponential power models (these latter two both being capable of
having bathtub-shaped hazards), using the Pearson χ2 statistic, and showed that
both of these two-parameter models fitted better than the Weibull, and yielded
bathtub-shaped fitted hazards.

The lNpf was fitted to these five datasets along with another dataset from Deevey
(lapwings), by maximizing the log-likelihood

`(µ, σ, β) =
∑

fi log[SY (log i)− SY (log i+ 1)] (14)

where fi is the number dying at age i. The estimates and χ2 values are shown in
Table 1 and the fitted hazard-rate functions are shown in Figure 5. Also shown are
the χ2 values for the generalized gamma (GG) fit. The dgrees of freedom column
(df) applies to both the lNpf and GG fits. For all species, except starlings, the lNpf
χ2 values were smaller than those for the exponential power models (albeit on one
fewer degree of freedom). For starlings the lNpf χ2 value was between that for the
exponential and double exponential power model. The AIC values (and χ2 values)
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Figure 5. Example 2. Bird lifetimes. The top two rows show the fitted (MLE) hazard rates for six bird
species. The bottom row shows observed vs. estimated frequencies for the three species in the second row.
These include the best-fitting (song thrush) and worst fitting (herring gull).

Table 1. Maximum likelihood estimates (asymptotic standard errors in parentheses) of lNpf parameters for six

bird species. Also shown (right-hand columns) are the χ2 goodness-of-fit statistics for both the lNpf and GG

models along with the corresponding (common) degrees of freedom.

Species µ̂ (st. error) σ̂ (st. error) β̂ (st. error) χ2(lNpf) (df) χ2(GG)
Robin 1.23 (.145) 0.295 (.106) 0.267 (.058) 3.07 (2) 3.62
Starling 1.22 (.152) 0.412 (.108) 0.613 (.123) 4.05 (3) 3.19
Lapwing 1.65 (.110) 0.555 (.080) 0.617 (.075) 6.76 (8) 5.68
Blackbird 1.47 (.110) 0.457 (.080) 0.426 (.054) 3.42 (5) 4.84
Song thrush 1.37 (.092) 0.398 (.067) 0.442 (.052) 3.41 (5) 5.01
Herring gull 2.07 (.039) 0.264 (.039) 0.412 (.019) 29.37 (6) 26.30

for the GG model (also with three parameters) were very close to those for the
lNpf models (see Table 1), with the lNpf fitting better for robins, blackbirds and
songthrushes, and the GG fitting better for the other three species.

The only species showing a significant lack of fit (of both lNpf and GG models)
was the herring gull, for which the exponential power models had an even worse
fit.

In the bottom row of Figure 5 plots of observed vs. fitted frequencies using the
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lNpf model, for three species (blackbird, songthrush and herring gull) are displayed.
These include the best fitting (as determined by the observed χ2 significance level)
case (thrush) and the worse fitting case (herring gull).

In the next example the MLE of the lNpf distribution is a power function distri-
bution (no lognormal component).

6.3 Lifetime of devices on test

Aarset [1] presented data on the lifetimes of 50 devices put on test and demon-
strated that the hazard-rate function was bathtub shaped. There were no censored
observations and no covariates. When fitting the lNpf to the data, the profile log-
likelihood for σ was revealed to be increasing as σ → 0. So for these data the
likelihood is maximized on the boundary, σ = 0, and the best-fitting lNpf model is
in fact simply a power-function distribution (i.e. a lNpf distribution with no log-
normal component). When there is no censoring the MLEs of the two parameters
µ and β of the power function distribution can be found analytically. As with the
bathtub form of the generalized Weibull (GW) model [10] the MLE of the hazard
rate is infinite at the largest failure time. The MLEs of the parameters of the power
function distribution are:

µ̂ = log t(n); β̂ =
n∑n

i=1 log(t(n)/ti)

where t(n) is the largest failure time and, as with the GW model, the standard
ML asymptotics do not hold. For the Aarset data µ̂ = 4.454 and β̂ = 0.727 and
the maximized log-likelihood is -219.89. In comparison the GW model, with three
parameters, yielded a maximized log-likelihood of -218.07; while the generalized
gamma (GG) a maximized log-likelihood of -220.03. The AIC values are 443.77
(power-function) and 442.13 (GW) and 446.06 (GG) so in terms of the AIC the
GG model provides the worst fit and the GW a somewhat better fit than the power
function model.

