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Abstract. This article is concerned with local solvability of the Cauchy problem for a
quasilinear cubic wave equation in dimension d = 3. Here, we improve the index of regularity
of the initial data compared to the one given by classical energy methods.

1. Introduction

This paper is devoted to the construction of local (in time) solutions of the Cauchy problem
for a d-dimensional quasilinear wave equation of the type

∂2
t u− ∆u−G(∂u) · ∇2u = 0,(1.1)

where we set ∇u = (∂1u, ∂2u, ..., ∂du), ∂u = (∇u, ∂tu) and

G · ∇2u =
∑

1≤j,k≤d

Gjk∂j∂ku.

Quasilinear wave equations appear frequently in general relativity such as Einstein equations
or relativistic elasticity, hydrodynamics, minimal surfaces etc. We consider the particular
case where the d× d symmetric matrix G satisfies the following elliptic equation

−∆Gjk = Qjk(∂u, ∂u)(1.2)

where the (Qjk)j,k are quadratic forms on R
1+d. This is known as the quasilinear cubic wave

equation (see [3]). We assume that the initial data

(u, ∂tu)|t=0 = (u0, u1),(1.3)

is in the standard Sobolev space Hs ×Hs−1.
Recall that using the energy method, one can prove the local well-posedness for the system

(1.1)-(1.3) when s > d
2 + 1

2 . The crucial fact is to estimate the first derivatives of the metric G

in L1
T (L∞). In fact, assuming that ∂u ∈ L∞

T (Hs−1) with d
2 + 1

2 < s < d
2 +1, then the classical

law for product shows that ∆−1(∂u)2 ∈ H2s− d
2 , and thanks to the Sobolev embedding we get

∂G ∈ L1
T (L∞). More precisely, we have the following result.

Theorem 1.1. Let d ≥ 3, s > d
2 + 1

2 and (u0, u1) ∈ Hs ×Hs−1.
Assume that ‖(∇u0, u1)‖

Ḣ
d
2−1 is small enough. Then, there exists a positive time T and a

unique solution u of the system (1.1)-(1.3) satisfying

u ∈ C([0, T ];H
d
2
+ 1

2 ) ∩ C1([0, T ];H
d
2
− 1

2 ).

Moreover, a constant C exists (depending only on the initial data) such that T ≥ C‖(∇u0, u1)‖
−2

Ḣ
d
2−1

.
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Here, Ḣs denotes the homogeneous Sobolev space endowed with the semi-norm

‖u‖2
s :=

∫

Rd

| ξ |2s| Fu(ξ) |2 dξ.

To improve upon the above existence result, one can use the smoothing properties of equa-
tion (1.1). Notice that (1.1) is invariant with respect to the dimensionless scaling u(t, x) →
u(λt, λx). This scaling preserves the Sobolev space of exponent sc = d

2 , which is then (heuris-
tically) a lower bound for the range of permissible s. Hence, the above theorem seems to
require an extra 1

2 derivative. The goal of this paper is to try to go as close as possible to the
scaling invariant regularity.
Some results in this direction were obtained, in particular, for the equations of the form

∂2
t u− ∆u− g(u) · ∇2u = F (u)Q(∇u,∇u),(1.4)

where
g · ∇2u =

∑

1≤j,k≤d

gjk∂j∂ku.

Q is a quadratic form on R
d, F ∈ D(R) and g is a given smooth function, vanishing at 0 and

with values in K such that Id+K is a convex subset of positive symmetric matrices.

Recall that in the case of equation (1.4), the energy method allows us to prove the local
well-posedness for initial data in Hs × Hs−1 with s > d+1

2 + 1
2 . We point out that all

improvement results are based on Strichartz-type estimates for the wave operator with variable
coefficients (as well as on bilinear estimates). When the coefficients are rough, these estimates
present a loss of derivative compared to those obtained for the flat wave operator. The first
result in this direction was by H. Bahouri-J. Y-Chemin [1] giving the well-posedness for
s > d+1

2 + 1
4 . Independently, D. Tataru obtained in [14] the same result. Shortly afterward,

other improvements were obtained in [2] and in [15]. Later, D. Tataru provided in [16] and
[17] a precise relationship between the smoothness of the metric and the corresponding loss

in the Strichartz estimates. He pushed down the loss to 1
6
+
. Moreover, in [12], H. Smith-D.

Tataru showed that the 1
6 loss (in Strichartz estimates) is sharp in d = 3. In the case when

the metric g itself solves an equation of the type (1.4), an important improvement (on the
local well-posedness) over the 1

6 result was proved by S. Klainerman-I. Rodnianski (see [9]).
Recently, in regards to equations of the form (1.4), S. Klainerman-I. Rodnianski proved local
existence for s > 2 for the Einstein vacuum equation in d = 3 (see [10]). Moreover, in [13],
H. Smith-D. Tataru proved local existence for general equations of the form (1.4) for s > 7

4 if

d = 2, and s > d+1
2 if d = 3, 4, 5.

