ON THE LOCAL SOLVABILITY FOR A QUASILINEAR CUBIC WAVE
EQUATION

J. E. AZZOUZ, AND S. IBRAHIM

ABSTRACT. This article is concerned with local solvability of the Cauchy problem for a
quasilinear cubic wave equation in dimension d = 3. Here, we improve the index of regularity
of the initial data compared to the one given by classical energy methods.

1. INTRODUCTION

This paper is devoted to the construction of local (in time) solutions of the Cauchy problem
for a d-dimensional quasilinear wave equation of the type

(1.1) O*u — Au — G(du) - V?u =0,
where we set Vu = (01u, dau, ...,0qu), Ou = (Vu, 0yu) and
G- -Viu= Z ijajaku.
1<j,k<d
Quasilinear wave equations appear frequently in general relativity such as Einstein equations

or relativistic elasticity, hydrodynamics, minimal surfaces etc. We consider the particular
case where the d x d symmetric matrix G satisfies the following elliptic equation

(1.2) —AGT" = Qj1(0u, Ou)

where the (@) are quadratic forms on R4, This is known as the quasilinear cubic wave
equation (see [3]). We assume that the initial data

(1.3) (u, ) 1= = (uo,u1),

is in the standard Sobolev space H® x H* L.
Recall that using the energy method, one can prove the local well-posedness for the system
(1.1)-(1.3) when s > %—I— 3. The crucial fact is to estimate the first derivatives of the metric G

in LL(L>). In fact, assuming that du € L (H*!) with %l +3<s< %l + 1, then the classical
law for product shows that A=Y (du)? € H 25—5, and thanks to the Sobolev embedding we get
0G € LL(L*>). More precisely, we have the following result.

Theorem 1.1. Letd >3, s > %l + 3 and (uo,u1) € H® x H57L.
Assume that H(VUOWl)”ng is small enough. Then, there exists a positive time T and a
unique solution u of the system (1.1)-(1.3) satisfying

weC(l0,T); H22)nC(0,T]; H22).

Moreover, a constant C' exists (depending only on the initial data) such that T > C||(Vug, u1)|| .
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2 J. E. AZZOUZ, AND S. IBRAHIM

Here, H* denotes the homogeneous Sobolev space endowed with the semi-norm

= [ 16 P Fule) P de.

To improve upon the above existence result, one can use the smoothing properties of equa-
tion (1.1). Notice that (1.1) is invariant with respect to the dimensionless scaling u(t,z) —
u(At, Ax). This scaling preserves the Sobolev space of exponent s, = %l, which is then (heuris-
tically) a lower bound for the range of permissible s. Hence, the above theorem seems to
require an extra % derivative. The goal of this paper is to try to go as close as possible to the
scaling invariant regularity.

Some results in this direction were obtained, in particular, for the equations of the form

(1.4) O*u — Au — g(u) - V2u = F(u)Q(Vu, Vu),
where
g-Vu= Z gjkﬁjaku.
1<4,k<d
Q is a quadratic form on R? F € D(R) and g is a given smooth function, vanishing at 0 and
with values in K such that Id + K is a convex subset of positive symmetric matrices.

Recall that in the case of equation (1.4), the energy method allows us to prove the local
well-posedness for initial data in H® x H*"! with s > % + % We point out that all
improvement results are based on Strichartz-type estimates for the wave operator with variable
coefficients (as well as on bilinear estimates). When the coefficients are rough, these estimates
present a loss of derivative compared to those obtained for the flat wave operator. The first
result in this direction was by H. Bahouri-J. Y-Chemin [1] giving the well-posedness for
5> di21 + %. Independently, D. Tataru obtained in [14] the same result. Shortly afterward,
other improvements were obtained in [2] and in [15]. Later, D. Tataru provided in [16] and
[17] a precise relationship between the smoothness of the metric and the corresponding loss

in the Strichartz estimates. He pushed down the loss to %Jr. Moreover, in [12], H. Smith-D.
Tataru showed that the % loss (in Strichartz estimates) is sharp in d = 3. In the case when
the metric ¢ itself solves an equation of the type (1.4), an important improvement (on the
local well-posedness) over the % result was proved by S. Klainerman-I. Rodnianski (see [9]).

Recently, in regards to equations of the form (1.4), S. Klainerman-I. Rodnianski proved local
existence for s > 2 for the Einstein vacuum equation in d = 3 (see [10]). Moreover, in [13],
H. Smith-D. Tataru proved local existence for general equations of the form (1.4) for s > % if
d=2,and s > &L if d = 3,4,5.

In the case of equation (1.1), H. Bahouri-J. Y-Chemin proved in [3] the following Theorem.

Theorem 1.2. Let d > 4 and denote by sq = %l + %. Assume that (ug,u1) € H® x HS~H(R?)
with s > sq and ||[(Vug,u1)||a_; is small enough. Then, there exist a positive time T and a
2

unique solution u of (1.1)-(1.3) such that, for any small positive real number o we have

) _
Tete > CaH(VUmUl)”gl_
2

ot

24’

(=2}

.d_ 1
du e C([0,T;; H* ') N L7(Bf,?), if d > 5,
and .
Ou € C([0,T); H') N L3 (B¢ ,), and G € Lp(L™) if d = 4.
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B;q denotes the homogeneous Besov space (see Definition 2.1).

Note that the proof of Theorem 1.2 strongly depends on the space dimension; if d > 5 then,
by proving the Strichartz inequalities for solutions of the “linearized equation”, the authors
succeed in exhibiting a Banach space B containing the solution u and having the property
that, if @ € L2(B) then dA™1(a?) € LL(L>). In particular, this is crucial to get an energy
estimate. However, if d = 4 the use of Strichartz estimates is not sufficient. To overcome this
difficulty, they followed an idea of S. Klainerman and D. Tataru, [11]. They proved microlocal
bilinear estimates in the variable coefficients case. Our goal is to show that, using an LI(L")
version of the Strichartz inequalities, we can extend the Bahouri-Chemin result to the case
d = 3, obtaining a better index than that given by the energy method. Before stating the
result, we introduce the following notation. For all ¢ > 2, we define the loss of derivative p
by

1 2
1.5 = - - —.
(1.5) pla) =3 37
We also set
d
(1.6) sa(@) = 5 +p(q)
and for all real number r < d satisfying
2 1 1
L. S=d-1)(z--)<1
(17) “ (-G <L
we define
d 1
1. p=——,
(18) 7 ro 2

Our main result is the following.