We now consider an example with covariates

6.4 Steel under stress.

McCool [9] gives the failure times for hardened steel specimens in a rolling contact
fatigue test. Ten independent failure times were observed at each of four contact
stresses. In an exercise Lawless [7, p.339] asks readers to assess a “Weibull power-
law model” for these data i.e. a model in which the covariate stress (x) affects
only the scale parameter of a Weibull distribution via a power-law relationship
or in other words that the the hazard rate function is of Weibull form with scale
parameter α = axb and unvarying shape-parameter. We consider fitting a model
of this kind, using the lNpf distribution in place of the Weibull, i.e. assuming the
covariate affects the hazard rate only by a change of scale. Since α = eµ is a
scale-parameter for the lNpf model, this means fitting a model of the form

Y |x = γ0 + γ1 log x+ σZ − 1
β
E (15)

where γ0 = log a and γ1 = b. This is simply an accelerated life (AL) model with
covariate log x. Figure 6 shows a plot of failure time (log scale) against stress (log
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Figure 6. Example 4. Steel under stress. The failure time (log scale) vs. stress (log scale) for the data
presented in Lawless (1982, p.339). Note the apparent outlier in the third group.

scale).
Fitting this model leads to ML estimates (γ̂0, γ̂1, σ̂, β̂) =

(13.51,−12.51, 0.772, 1.54) with asymptotic standard errors
(1.492, 1.370, 0.146, 0.579). The maximized log-likelihood is −56.62. If in-
stead four separate lNpf models are fitted at each level of stress, the corresponding
maximized log likelihood is -45.45. This leads to very strong evidence (P=.004)
against the AL model (15). However there is an apparent outlier in the data
(group 3). Refitting the AL model without this observation leads to a maximum
of the likelihood on the boundary (β = ∞) of parameter space i.e. the best-
fitting lNpf model is, in fact, one with a lognormal distribution with parameters
(γ̂0, γ̂1, σ̂) = (0.342,−12.04, 0.749), with standard errors (0.1412, 1.208, 0.170).
There is no evidence (P=0.13) against the lognormal AL regression model, when
the outlier is removed. Also without the outlier the lognormal regression model has
a better fit (with AIC=105.40) than the Weibull regression model (AIC=114.32).
Fitting the generalized gamma (GG) regression model, without the outlier, using
the Prentice [[12]] parameterization again leads to a maximum of the likelihood
on the boundary of parameter space corresponding once more to the lognormal
model. Thus the performance of the lNpf and the GG are the same in this case.

When the outlier is included in the analysis the Weibull model (AIC=114.78)
provides a better fit than the lNpf model (AIC=116.53), the generalized gamma
model (AIC=121.16) and the lognormal model (AIC=122.09)

In the final example we consider the four-parameter extended lNpf model (11)
with the proportional hazards assumption.

6.5 Toxin-exposed and control groups of rats.

Lagakos and Louis [6] present survival data for one hundred rats, half of which were
insulted with 60 mg/kg of toluene diisocyanate, while the other half were kept as
controls. Forty-four of the rats were still alive after 108 weeks. The extended lNpf
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Figure 7. Example 5. Toxin-exposed and control groups of rats. The figure shows the fitted (MLE) hazard
rates using the extended lNpf model (Section 4) for the two groups under the proportional hazards (PH)
assumption (solid lines) and without this constraint (dashed lines).

model (11) was fitted to these data, first separately to each group and then to
the combined group, assuming proportional hazards (i.e assuming common values
to the parameters µ, σ and β, but possibly different values of θ for each group).
Figure 7 shows the fitted hazards in the two cases, with the solid lines correspond-
ing to proportional hazards, and dashed lines corresponding to separate fits. The
likelihood ratio statistic for testing the PH assumption is not significant having a
value 2.93 on 3 degrees of freedom. The MLE of the relative risk associated with
the toxin is 6.24 and an approximate 95% confidence interval is (3.38, 11.53). The
extended lNpf model (AIC = 617.04) provides a much better fit than the ordinary
lNpf model (AIC=1046.51). The generalized gamma model has a similar fit to the
latter (AIC = 1046.31).

7. Conclusions.

The lognormal-power function distribution as a model for failure-time data is quite
flexible in that its hazard-rate function can exhibit a variety of shapes, including
a bathtub shape. Furthermore it lends itself naturally to accelerated-life (AL) re-
gression modelling, and can be viewed as a fairly straightforward extension of the
lognormal distribution. Parameter estimation by maximum likelihood requires nu-
merical optimization but no difficulties have been experienced with multiple max-
ima or with obtaining convergence. In the paper the distribution has been fitted
to a number of survival-time datasets taken from the literature. The fit of the lNpf
distribution has been compared with the generalized gamma (GG) distribution
with which it shares many properties. In the examples considered there is very lit-
tle difference in fit (as measured by AIC) for the two models. To date no datasets
with many covariates have been fitted but there is no reason to expect difficul-
ties for the lNpf distributiuon apart from those experienced in other AL regression
models (e.g. collinearity etc.). One can conclude that the lNpf distribution provides
a viable model worthy of inclusion with the customary parametric models used in
applied work.

