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ABSTRACT

A simple adjustment to parametric failure-time distributions, which allows for much

greater flexibility in the shape of the hazard-rate function, is considered. Closed-form ex-

pressions for the distributions of the power-law adjusted Weibull, gamma, log-gamma, gener-

alized gamma, lognormal and Pareto distributions are given. Most of these allow for bathtub

shaped and other multi-modal forms of the hazard rate. The new distributions are fitted

to real failure-time data which exhibit a multi-modal hazard-rate function and the fits are

compared.
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INTRODUCTION

Parametric distributions play an important role in the analysis of lifetime data especially

in accelerated failure time (AFT) regression models. Generally speaking analysis based

on a parametric model will be more precise than that based on a nonparametric or semi-

parametric model, because it will have fewer unknown parameters. However this is contingent

on it being possible to find a suitable parametric model to fit the data. Unfortunately for

most of the common distributions employed there is very little flexibilty in the shape of the

hazard rate function. In particular none of the two-parameter distributions customarily used

can be used to model a bathtub-shaped hazard.

There are a number of three-parameter distributions which allow a bathtub-shaped haz-

ard, including the generalized Weibull (Muldolkar et al., 1996) and the generalized gamma

(see e.g. Cox et al., 2007) distributions. A addition to these was proposed in a recent arti-

cle by Reed (2008). This distribution, which is a special case of a double Pareto-lognormal

distribution (Reed & Jorgensen, 2004), can be characterised as the product of independent

random variables, one with a lognormal distribution and the other with a power-law distri-

bution on [0, 1]. For this reason the new distribution was called the lognormal-power function

distribution. It can be thought of as an extension of the lognormal distribution.

In this article it is shown how any simple parametric failure-time distribution can be

extended in a similar way to allow for much greater flexibility in its form, including in most

cases the possibility of bathtub shaped hazard-rate functions. Precisely, the failure time T

is modelled as the product T
d
= T0U , where T0 follows the “simple” failure-time distribution

and U follows the power-law distribution with density λuλ−1 on [0, 1]. Alternatively this can

be expressed as T
d
= T0/V where V has a Pareto distribution, with density λ/vλ+1 on [1,∞).

As might be expected, it is not possible for every parametrically specified distribution (of

T0) to obtain a closed-form expression for the resulting power-law modified density. However

it turns out to be possible to do so for a number of the more common failure-time distributions

including the lognormal (Reed, 2008), exponential, Weibull, gamma, log-gamma, Pareto and

generalized gamma distributions. These distributions are considered in this article. In all
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cases, except the lognormal and Pareto, the resulting power-function modified densities can

be expressed in terms of an incomplete gamma function.

In Sec.2 the distribution theory associated with the power-law modification is presented,

and in Sec.3 maximum likelihood estimation discussed. In Sec.4 the results of fitting the

various power-law modified failure-time distributions to data with a multi-modal shaped

hazard rate, are presented.

2. THEORY

Let T0 be a random variable with a known continuous failure-time distribution. The

power-law modified form of this distribution can be represented by a random variable T

with

T
d
= T0U

where U follows the power-law distribution with density λuλ−1 on the interval [0, 1]. Taking

logarithms this leads to

X = log(T )
d
= Z0 −

1

λ
E

where Z0 = log T0 (with survivor function and density S0(z) and f0(z), say) and E is a

standard (unit mean) exponential random variable. The survivor function for X can be

found as a convolution as follows:

SX(x) = P(Z0 − E/λ ≥ x)

= P(E ≤ λ(Z0 − x))

=











0 if Z0 − x ≤ 0

1 − e−λ(z−x) if Z0 − x > 0

=
∫

∞

x
[1 − e−λ(z−x)]f0(z)dz

= S0(x) − eλz
∫

∞

x
e−λzf0(z)dz (1)

which on integrating by parts gives

SX(x) = λeλx
∫

∞

x
e−λzS0(z)dz. (2)
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From this, by differentiation and using (1), one obtains the corresponding formula for the

density of X

fX(x) = λeλx
∫

∞

x
e−λzf0(z)dz. (3)

From (2) and (3) the survivor function and density of T in terms of those of T0 (ST0
(t) and

fT0
(t)) can be easily obtained:

ST (t) = λtλ
∫

∞

t
u−λ−1ST0

(u)du. (4)

fT (t) = λtλ−1
∫

∞

t
u−λfT0

(u)du. (5)

We now consider power-law modified forms of some specific failure-time distributions.