Theorem 1.3. Let s > s3(6) = %4—%. There exists ¢ > 6, r and o, given by (1.7)-(1.8) such
that: if the initial data (ug,u;) € H*(R?) x H*"1(R?) and ||(Vu0,u1)\|%_l is small enough,
then a non trivial time T and a unique solution u of (1.1)-(1.3) exist and they satisfy

Ou € C([0,T]; H*'(R*)) N LE(B75(R?)).

Remark 1.4. In higher dimensions d > 5, following the same proof given here, we can show

the local well-posedness for initial data (ug,uy) € H® x H Y (RY) with s > s4(2) = % + %

and ||(Vuo,u1)|la_, is small enough. This turns out to be the result of [3]. Meanwhile, if
2

d = 4 then we obtain a minimal loss of derivative p = i (which corresponds to the choice

(q,7) = (%, 4). This is of course not better than the Bahouri-Chemin result given by Theorem

1.2. To get a better result, they proved and used bilinear estimates in [3].

Remark 1.5. From the proof of Theorem 1.3 we can derive a lower bound of the time T;
writing so 1= s3(6) + o = 2 +p(qa) + 9 (with a small positive real number o), then a constant
C,, exists such that

THE > Colnll;t

Sa—1"
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To prove Theorem 1.3, we follow the method used in [3] based on a construction of an
inductive scheme. The crucial fact is the use of an L?(L") version of the microlocal Strichartz
estimates for the linearized equation. (Note that by microlocal estimates we mean estimates
satisfied on time intervals which depend on the size of the spatial frequency).

This paper is organized as follows. In section 2, first we give a brief review of the Littlewood
-Paley theory and we introduce some notation. Next, we explain the main idea of the result
and point out the difficulty we observe to control [|0G]| i (L) even if w is the solution of
the free wave equation. Finally, we state the microlocal Strichartz inequalities we will use.
Section 3 is devoted to study some of the properties of the operator VA~!(a -b). Then using
paradifferential calculus, we localize the equation at frequencies fixed in a ring and we derive
good estimates of the remainder terms. In section 4 we prove Theorem 1.3. First, we establish
an a priori energy estimate for the solutions of (1.1). Then using Tataru counting method,
we deduce the local Strichartz estimates. These estimates and the smallness of the interval
[0,T] can be used to close the energy estimate. In section 5, we outline the proof of Theorem
2.7.

2. NOTATIONS AND PRELIMINARY RESULTS

2.1. Some basic facts in Littlewood-Paley theory. In the following, we give a brief
review of the Littlewood-Paley theory. We refer the reader to [4] for a thorough treatment.
Denote by Cy the ring defined by

Co = {¢ € R? such that g <| €< 2}7

and choose two non-negative radially symmetric functions y € D(B(0,4/3)) and ¢ € D(Cp)
such that for all £ € R?

(27 )p(27ME) =0 when |k —K|>2

X(©)e(27¢) =0,
and

X©)+ D) =1.

keN
Let C = B(0,2/3) + Cy, then C is a ring satisfying
2*CN2¥C =0 when | k—FK |>5.
Denote by
h=Ftoand h = F 1y,
and define the operator Ay, by, for all u € S’(R?),

B = 2Dy = 2% [ n(2y)ute — )y

Swu= Y Aju=x@ Dyu=2" [ h(yu( )y
j<h1 R
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2.2. Notations. The Littlewood-Paley decomposition can be used to define the Besov spaces.

Definition 2.1. Let o be a real number, and (p, q) in [1,00[?. Let us state

1
lullsy ey = (22 2 1 Awuln )"
’ keZ

Ifo< ;?l then the closure in S’ of the compactly supported and smooth functions with respect
to this norm is a Banach space. Note that 832 is the homogeneous Sobolev space H?. The
above definition can be extended to the case p = ¢ = oo where Bgopo is nothing but the

homogeneous Holder space C7 with the semi-norm
fuleo = lullgg = 502" | Agu .

In all what follows, C' denotes a universal constant which may change from line to line. We
also make the convention that (cx(t))r denotes a sequence which satisfies

Z Ck(t)2 <1

kEZ

ks
Typically, we take cx(t) = W In the sequel, we set

7Y = Ouj=o = (Vuo, u1).

For any real number 0 < a < %, there exists g, > 6 such that p(q,) = % + 5. We define

3 a
Sa = 53(6) +a = 3T p(qa) + 5
1 o 1, a
T$(v) i=T%a "2 ||y gea—1 = T8 |y]| groa—

and

1—2
N (y) =T T7(y).
If Bis a Banach space then then we set ||u||LqT(B) = |lullpa(jo,7),8)- In the special case ¢ = oo

and B = H?®, we simply denote

lullz,s = llwll oo 0,77, 172
Definition 2.2. Let 0 € R. Denote by ﬂ%(l’)’f p(Rd)) the set of distributions defined on
10, T[xR? such that

m k
lul s iy = 12 1Akl g ezl

is finite.
Remark 2.3. The spaces f/qT(ng(Rd)) are adapted to the method we use. First, we localize
in frequency by applying the projector Ay on the equation and then we take the time norm
before summing with respect to k. B
In particular, in the case p = q = 2 and r = oo, we simply denote by ||u||lr, = Hu||i%o(3§,2).
Note that we have Y
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lullr,e < llullr,o

and

HU”L‘IT(B;{I,) < HU”L‘IT(B;{,,)‘
Fix a cut-off function # € D(] — 1,1[) whose value is 1 near 0. For any sufficiently smooth

function v, we denote by G, 1 the truncated metric given by G, r(t,z) = 6(%)G(9v)(t, ).

2.3. Main idea of the result. Here we want to explain the choice of the parameters p, o
and ¢ in any space dimension. The basic fact in the proof of Theorem 1.3 is the energy
estimate. This requires the control of

T
(2.9) /0 |0G(0u)(t, .)| oo dt.