Because the haxard-rate function of the lNpf distribution exhibits bathtub
shaped behaviour only over a limited range and eventually decays like that of
the lognormal distribution in the upper tail, as always in fitting complex models,
care should be taken to not extrapolate beyond the range of the data.

Reed [14] considered an extension of the double Pareto-lognormal distribution,
which (in the log-scale) was called the generalized normal-Laplace (GNL) distri-
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bution. A question for future research is whether a one-sided version of the this
distribution (i.e. the distribution which results when the standard exponential ran-
dom variable E in (1) is replaced by a gamma random variable with unit scale)
would provide a useful extension of the lNpf model used in this paper. One major
difficulty is that no closed-form for the GNL distribution is known, and hence no
closed form for the corresponding log-likelihood. ML estimation will require more
subtle methods (e.g. the E-M algorithm) than direct maximization.

Another subject for future research is whether the technique used for extending
the lognormal distribution applied in this paper (multiplying a lognormal random
variable by a power-law distributed random variable) can be applied to other two-
parameter survival distributions, such as the Weibull, gamma, log-logistic etc. Some
progress in this direction is reported in [15].
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Appendix A. Tail behaviour of hazard-rate function.

Upper tail. Using (7) and letting z = (log t− µ)/σ, one can write

h(t) = βe−µ−σz
R(βσ + z)

R(z)−R(βσ + z)
. (A1)
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A well-known property of Mills’ ratio is that R(x) ∼ x−1 as x → ∞ (see e.g.
Ruben, 1962). Using this in the above yields

h(t) ∼ βe−µ−σz z
βσ

=
log t− µ
σ2t

as t → ∞, which is independent of β and is exactly the tail behaviour of the
lognormal hazard with parameters µ and σ2.

Lower tail. Write Rβ for R(βσ + (log t − µ)/σ) and R0 for R((log t − µ)/σ), so
that the hazard rate (A1) can be expressed as

h(t) =
β

t

Rβ/R0

[1−Rβ/R0].
(A2)

Now

Rβ
R0

=
φ(z)

φ(z + βσ)

[
Φc(z + βσ)

Φc(z)

]
= exp(βσz + β2σ2/2)

[
Φc(z + βσ)

Φc(z)

]
(A3)

which tends to zero as t→ 0 (z → −∞) since the term in square brackets → 1. So
h(t) behaves at zero like

β

t

Rβ
R0

= β exp((β − 1)σz − µ+ β2σ2/2)
[

Φc(z + βσ)
Φc(z)

]
.

Since z → −∞ as t → 0, it is clear that β is a critical parameter: if β > 1, the
limiting value of h at t = 0 is 0; while if β < 1, it is ∞ (a vertical asymptote
of h at 0); in the intermediate case (β = 1), h(t) → e−µ+σ2/2. Qualitatively this
behaviour is similar to that of the power function hazard. However quantitatively
it is different, being dependent on the parameter σ2 of the lognormal component.

Appendix B. Shape of hazard-rate function.

One can write the representation (A2) of the hazard-rate function as

h(t) =
β

t
G(r(z(t))), (B1)

say, where

z(t) =
log(t)− µ

σ
, r(z) =

Rβ(z)
R0(z)

and G(r) =
r

1− r
(B2)

from which it follows by the chain rule that

h′(t) =
β

t2
r(z)

(1− r(z))2

[
1
σ

r′(z)
r(z)

− (1− r(z))
]

(B3)

so that

sgn(h′(t)) = sgn
(

1
σ

r′(z)
r(z)

− (1− r(z))
)

= sgn[F1(z)− F2(z)], say,
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where

F1(z) =
1
σ

r′(z)
r(z)

= β − 1
σ

[
1
Rβ
− 1
R0

]
is a decreasing function, with left and right limits (as z → −∞ and z →∞, respec-
tively) of β and 0; and

F2(z) = 1− r(z)

is a decreasing function with left and right limits 1 and 0.
The asymptotic behaviour of F1(z) and F2(z) as z →∞ can be determined from

the Laplace asymptotic expansion of the Mills’ ratio (see e.g. Ruben, 1962)

R(x) =
1
x

(
1− 1

x2
+

1.3
x4
− 1.3.5

x6
+ . . .