Weibull and exponential model. If T0 has a Weibull distribution with hazard rate

function hT0
(t) = αβtβ−1, its survivor function and density are ST0

(t) = exp(−αtβ) and

fT0
(t) = αβtβ−1 exp(−αtβ). The hazard rate is monotone increasing for β > 1 and monotone

decreasing for β < 1. In the case β = 1 it is constant and the Weibull distribution reduces

to an exponential distribution. The survivor function and density for Z0 = log T0 are

S0(z) = exp(−αeβz) and f0(z) = αβ exp(βz − αeβz).

From (2) and (3), the survivor function and density of X = log T , where T follows the

power-law adjusted Weibull distribution, are

S(x) =
λαλ/β

β
eλx I(αeβx,−λ/β)

f(x) = λαλ/β eλx I(αeβx, 1 − λ/β)

where I is the incomplete gamma function

I(y, θ) =
∫

∞

y
uθ−1e−udu. (6)

Note that although the ordinary gamma function can be expressed as the integral Γ(θ) =
∫

∞

0 uθ−1e−udu only for θ > 0, the incomplete gamma function I(y, θ) evaluated at y > 0

converges for all real θ. Thus S(x) and f(x) above are well-defined since αeβx > 0.
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The survivor function, density and hazard-rate function for T are easily computed from

the above as as

ST (t) = S(log t); fT (t) =
1

t
f(log t); hT (t) =

fT (t)

S(t)

Fig.1 (top row) illustrates three shapes that the hazard rate function of the power-law ad-

justed Weibull distribution can assume.

Gamma model. If T0 follows a gamma distribution with scale parameter θ−1 and shape

parameter κ, then the denisty and survivor function of Z0 = log T0 are

S0(z) =
I(θez, κ)

Γ(κ)
and f0(z) =

θκ

Γ(κ)
exp(κz − θez)

From (2) and (3), the survivor function and density of X = log T , where T follows the

power-law adjusted gamma distribution, are

S(x) =
1

Γ(κ)

[

I(θex, κ) − θλeλxI(θex, κ − λ)
]

f(x) =
λθλ

Γ(κ)
eλxI(θex, κ − λ)

Fig.1 (second row) illustrates some shapes that the hazard rate function of the power-law

adjusted gamma distribution can assume.

Log-gamma model. If Z0 = log T0 follows a gamma distribution, so that T0 has density

fT0
(t) = θκ

Γ(κ)
t−(θ+1)(log t)κ−1 with support on [1,∞) then from (2) and (3), it is easy to show

that the power-law adjusted random variable T has support on (0,∞) and that X = log T

has survivor function and density

S(x) =











1 − eλx
(

θ
θ+λ

)κ
if x ≤ 0

1
Γ(κ)

[

I(θx, κ) −
(

θ
θ+λ

)κ
eλxI([θ + λ]x, κ)

]

if x > 0

and

f(x) =











λeλx
(

θ
θ+λ

)κ
if x ≤ 0

λeλx
(

θ
θ+λ

)κ I([θ+λ]x,κ)
Γ(κ)

if x > 0
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Fig.1 (third row) illustrates some shapes that the hazard rate function of the power-law

adjusted log-gamma distribution can assume.

Pareto model. If T0 follows a Pareto distribution with support on (τ0,∞) and pdf fT0
(t) =

α
τ0

(

t
τ0

)

−(α+1)
thereon, one can show that the power-law adjusted form has support on (0,∞)

and (using (4)) that the survivor function of the power-law adjusted form is

ST (t) =











1 −
α

α+λ

(

t
τ0

)λ
if t ≤ τ0

λ
α+λ

(

t
τ0

)

−α
if t > τ0

and using (5) that the corresponding pdf is

fT (t) =











αλ
α+λ

1
τ0

(

t
τ0

)λ−1
if t ≤ τ0

αλ
α+λ

1
τ0

(

t
τ0

)

−α−1
if t > τ0

Fig.1 (bottom row) illustrates some shapes that the hazard rate function of the power-law

adjusted Pareto distribution can assume.