First, we recall the following law of product in B;g(Rd).

Proposition 2.4. Let r > 2 and % <o < %l, then for all a € BﬁQ(Rd), we have a® €

20— 2

Br,l . (Rd)

d

In the particular case where o = & — % and r < d, the above proposition implies that if

.d_1
ou € By * (IRY), then VA~Y(0u)? € L*°.
.41
Usually, the space B/ 2 is determined using Strichartz inequalities. In the constant coef-

ficients case, they are given by the following proposition (see [6]).

Proposition 2.5. Let C; be an ring in R% and u(t,x) be a function such that, for a positive
real number X\, the function Fyu(t) is supported in the ring \Ci.
Then, for any two positive real numbers q and r satisfying (1.7) we have the following estimate

(2.10) 10l L (ry < M ([|0uji=oll L2 + ClIDu] L3 (12))
wz’thu:d(l—%)—% and O = 0? — A.

Let us first explain the idea how one can have a control of ||0G(du)|| L1 (L) in the simple
case where u is the solution of the free wave equation. We want to estimate

T
/ |10AY(Ou - du)(t, )| Lo dt.
0

We have to estimate an expression of the type
T
/HA‘l(azu-8u)(t,.)||Loodt.
0
Recall the Bony’s decomposition (see [5]).

a-b="T,(b)+ Ty(a) + R(a,b),

where
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Ta(b) = Zsj—l(a)Ajb

and the remainder term is

R(a,b): Z AjaAj_lb.
JEL
—1<1<1

Using Holder inequality and Bernstein’s Lemma, we have

_ _2 a_
1A 7 Sk1(0*u) Agdul g () < CT' ™0 > " 2G2S 1 (0%u)| 1o (o) [ A kO 11 (1.
p p

On the other hand, applying Bernstein’s Lemma and estimate (2.10) to the first factor in the
above sum, we have

'(d
HSk—l(a2U)|’L‘IT(L°o) < C Z 2k(TH)HAl'c’(?U”L‘IT(LT')
k' <k—2

k'<k—2

and applying Young’s inequality we obtain

Setting po(q) = 5 —

3k
Hsk—l(a2u)”L‘IT(L°°) < C22 Vlla 14 p(g)-

Therefore HA_1T82U‘8UHL%(LOO) < CT2PO(q)H’Y”2%_1+p0(q)‘

The symmetric term can be treated exactly along the same lines. For the remainder term we
have, for all r > 2

1A,A7" > Ap(0*u) Ak jOul| (e <
—1<j<1
k>p—No
a_
o N 2PN AL | g (1o | Ak O g (1)
k—p>—No

Thanks to Strichartz inequalities (2.10) we can rewrite the above inequality as,

18,870 37 AW W) AL 0ul g gy < CT*0 Y7 20 PG DG 0@ A7,
E>1§j§1 k—p>—No
Zp—Ng

Applying Young’s inequality (since moreover r < d), we obtain

-1 2 2 2
[AT R©u, 0u)ll g ey < CT DG -

Therefore,

10G(Qu)(t, 11 (1) < CTz”O(q)\IVI@_Hm(q)-
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Remark 2.6. Observe that in the above setting, a loss of derivative pg = 0 corresponds to
the choice ¢ = 2. If d = 3, the pair (q,r) = (2,00) is not admissible and therefore it seems
hard to reduce the reqularity index to that given by scaling arguments using only Strichartz
estimates. In our work, we prove an LI(L") version of local Strichartz estimates. The loss
of derivative p(q) that we obtain is p(q) = po(q) + 1/3q, where 1/3q is the loss due to the
summation of the microlocal Strichartz estimates.

2.4. Strichartz inequalities. Let G = (Gp)a>a,>0 be a family of smooth, matrix-valued
functions defined on Iy x R? where I, is a time interval containing 0. Denote by

(2.11) IGllo := sup [10GAllLs (1<) + 1Al VZGall Ly (roe)
A>Ao A A
and
(2.12) Gl; := sup |[TA|AY|VIT2GA |12 (o) forl>1,
A>Ag e\
and assume that |G|z is small enough. Let Py be the operator
(2.13) Pyvi=0fv— Av = GRloow.
k,l

The Strichartz estimates that we will use are the following

Theorem 2.7. Let g be a positive real number and C be a fived ring in RY. Fiz (q,7) € [2,00[?
such that % =(d—1)(3 — 1) ¢#2if d=3, and consider a family G as above and such that

for any l, |G|l is finite and ||G||o is small enough i.e ||Gllo < d. Then, for any positive real
number € < g9, a constant C exists such that if vy is the solution of

Pyoy = f
(Ex) { OVAjr=0 = 7
on an interval In satisfying
[Ia| < A*7€,
and where f € LY(In, L?) and v € L? are two functions for which the Fourier transform is
included in C then va satisfies the following estimate
(2.14) 10vAllLacry, vy < CUAN L2 + 1 fllzr(ra, £2))-

This estimate is established by Bahouri-Chemin in [1]. The proof is based on a dispersive
estimate satisfied by an approximate solution to (1.1). We shall outline the proof of Theorem
2.7 in Section 5.

3. PARADIFFERENTIAL CALCULUS

In all what follows, we take d = 3. Along this work, we shall deal with quantities of the
form A~!(a.b). In the sequel, we summarize some of their properties.

Lemma 3.1. Assume o > %, then a constant C exists such that

(3.15) 1874 @ B)l oy < Cllalljros 8l g + bl ol 3)-

Moreover, if o > % — % with v > 1 then,

(3.16) 187 @ Bl ony < C(lall s Bl 2y + 10l s lall 3 y).

r,2 7,2
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A constant C exists such that

(3.17) IA™ a-b)ll .3 < Cllall .5, 1Ibll,

HB;?Z’1 H%A-

Moreover, if 1 < r < 3, then a constant C exists such that

T2
Br',2

(3.18) VA= @)l o < Clall 3y 6] 2y
1 Br',2

Proof. The proof of this lemma is an easy application of the paradifferential calculus. We
refer the reader to [4] for the proof of (3.15) and (3.17). For the sake of completeness we shall
prove (3.18) and (3.16).