)
(B4)

One obtains

F1(z) ∼ β/z2 and F2(z) ∼ βσ/z as z →∞

From this it follows that F2(z) > F1(z) for z suitably large.
If β > 1, it follows from the above that F1 and F2 cross for y ∈ (∞,∞) an odd

number of times, so that h(t) has an odd number of turning points. In contrast
if β < 1, F1 and F2 cross an even number of times, with h(t) having an even
number of turning points. In fact numerical explorations indicate that the number
of crossings, for β > 1 is always one; and the number for β < 1 is zero or two.

Coupled with the earlier results on the tail behaviour of h(t) this suggests that
when β > 1 the hazard-rate h(t) is unimodal, increasing at first from zero and
subsequently decreasing asymptotically to zero; and when β < 1 the hazard-rate
h(t) either monotone decreasing (from infinity, at zero, to zero at infinity), or
is at first decreasing (from h(0) = ∞), then increases to a local maximum, and
subsequently decreases to 0 as t → ∞. It is in this latter case that a bathtub
shaped hazard can occur (over a limited range of t). Thus a necessary condition
for a bathtub shaped hazard is that β < 1.

In the intermediate case (β = 1), the hazard-rate has zero slope at t = 0 and
assumes the finite non-zero value value e−µ+σ2/2.

For further analysis we note that F1 can be written F1(z) = F0(z)/σ where

F0(z) =
[
βσ − 1

Rβ
+

1
R0

]
.

We now consider varying σ so that βσ remains fixed at a value B, say (i.e. moving
along the hyperbolic locus βσ = B, for a given B). For σ suitably large F1(z) =
F0(z)/σ is smaller than F2(z) everywhere on (−∞,∞). In this case the hazard
rate has no turning points and is monotone decreasing. As σ decreases one of two
things can happen: either β = B/σ can become greater than 1 ; or F1 can increase
and ‘push through’ F2 so that it is larger than F2 on a finite interval, with β still
less than 1. In the former case there is a bifurcation from no turning points for
the hazard to one turning point (hazard moves from monotone to unimodal); in
the latter case there is a bifurcation from no turning points for the hazard to two
turning points (hazard moves from monotone to having one local minimum followed
by one local maximum). It follows that σ-β parameter space can be divided into
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three disjoint regions corresponding to 0, 1 and 2 turning points for the hazard
rate (see Figure 2).

To determine the locus of points where the bifurcation from 0 to 2 turning points
occurs, one can consider for fixed B the solution (in z and σ) to the pair of equations

σ−1F0(z) = F1(z) and σ−1F ′0(z) = F ′1(z)

(where the prime denotes a derivative), because for these values of σ and z, F1 is
tangent to F2. Dividing the above two equations leads to the single equation for z

F ′0(z)
F0(z)

=
F ′2(z)
F2(z)

which can be expressed in terms of the Mills ratio, R, and its derivative. Using
the fact that R′(x) = xR(x) − 1 simplifies the equation to one in z involving
only R. This equation can be solved numerically. From this solution (z?, say) the
value σ? (and β? = B/σ?) at which the bifurcation occurs can be obtained (as
F0(z?)/F2(z?)). Repeating this for various values of B yields the locus of points
(σ?, β?) on the bifurcation boundary. The curve separating Regions 2 and 0 in
Figure 2 was calculated in this way.

Weibull-like behaviour of lNpf model.
In this section we show analytically that the lNpf distribution is approximated

by the Weibull distribution for t << eµ, when βσ is small.
We consider the hazard-rate for y = log t, which from (7) can be written

hY (y) =
β

(R0/Rβ − 1)

Now using (A3) and expanding Φc(z+βσ), assuming βσ is small, the ratio R0/Rβ
can be written

R0

Rβ
= exp(−βσz) 1

1− βσ/R(z)
+ o(βσ)

and so

hY (y) =
β(1− βσ/R(z))

e−βσz − 1 + βσ/R(z)
+ o(βσ).

Now for t sufficiently small (so that log t << µ), z will be large negative and
R(z) large positive. Coupled with the fact that we assume βσ small, it follows that
for t suitably small βσ/R(z) will be very small and so approximately

hY (y) ≈ βeβy

eβµ − eβy

which is the form of the hazard (in Y = log T ) for the power-function distribution
(see (9)), with

Y = log T = µ− 1
β
E,
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so the power-function component of the distribution predominates in determining
the hazard at the lower end. The cumulative hazard HY (y) = − logSY (y) for this
power-function distribution equals − log(1 − eβ(y−µ)), for y < eµ and is infinite
otherwise. So for y << eµ, HY (y) ≈ eβ(y−µ), and logHY (y) ≈ β(y − µ), which
is linear in y. This is exactly the cumulative hazard for log T when T has the
Weibull survivor function exp(−e−βµtβ). Thus when µ is large and βσ small, the
lNpf distribution should be well-approximated by the Weibull distribution, at least
for t << eµ.