Lognormal model. Consider the case where Z = log T0 follows a normal distribution

with mean µ and variance σ2. Reed (2008) considered the power-law adjusted version of

this distribution (the lognormal-power function or lNpf distribution) and showed that the

survivor function and density of X = log T , where T follows the lNpf distribution, are

S(x) = φ
(

x − µ

σ

) [

R
(

x − µ

σ

)

− R
(

λσ +
x − µ

σ

)]

and

f(x) = λφ
(

x − µ

σ

)

R
(

λσ +
x − µ

σ

)

where R is Mills’ ratio of the complementary cumulative distribution function (cdf) to the

pdf of a standard normal distribution:

R(z) =
Φc(z)

φ(z)
.

Generalized gamma model. The three-parameter generalized gamma distribution in-

cludes the Weibull, gamma and lognormal models as special or limiting cases. It has density

fT0
(t) = αθκtακ−1 exp(−θtα)/Γ(κ)
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With some work using (2) and (3), the survivor function and density of X = log T , where T

follows the power-law adjusted gamma distribution, can be shown to be

S(x) =
1

Γ(κ)

[

I(θeαx, κ) − θλ/αeλxI(θeαx, κ − λ/α)
]

f(x) =
λθλ/α

Γ(κ)
eλxI(θeαx, κ − λ/α)

3. PARAMETER ESTIMATION BY MAXIMUM LIKELIHOOD

The parametric likelihood for much failure-time data is proportional to

n
∏

i=1

[fTi
(ti)]

δi [STi
(ti)]

1−δi

where δi is an indicator variable with value 1 for an observed failure time, and value 0 for

a censored observation. If there are no covariates and the failure times are considered to

be identically distributed following a power-law adjusted distribution with pdf and survivor

function fT and ST , then up to an additive constant the log-likelihood is

n
∑

i=1

δi log fT (ti) +
n

∑

i=1

(1 − δi)) log ST (ti)

which is the same as

n
∑

i=1

δi log fX(log ti) +
n

∑

i=1

(1 − δi)) log SX(log ti) −
n

∑

i=1

log ti

Thus for each of the models discussed above a closed-form expression for the log-likelihood

can be obtained. This will need to be maximized numerically to obtain maximum likelihood

estimates.

Covariates ZT = (Z1, Z2, . . . , Zp) can be incorporated in an accelated failure time (AFT)

regression model:

log T = β0 + βTZ + X (7)

where X is a random variable with one of the power-law adjusted distributions of the previous

section. Note that for all but the log-gamma these distributions can be re-paramerized in
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terms of a location parameter and two other parameters. In these cases the intercept term

β0 in (7) is not needed (and indeed will result in a non-identifiable model if it is included).

4. AN EXAMPLE

Electrical appliances. Lawless (1982, p.256) presents data on the numbers of cycles to fail-

ure for 60 electrical appliances put on test. All of the sixty appliances eventually failed,

the largest failure times being 6065 and 9701 cycles. Fig.2 shows a kernel-smoothed non-

parametric estimate of the hazard rate for these data. There is clearly a suggestion of

multi-modality.

To assess and compare the various power-law adjusted models discussed in the previous

section each was fitted to these data. The values of the maximized log-likelihood and of

the Akaike Information Criterion (AIC) for the various models are given in Table 1. In all

cases, the improvement in fit obtained by including the power-law adjustment, was highly

significant, as one would expect since none of the two-parameter forms allows for a bathtub

shape.

Attempts at fitting the four-parameter power-law adjusted generalized gamma distribu-

tion were not successful, with different maxima arising with different starting values. How-

ever fitting the (unadjusted) three-parameter generalized gamma led to an AIC of 197.04,

while for the three-parameter generalized Weibull distribution the AIC was 195.98. Based

on the AIC the best-fitting model is the power-law adjusted Pareto, followed by the power-

law adjusted log-gamma and lognormal distributions. However only the power-law adjusted

Pareto has a better fit than the generalized Weibull distribution.

Fig.3 shows the MLES of the hazard rate for (clockwise) the power-law adjusted Weibull,

log-gamma, lognormal and Pareto distributions. While these plots may appear very different

to the non-parametric estimate of the hazard function (Fig.2) at the upper end, it should

be noted that the upper part of the non-parametric estimate is not very precise, since in the

dataset there are only two observations greater than 6000 (with values 6065 and 9701).