We apply Bony’s decomposition

a-b=T,(b)+ Ty(a) + R(a,b).
We begin by proving the following

o8l -1 < Cllall a1l 9_3.

which clearly proves (3.18). Using Bernstein’s lemma and the fact that R(a,b) has a Fourier
transform supported in a ball, an integer Ny € N exists such that for all k € Z,

IAkR@D) e < D A al e[| Aj_ibl|Lr

j=2k—Ngp

—1<1<1
-3
< > 2rllAalilAb
i>k—Ng
—1<i<1
Hence,
2V AR@D) |l < Y 28208l 12D Ao
Jj2k—No

Using Young’s inequality for sequences and the fact that r < 3, we obtain
> PCIAUR@H) ||z < Cllall 5y 18] -

T2
ke 2 Bro

To conclude the proof of (3.18), it suffices to estimate the term ||AT,(d)| - and do the same
for the symmetric term Tj(a).
Note that the Fourier transform of the function Sj_i(a)A;b is included in a ring of the type
2/C. So

Z Ak(Sj_l(a)Ajb) = Z Ak(Sj_laAjb).

JEZ lk—j|<5
Moreover, applying Bernstein’s Lemma and Young’s inequality, there exists a sequence (d;)
satisfying > d? = 1 and such that

J
> A < 22djllal 2y
1<j-2 2
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Therefore,

3_ _i)(3_ (3 _1
25D AT (b)) e SHGHBgf% > 2 IEI(a;27G ) | A ).
"2 |k—j]<5

Taking the sum in [*(Z), we deduce (3.18).
To prove (3.16), we choose 3 > 1 such that % = % + % Applying Bernstein’s lemma and
Holder inequality we obtain

3 3 k
2OV AR@ D < D 2D Al b
j=k—Ng
S1<i<1
< ¥ 2(k=)=3+ 291G =)|| Aja) 20V || A, _ib| 2
Jj=k—No
The fact that o > % — % completes the proof. O

To establish an H® energy estimate for the solutions of (1.1) and for non integer values of
s, we also use the paradifferential calculus. The problem is then to study the commutator
between a multiplication and the pseudo-differential operator Ay.

3.1. Paralinearization of the equation.

Lemma 3.2. Let s > %— % A constant C' exists such that, if u, v and F are three functions
satisfying:

du and Qv are in LF(H*~1)N L%(Bf;%), Gyr € LL(L®), F € LL(H*"') and
afu —Au—Gyr- Viu=F,
then, uy := Agu is the solution of
Py, — Auy, — Si—1(Gy1) - V2uy, = Fj, + Ry (Vu, 0v),

where Fy, = AR F and the remainder term R (Vu,0v) satisfies the following estimate

1BK(Vu, 00)(¢, )2 < Con()27 " VIVGyr(t, )| Vult, lls—1
+ CCk(t)Tk(S_l)H@v(t,’)Hs—lllf%(t’-)HB [Ou(t, )| 3

2-3 -3
T T
r,2 BT‘,Q

Proof. Theorem 2.1 in [3]. We split the product G, 7V?u into the two following terms.
GU7TV2U = Z Sj—l(Gv,T) . V2Uj + Z Sj+2(v2u)Aij,T
r ,

J
= Ri+ Ro.

As previously done, the first term

Rl = Z Sj_l(Gv7T)V2Uj
JEZL
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is easy to estimate since the Fourier transform of Sj_l(GuT)Vzuj is supported in the ring
2JC. Hence, we have

ARy = Sr1(Gy Uk—i-z i21(Gor) = Sk—1(Gor)) - AR(VZuy)

+ Z [Ak,Sj_l(GU,T)]V Uj.

lk—j|<5

Using the following estimate on the commutator (for more details see [4] or Lemma 8.2 in

[9);

1Ak, albll 2 < C27F||Val| oo [0 2,

we get
D Ak S-1(Gon)]Viuylle < C Y7 27FVSj1(Gor)ll | Vull 2
k—jl<5 k—jl<5
< CIVGurll|Vuls—r27¥e=D 3™ olk=i)le=he; )
|k—j]<5
< Cop(t)|[VGor| e || Vul|s—g 2770,
Hence,
D Ak Si-1(Gor)] VPujll 2 < Corn(t)27F VG 1l Lo |Vl 51
k—j|<5

Similarly, applying Cauchy-Schwartz’s inequality and using Bernstein’s lemma we have
1(Sj-1(Gor) = Sk-1(Gor)) - Vusllpe < Y 27 VG iz ]| o2 || V| 2.
le[j—2,k—2]

Therefore,

1Y (Sj=1(Gor) = Skc1(Gor)) - VPusllpe < [VGorlie | Vullsey Y 2772776 g,

lk—j]<5 |k—j]<5
le[j—2,k—2]
Note that since the number of I, [ € [j — 2,k — 2] such that | £ — j |< 5 is finite, then
IS (S5-1(Gur) = Skca(Gor)) - Pulzz < CIVGur o= Vuloey 3 2776V,
k=]<5 k=]<5
Using Young’s inequality, we get
IS (8m1(Gur) = Ser(Gur)) - V2 lp2 < CIVGy ol Vulls— 2756 ey ().

]7|k_.7‘§5

Now we estimate the term Ry. The Fourier transform of Sj+2(V2u)Aij7T is included in a
ball of the form B(0,C27) then

AkRQZ Z Ak(5j+2(V2u)Aij,T).
JZk—Ny
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Moreover, the following estimate

.3
18j+1(V?u) |20 < 22| V]| ,_y

1

.31 .
together with the fact that the space B, , * is continuously embedded in ¢-3 give

3
I851(V2u)li < 273 Vull 5y

r,2

The above estimate and Lemma 3.1 show that

14(Gor) (B)llz= < Ces(0)277F D [a0(b)l] 2y [190(t) s
7,2

Using Young’s inequality for sequences, the proof of Lemma 3.2 is complete. O

In the proof of Theorem 2.7, we need to localize equation (1.1) in such a way that the
frequencies of the metric are much smaller than those of the solution. In fact, the pseudo-
differential operator defined above does not have any symbolic calculus and therefore they do
not allow the construction of a parametrix for the operator (2.13) in the spirit of Hadamard’s
method. In the following corollary, we prove a precise paralinearization.

Corollary 3.3. Let s > %—% A constant C' exists such that, if u, v and F are three functions

satisfying:

. 31 .
Ou and v are in L (H*~1) N LL( ro2), Gur € LL(L>®), F € LL(H*™Y) and such that
afu —Au—Gyr- Viu=F,
then for any 6 € [0,1] , we have
DPuy, — Auy, — SU(Gor) - Vi, = Fy + Ry (Vu, dv),
where

Spb = Sks—(1-8)Iny T—NoD
and

IBY(Vu,00)(t, )y i) < Cer2 ™ D4+ @) ) [IVGurl g oy IVl
1—2
+ T 000l 11100 g o 10l g i) |
Proof. Using Lemma 3.2 we can write

RY(Vu,dv) = Ri(Vu, ) + (S2 — Sk_1)(Gor) - Vuy,.

Hence it suffices to handle (Sg — Sk—1)Go1 - VZuy.
Note that

(SR = St—1)Go.r - VZurll 112y < 157 = Sk-1) Gl 13 (1o I V20| Lo (12)-

On the other hand, thanks to Bernstein’s lemma we have
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180~ Sk )Gurlnumy < C X0 2 PANYG) i o
p>kd—(1—9) Ino T— Ny
< CIVGy) Iy nee) > 27F

p>kd—(1—08) Ina T—Nog
< 02_k6+(1_6)ln2T‘|VGv,T||L%F(L0<>)-
Noticing that 2~ *3+1=0)n2T — 9=k(9kT)1=9 ' we obtain the desired estimate on the reminder
term. O

4. PROOF OF THE MAIN RESULT

Recall that

3 «
So = 53(6) +a = 2 + plaa) + 5.

1l a 1—-2
(4.19) L7(y) == TS|yl e and Nj(y) := T~ aT%(7).

To solve (1.1) with initial data (ug,u1) € H®> x H*~! with a small a > 0, we define the
following iterative scheme. First, let u(?) be the solution of the free wave equation

8t2u(0) — Aul® =0

(U(O),atu(o))u:o = (Souo, Sou1),
and inductively for n = 0,1,2, ... define u("*1) by

8t2u(n+1) _ Au(n+1) _ Gu(n) T V2u(n+1) =0

(u™ ), 9TV o = (Sps1uo, Sng1ua).-
For simplicity, we shall define Gy, 7 := G\, m) - Then, all we need is to show that if 7" is small

enough, the sequence (u(™) is bounded and is a Cauchy sequence in the space C([0, T]; H*~1).
To do so, we introduce the following assertions which we prove by induction.

106 5 (37 < Col(7)
(Pn)
[0u™]|7,5-1 < €3||y]ls—1 for any s € [3 — 2 + @, 3 + p(ga) + af.

To prove Theorem 1.3 we show that if ||y||a_; + NF(7).I'F(v) is small enough, then (P;)
2

is satisfied and (P,) implies (P,+1). First, we point out that under the inductive hypothesis,
we have the following a priori control of the metric.

Lemma 4.1. Assume that (Py,) holds, then we have
(4.20) |Gnrll= < CIMIE_,

and
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Tia 2
(4.21) 10Gn7 | L1 (1) §C||7||2g + Co(TT5 7]l s0-1)"

31

Proof. This result is an immediate consequence of Lemma 3.1. In fact, (3.17) and (3.18)
together with (P,,) imply (4.20) and (4.21) in the case where 0 is a space derivative. However,
the proof of (4.21) with 0 = 0, is quite different. In fact, noticing that

1 . .
OGnr = T(aﬂ)(T)G(@u(")) + H(T)QG(%(")),

and using the equation satisfied by «(™), the term 8tG(8tu(”)) could be developed as a sum
of terms of the type A~ (AuV . gu*=D) and A~HG,_1VZu1) . gu(*=D). Obviously,
A7 (AuD . 9u*=1) can be estimated as in (3.18). On the other hand, using the following
law of product

(4.22) la-bll sy < Cllall g 16l 2 1,
B’:,Q Bz,l B;,z
3.1
we deduce that G,,_10u(™ € B, ?, and again applying (3.18), we get (4.21). The proof of
Lemma 4.1 is then complete. ]
4.1. Energy estimate. The energy estimate satisfied by u("*1) is the following.
Proposition 4.2. Assume that (P,) is satisfied then, for all real number s 6]% - %,% +
p(qa) + @], a constant C exists such that for all t € [0,T], we have
4.23)  [0u" D et < s (L CCNENIOu™D] 5y ).
L%“a (BTT;2 2)
Proof. Recall that according to Lemma 3.2, the sequence u,(gnﬂ) = Apu™tD) gsatisfies the
equation
1 1 1
(4.24) Pl — AWl — S (G ) - VRS =

Ri(Vu™™ ou™),

with the following estimate
| Re(Vul"™ ™, 0u™)(t, )| 2 < Cep(t)27HDVE oo pllooe [ Vu™ (¢, ) [ls-1
+Cc ()27 0ul™ (&, ) [ls—1 |0ut™ (£, )] 5y 10wV (2, )| s

2 -4
B'r,2 B'r’,:2

=

Multiplying (4.24) by atu,i"+1) and integrating on R3, we obtain
1d

S ou ™ 122(8)+ < Sko1(Go) - V' ™ V™™ > 12 () =

1 n n n
5 < Sk_l(ﬁterT) . Vu,i +1), Vu,i +) >r2 (t)+ < Rk,&gué +1) >r2 (t)—

S <50, o gD > e ().
1<j,1<d

The above estimate on Ry, (Vu(™t1) gu(™) yields,
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- [l )24 < S 1 (Gor) - VAT V™Y S s (1)] <

N =
&|Q‘

ClOG 1 (t, )| o [ul (¢t )|22+

C27 M e (0)]|0u Y (¢, |2 |V (G (8 Neoe [T () o1+

C2 M Ve 0u (el 00 ()l g2y 106D e 2y 100" 8l
7,2

Multiplying by 22k(s—1)

1d
2

, summing and using (P,,) we obtain

06D+ R ()] (1) < CIOGor)(t e 9Dt 21+

Cllvfls=1l0u™ (2, M1 |ou™ ¢, M1 [Ou" TV (2, )[s—1,
where we set

t) =Y 226D < 5§ 1(Grr) VY VulY > ().
kEZ

Now, choosing |v||4_, small enough such that for a constant 0 < ¢ < 1, the following holds
2
ouTHD (#, )2y + halt) < ¢ HOut™ V()12

Therefore, using Gronwall’s lemma and the embedding ;‘,’2 (R3) — C‘%(R3) we deduce that

t
1ou D (8, Ys1 < eXp(C/O (0GR )(#, )lzoe ) 17]]s-1

(4.25) - 1+ CCNG)[ou™ I (@, ) s ]
L (B, ?)