A alternative assesment is given by comparing parametric and non-parametric survivor

functions, which is done in Fig.4, which shows the Kaplan-Meier estimate and the max-
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imum likelihood estimate of the survivor function assuming a power-law adjusted Pareto

distribution of failure times. The fit seems very good.

CONCLUSIONS

This article shows how existing parametric failure-time distributions can be modified by a

simple power-law adjustment, thereby rendering them more flexible, including in many cases

having the possibility of a bathtub shaped hazard-rate function. The power-law adjustment

involves the introduction an extra parameter. While the article considers only distributions

for which there are closed-form expressions for the density and survivor function, the idea

could still be applied to other common failure distributions (e.g. log-logistic, Gompertz, etc.)

In such cases the density and survivor function would need to be computed numerically,

using quadrature methods for evaluating the integrals (2) and (3). This would involve

considerably more computation for the determination of maximum likelihood estimates of

model paramaters, with n (= no. of observations) integrals needing to be evalauted to

compute the log-likelihood at each step of the maximization routine.
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Table 1: Maximized log-likelihood and AIC for five power-law adjusted distributions fitted

to the electrical appliances data.

Power-law adjusted distribution

Weibull Gamma Log-gamma Pareto Lognormal

ℓmax -96.30 -95.27 -95.11 -94.47 -95.14

AIC 198.60 196.54 196.22 194.94 196.28
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Figure 1: Some shapes of the hazard rate function for for various power-law adjusted distri-

butions. Top row: Weibull distribution with α = 1: (l.hand) β = 1 (exponential distribution)

and λ = 0.02; (centre) β = 2 and λ = 2; r.hand β = 3 and λ = .02. Second row: gamma

distribution with θ = 0.25: (l.hand) κ = .01 and λ = 1; (centre) κ = .01 and λ = 2.5;

(r.hand) κ = .1 and λ = 7. Third row: log-gamma distribution with θ = 20: (l.hand) κ = 50

and λ = .01; (centre) κ = 10 and λ = .01; (r.hand) κ = 5 and λ = .5. Bottom row: Pareto

distribution with τ0 = 1.5: (l.hand) α = 1 and λ = 0.1; (centre) α = 15 and λ = 2; (r.hand):

α = 15 and λ = 0.2
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Figure 2: Kernel smoothed non-parametric estimate of the hazard rate function for electrical

appliances data. The Epanechnikov kernel with a bandwith of 1000 was used.
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Figure 3: Maximum likelihood estimates of various power-law adjusted distributions for the

electrical appliance data. They are (clockwise) Weibull, log gamma, lognormal and Pareto.
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Figure 4: Non-parametric Kaplan-Meier estimate (step function) of the survivor function for

the electrical appliance data and the maximum likelihood estimate of the survivor function

using the power-law adjusted Pareto distribution.
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Figure Captions.

Figure 1. Some shapes of the hazard rate function for for various power-law adjusted

distributions. Top row: Weibull distribution with α = 1: (l.hand) β = 1 (exponential

distribution) and λ = 0.02; (centre) β = 2 and λ = 2; r.hand β = 3 and λ = .02. Second

row: gamma distribution with θ = 0.25: (l.hand) κ = .01 and λ = 1; (centre) κ = .01

and λ = 2.5; (r.hand) κ = .1 and λ = 7. Third row: log-gamma distribution with θ = 20:

(l.hand) κ = 50 and λ = .01; (centre) κ = 10 and λ = .01; (r.hand) κ = 5 and λ = .5.

Bottom row: Pareto distribution with τ0 = 1.5: (l.hand) α = 1 and λ = 0.1; (centre) α = 15

and λ = 2; (r.hand): α = 15 and λ = 0.2

Figure 2. Kernel smoothed non-parametric estimate of the hazard rate function for elec-

trical appliances data. The Epanechnikov kernel with a bandwith of 1000 was used.

Figure 3. Maximum likelihood estimates of various power-law adjusted distributions for the

electrical appliance data. They are (clockwise) Weibull, log gamma, lognormal and Pareto.

Figure 4. Non-parametric Kaplan-Meier estimate (step function) of the survivor function for

the electrical appliance data and the maximum likelihood estimate of the survivor function

using the power-law adjusted Pareto distribution.
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