The choice C’||7||2%_1 + CCoNE(Y)||V]|sa—1 < 2 completes the proof. O

The following result enables us to obtain an a priori control of the remainder term for the
precise paralinearization.

Lemma 4.3. A constant C exists such that under the hypothesis (Py) we have for any § in
the interval [0, 1]

n+1

puptt — Aupt! Sk(GnT)VQ w = R(n)
auk k=0 = Tk

with Sgb = Ské—(l—é) Ins T—N()b and

IRE 2y < Cop2 H 0730 (2PT) "R 5T () (1 + @T)' =) (1 + CCONT (MO | g0 s
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Proof. Applying Corollary (3.3) with ou = du(®t1), 9v = 9v(™ and s = s,, we have

IR (M)llzs 2y < Cen2 V(14 28T)' ) (IVGall by (1o [V 7501
- n n n
+ T8 0 s 1106 g sy 106 | g i)
Using (P,,), (4.20), (4.21) together with the energy estimate (4.23) we obtain

_ 1

_k(1—-L 1«
1R ()| 1 12y < Cer2* 0730 (25T) ™50 ~ 319 (7) (14+(25T)'=%) (14+CCoNg (1) | ou™ V|

Thanks to (4.19), the proof is complete. O
Now, we are going to estimate ||Qu("+1) ||an " 34 . We split this study into the two cases
T ,2
of low and high frequencies. The following result deals with the low frequencies.

2 a
Corollary 4.4. Assume that (2kT)(3q_a_7) < C then, there exists a constant C' such that
under the hypothesis (Py), we have

2 _a
05D s gy < CT5e ™ STF0) 1+ CONFOOU™ D, a )
5 T 7,2
Proof. Using Bernstein’s inequality, we have
22 oug™ (¢, ) |3 < 02D oul D (1, e, .

Moreover, thanks to the energy estimate (4.23), we have

or n A o 2 « « n 2
224 9u ™R g 1) < CT7 (25 T)2 500" HTG(7)2 (1 4+ CCONE (7)™ | )%

LI (B, %)

Choosing « small enough, summing and noticing that % -5 = % — « the proof of the

corollary is complete. ([l

4.2. Strichartz estimates and the end of the proof of Theorem 1.3. From the mi-
crolocal result (2.14) given in Theorem 2.7, we deduce the following local statement.

Lemma 4.5. Let € be a positive real number and G be a metric such that for a sufficiently
small constant cy, we have
10G| L1 (1<) < co-
_ 2
Fix g > 2 and r such that % = % - % A constant C; exists such that if we set G := S} G and
assume that the Fourier transform of v, fr(t,-) and ug(t,-) are supported in the ring 2FC,
then the solution ug of

(E ) 8t2uk — Auk — kaVQuk = fk on ]O,T[XR?’
F Ougji=0 = Yk
satisfies

1_1

1_1y 1 1 _1
(4.26) || Qu || 11,1y < C2PETH 7T @A TS (|Our | e 22) + (2FT) 75| full g2y

V).

Ly By ?)
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Proof. Fix k big enough (this corresponds to the high frequencies case). Suppose that we can
construct a finite partition of the interval [0, T7;

KLT]ztﬁigwﬁgl

where Ij; = [tk ,tg+1] and assume that, for every I = 0,1,...., N(k) (except probably for
I = N(k)), the following property holds

’Ik,l’ ||fk||L1(Ik,l7L2) ‘[k,l‘
—is 1
T(2T)757° (M) 75| fullpney T

2 _
(427) (2kT)§||VGkHL1(IkJ,L°°) — 5

Recall that § is small enough and it is given by Theorem 2.7. Then we have the following
consequences:

e A constant Cj exists such that the number N (k) of the sub-intervals Iy ; is estimated
by

(4.28) N(k) < C5(2¥T) 5.
In fact, denote by ¢U) (k) the set of all the I’s such that the j** term in (4.27) is the biggest,
and decompose N (k) = Ny (k) + Na(k) + N3(k), where N;(k) counts all the I’s in o) (k). For

every | € 0 (k), the 5 term in (4.27) has to be greater than or equal to g. Therefore we
have

I
(4.29) % >0 forall e oM (k),
T(2kT)"s7= 3
(4.30) kak_HlLl(Ik,l,LQ) > g forall e 0'(2)(]€),
2*T) 75 fell a2y

and

| ok 21105 J 3)
(4.31) LT IVC e 2 5 forall Lea® (k).

Now after [ summation in (4.29) and (4.30), we obtain

3(2kT)5+e

(4.32) 3(2kT)3te

| S

and
3(2+T)3
Ny (k >
2(k) < 1ullzs 22y 1e0@ () | fill L1 (14, 22)

1
(4.33) 3(2+T)3
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respectively. On the other hand, from (4.31), we deduce that

3
(35

Taking the square root of the above inequality and summing over the set 0(3)(/<;) we obtain

1

Iy, 1ios 2
(4.34) (2’@)3% + (23| VGrll 1)) = 1.

3 1 1 -
(4.35) Na(k) < oo(PT)} + (2T) [V Gl 1y 1.0

From (4.32), (4.33), (4.35) together with the hypothesis on the metric G, we deduce the
desired estimate (4.28) on N (k).
e On each sub-interval I}, ;, the solution wuy, satisfies the following microlocal estimate

E[3(3—1y_1
(4.36) 10wl o oy < 27T Our ()22 + 11 vl 1 .2)-
In fact, rescaling uy(t, x) = v(2¥t,25x), it is clear that vy, satisfies

8t2vk — Avg, — Hp V30, = g,

where Hy(t,2) = Gp(27Ft,27%2) and gi(t,z) = 22Ff(2Ft,2%2). Let us verify that the hy-
pothesis of Theorem 2.7 are satisfied by v; on the microlocal interval Jj; := 2k ] k-
First note that choosing A = (2kT)%, we have

|Jk,l| < (ZkT)%—e < A2_3€.

Second, it is clear that

2Kt 141 B
1OHl s,y 1oy = 27 /2 105t )

e,

”8G—kHL1(1kJ, Loo)

IN

(4.37) 10G| L1 (j0,77,5)-

_ 2 2
In the last inequality we used the fact that Gy := S} G and the boundedness of S} in L°°.
The smallness of ||OG||1((o,1],o0) implies then the smallness of the left hand side of (4.37).
Similarly we have

25t 141 B
IV2Hill 1, ) = 2_%/2 IV?Gr(27%t, )| o

iy
—k o2
= 2 ”v Gk”Ll(Ikthoo).
Applying Bernstein’s lemma we obtain

(2573

IV?Gyll= < C T

Integrating with respect to time we deduce that
(2673
T

VG|l Lo~

HV2G_/€|’L1(I;€J,L°°) <C

HVG_k7 ”Ll(_[kyl, Loo).
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Therefore,
|Jk,l|||V2Hk”L1(Jk,z,Loo) = |Ik,l|Hvzék”Ll(lk,th)
okTYE
< TV G
(4.38) s Co.

For the last estimate, we have used (4.27). This shows the smallness of ||(Hg)|lo. Applying
Theorem 2.7 and using the fact that

Zk(%'f‘%_ )

1
||8Uk\|Lq(Jk,l, Lry = ||8Uk\|Lq(Ik,l, LT)

and ,
k(3=
HgkllLl(Jk,l,L?) = 2G| fill b g, 12
we obtain
k[3(1-1)-1
10ukllzagry,, vy < 2P D7D (|Our(ta)llz + [ full oy, 12))
as desired.

e Estimate (4.26) is deduced from (4.36) by summation. Precisely,

HaUkHLq (L") Zl 1 HaukHLq Ikl L")
_____ 1
< N(k)2BG=) (||3uk\|L°°(L2) + @) 75 fill Ly 2) "

Using the estimate (4.28) on the number of the sub-intervals we obtain

1
10wkl 1y < C2BGD 73 @) 3 (|0ug | e 1) + ¥T) 3| fill g 22)-
Now to achieve the proof of Lemma 4.5, it remains to show that such a finite decomposition
exists. This is done by induction.
Assume that there exists an increasing sequence (t;)o<;<p of points of [0, 7] such that ¢, < T
and, forany 0 < j<p—1

tit1 —t; (2873 tj+1
i, Tt — 1 (t, )l L2 dt
T(2kT)"57¢ 1fellLs 22y Ji,

tiiq —ts [ZES} _
+ A [ VGt umdt =6
t

j
As the function

t—t (28T)3
E,(t) = e+ f dr
o) 721y 57 I fellos H e()le
et [ VGl
tp

is increasing on the interval [t,, T] then, either the interval [t,, T satisfies the condition (4.27)
(but with an inequality < ¢ instead), then t,;; does not exist. Note that this does not
affect the order of the number N (k). Or, a unique ¢, exists in the interval |t,, T'[ such that
F,(tp+1) = 6. This is a finite procedure because of the compactness of [0, 7. 0
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As a consequence of Theorem 2.7, we have the following corollary

Corollary 4.6. If T1_78+0‘H7||3%1 s small and the constant Cy is large enough then, assertion
(Py) implies assertion (Ppy1).

Proof. For 2*T > C, we use the Strichartz estimates (4.26). We have

3_1 n+1 L - n+1 _1
G2 0uf V| g 1y < C25 070 @) 5t (|0 e 1)+ 2T TR ) 13,12y

Observe that taking § = % in Lemma 4.3, we have the following estimate on the remainder
term

% —k(l—i) ke — e — & ke £ n+1
1B MLy r2y = €27 5 (27T) Fe 2T (y) (1 + (2°T)3)(1 + CCoNr (1) |0u™ | ao (71,))-

Now, combining the energy estimate (4.23) and the inductive hypothesis (P,) to the above
estimate we obtain

< C.2"T)* 2 TF(7)(1 + CCONE () [|0u D (¢,.)] 1)

2k (1) | o+ o
Lg"a (BTT;2 2)

Mo o
Ly (L")
On the other hand if 2T < C, then Corollary 4.4 claims that

3_1 n a « n
S 20wV gy < CLFM) (1 + CCONR() 0w (2, )]

-3 _ 1 .
L (BF’E))
kE€Z:2FT<C

Finally, observe that T2(1_78"'°‘)||7||§a_1 = I'?(7)Ng#(y) and if T%+°‘||7||sa_1 is small enough
then

|’8U(n+1)HL‘ITa(B%’%) < CoI't ()
and
10w I7,5-1 < €*[[7lls—1(1 + CTH(V)NE(7)).
This completes the proof of (Pp,41). O

5. SKETCH OF THE PROOF OF THEOREM 2.7

Let’s recall the following fundamental result due to H. Bahouri-J-Y. Chemin (see [3] and
[1])-

Theorem 5.1. Let Py be the operator given by (2.13) and denote by (va)a>a, the family of
solutions of

Pyop = 0
(va, 000 )0 = (1°,71).
For any integer N, there exist two functions If\t(’y) defined on In x R3 with
Iz < A*75,

and satisfying
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(5.39) [0(va — Iy () — ZX(’Y))HLE; (r2) < CA™N |2
and

4 C
(5.40) IZX ()7, )z < — 17l

Remark 5.2. The above result stays true if vn solves the wave equation with “conservative
Laplacian” i.e

(5.41) Pyup = 2o — 8;(GFapun) = 0.
where, we set éf\k = G{Xk + 6jx. Therefore, in the sequel we assume that va solves (5.41).

Proof. Note that since the Fourier transform of vy is included in C, then Bernstein lemma
together with (5.39) and (5.40) show the dispersive estimate

C
loa(r, M < =l

Interpolating the above inequality with the energy estimate we obtain,

C
(5.42) loa(m)llr < =75 1l
T

The proof of Theorem 2.7 can be achieved using a variation of the so called TT* method
(described in [6]), for non autonomous equations. In the sequel, we follow the idea of Klain-
erman [8] and Klainerman-Rodnianski [9].

Let P denotes the projection onto functions whose Fourier transform is supported in C. Let
H:=H'x L? X = LL(L"), X' = LL(L"). For two real valued vector functions u := (ug, u1)
and v := (vg,v1) in H we define

< U,V >:1= / U1 + éi\k(t = O)ajU()ak’Uo,
R3

where we set C?ka = Gg\k + 0.
For a space-time function ¥ (¢, z), we denote by ¥[0] := (¥(0),0,¥(0)). Given u € H, t and
s two real numbers, denote by
O(t, s,u) = (¢,0:9),
where the function ¢ (uniquely) solves (5.41) with (¢(s, s, u), 0ro(s, s,u)) = u.
First we prove (2.14) for dyup. Set ¢ = vy, and define the operator A by
Au = —P0o,®(t,0,u).

The goal is to show that A : H — X is bounded operator with an operator norm || Al|x—x =
M. It is clear that (2.14) can be derived from (5.42) with a large constant depending on A.
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Using this as a bootstrap assumption we have to establish a uniform bound with respect to A.
To do so, it is sufficient to exhibit the expression of AA*, prove that

AA* X — X
is bounded and establish the relation between the norm operations
[AA* |0 x = M>.

By definition of A* we have
T
<Afusi=(fAne=- [ [ oerr.
0 Jrs
Let U solve PA\W = Pf with (¥,8,%);—7 = 0. Integrating by parts (in time), we obtain
< A*f,u>=<u, V(0] + R(f) >,
with R(f) : X' — H given by
T ~
<u,R(f) >= —/ / Y Py Oy pdxdt.
0o JRrs

Therefor,
AA* f = AY[0] + AR(f).

Using the definition of A and Duhamel’s formula, we can write
T
AT[0] = P/ 0t 5, (0, P (s)))ds,
0

with F(s) = (0, Pf(s)). Applying the dispersive inequality (5.42), we obtain

C
[P0 @(t, s, (0, Pf(s)llr < o5 1P F ()7
|t — s
The Hardy-Littlewood-Sobolev inequality implies that
(5.43) [AV[O]]| La(rry = [PO®(t, s, () a(rry < CllfllLacer)

as desired. Note that C' is A independent constant.
Now we estimate the term AR(f). According to the bootstrap assumption, we have

IAR(f)|zazry < MIIR(f)In-
On th other hand, using the definition of < u, R(f) >, we have

|R(f)lx: = sup <u,R(f)>

el <1

T
= sup -— / Y PrOrpdxdt.
0 JR3

flufl ¢ <1
Now observe that Pydi¢ = 0, Pr¢) + 0; (81«/@%38;6(;5), and since ¢ solves (5.41) then

PrOo = 0;(8,GhF00).
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Therefore, after (a space) integration by part

T -
IR)In =  sup / / 060,CI* 0
0 R3

lullxn<1
< 10GE N 11 oo |09 oo (£2) 10| oo (12

Thanks to the energy estimate applied to ¢, the L'(L>) bound on the metric G and the
fact that ||ulln < 1, we deduce that

(5.4 JARC) oz < 100 i 12
The following Lemma enables us to estimate [|0%|| oo (12
Lemma 5.3. Let v be the solution to Pyip = Pf with (T) = d)(T) = 0. Then,
109l oo (£2) < 2M || fll LacLry-
Note that the above Lemma together with (5.43) and (5.44) imply the following bound
M2

M2 = [|AA xrmx < C+ =

and therefore, M 2 < 2C? as desired.

To prove Lemma 5.3, we consider a time ¢ € [0,7") and define ¢ to be the solution to Prop =0
with initial data ¢(t) = ug, ;¢ (t) = uy, and |lulj3 < 1.. Recall that ¢ solves Pyyp = Pf with
zero initial data at time t = 7. Multiplying Py¢ by 8,4 and Pyt by d,¢ and we integrate in
[t,T] x R3 to get the identity

~ T ~
/ (8t1[)8t¢ + G?\kaﬂﬁakqb) (t)dl‘ = — / / (6t<;5Pf + atngkaﬂﬁakqb) dxdt
R3 0 R3
Hence,

109 1< 12y < 1P Laciry I f | aczry + CHOGE 1 (1) 0% || oo (£2) 10l oo (12)-

From the bootstrap assumption, we know that ||PO;¢|| e (,r),r) < M|ull < M. Moreover,
using the energy estimate [|[0¢|| o (z2) < 2[|ully < 2, and therefore,

|00 e 12y < M F oy + CIOGK Nl (o 109 e 12-
Since ”8@‘3\k”L1(Loo) is small enough, then
109 Lo 2y < 2M || f | La(zr)

as desired.
Now we use the above result to prove (2.14) for a space derivative d;¢. Let f be a function
in LY(L"). As before, we estimate

T
I::/ / POyb fdudt
0 R3
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by introducing the function 1 solution to Pytp = Pf with data ¢(T) = d,)(T) = 0. Hence
integrating by parts,

T
7 / WP\ ddudt + / 1(0)9,1h(0) + A (0)9,6(0) .
0 R3 R3

Commuting Py and 9 as before we obtain

T - .
[ oPsonodedt 1< 106 sy 190l =m0 0
Also,
| 20(00150) + 00(0)316(0)d < [06(0) 2|90 112

Applying the energy estimate we obtain
109 Lo (£2) < 2([0(0)|| 2

Moreover, Lemma 5.3 implies

109 Lo 2y < 2M || f|La(zr)
with the bound M obtained in the~ previous step. In particular M does not depend on A.
Therefore, thanks to the bound H(‘)Gf\kH Li(re<), we deduce

Z < OM|[06O0) 2 £l acer)

which proves that

PO@| Larry < CM||0p(0)| 12
as desired. The case of inhomogeneous equation can be deduced from the above result by a
standard technique. We refer to [8] for more details. O
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