In the case of equation (1.1), H. Bahouri-J. Y-Chemin proved in [3] the following Theorem.

Theorem 1.2. Let d ≥ 4 and denote by sd = d
2 + 1

6 . Assume that (u0, u1) ∈ Hs ×Hs−1(Rd)
with s > sd and ‖(∇u0, u1)‖d

2
−1 is small enough. Then, there exist a positive time T and a

unique solution u of (1.1)-(1.3) such that, for any small positive real number α we have

T
1
6
+α ≥ Cα‖(∇u0, u1)‖

−1
d
2
− 5

6
+α
,

∂u ∈ C([0, T ];Hs−1) ∩ L2
T (Ḃ

d
4
− 1

2
4,2 ), if d ≥ 5,

and

∂u ∈ C([0, T ];Hs−1) ∩ L2
T (Ḃ

1
6
6,2), and ∂G ∈ L1

T (L∞) if d = 4.
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Ḃσ
p,q denotes the homogeneous Besov space (see Definition 2.1).

Note that the proof of Theorem 1.2 strongly depends on the space dimension; if d ≥ 5 then,
by proving the Strichartz inequalities for solutions of the “linearized equation”, the authors
succeed in exhibiting a Banach space B containing the solution u and having the property
that, if a ∈ L2

T (B) then ∂∆−1(a2) ∈ L1
T (L∞). In particular, this is crucial to get an energy

estimate. However, if d = 4 the use of Strichartz estimates is not sufficient. To overcome this
difficulty, they followed an idea of S. Klainerman and D. Tataru, [11]. They proved microlocal
bilinear estimates in the variable coefficients case. Our goal is to show that, using an Lq(Lr)
version of the Strichartz inequalities, we can extend the Bahouri-Chemin result to the case
d = 3, obtaining a better index than that given by the energy method. Before stating the
result, we introduce the following notation. For all q ≥ 2, we define the loss of derivative ρ
by

ρ(q) =
1

2
−

2

3q
.(1.5)

We also set

sd(q) =
d

2
+ ρ(q)(1.6)

and for all real number r < d satisfying

2

q
= (d− 1)(

1

2
−

1

r
) < 1,(1.7)

we define

σr =
d

r
−

1

2
.(1.8)

Our main result is the following.

Theorem 1.3. Let s > s3(6) = 3
2 + 7

18 . There exists q > 6, r and σr given by (1.7)-(1.8) such

that: if the initial data (u0, u1) ∈ Hs(R3) × Hs−1(R3) and ‖(∇u0, u1)‖ 3
2
−1 is small enough,

then a non trivial time T and a unique solution u of (1.1)-(1.3) exist and they satisfy

∂u ∈ C([0, T ];Hs−1(R3)) ∩ Lq
T (Ḃσr

r,2(R
3)).

Remark 1.4. In higher dimensions d ≥ 5, following the same proof given here, we can show
the local well-posedness for initial data (u0, u1) ∈ Hs × Hs−1(Rd) with s > sd(2) = d

2 + 1
6

and ‖(∇u0, u1)‖d
2
−1 is small enough. This turns out to be the result of [3]. Meanwhile, if

d = 4 then we obtain a minimal loss of derivative ρ = 1
4 (which corresponds to the choice

(q, r) = (8
3 , 4). This is of course not better than the Bahouri-Chemin result given by Theorem

1.2. To get a better result, they proved and used bilinear estimates in [3].

Remark 1.5. From the proof of Theorem 1.3 we can derive a lower bound of the time T ;
writing sα := s3(6)+α = 3

2 +ρ(qα)+ α
2 (with a small positive real number α), then a constant

Cα exists such that

T
1
18

+ α
4 ≥ Cα‖γ‖

−1
sα−1.
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To prove Theorem 1.3, we follow the method used in [3] based on a construction of an
inductive scheme. The crucial fact is the use of an Lq(Lr) version of the microlocal Strichartz
estimates for the linearized equation. (Note that by microlocal estimates we mean estimates
satisfied on time intervals which depend on the size of the spatial frequency).

This paper is organized as follows. In section 2, first we give a brief review of the Littlewood
-Paley theory and we introduce some notation. Next, we explain the main idea of the result
and point out the difficulty we observe to control ‖∂G‖L1

T
(L∞) even if u is the solution of

the free wave equation. Finally, we state the microlocal Strichartz inequalities we will use.
Section 3 is devoted to study some of the properties of the operator ∇∆−1(a · b). Then using
paradifferential calculus, we localize the equation at frequencies fixed in a ring and we derive
good estimates of the remainder terms. In section 4 we prove Theorem 1.3. First, we establish
an a priori energy estimate for the solutions of (1.1). Then using Tataru counting method,
we deduce the local Strichartz estimates. These estimates and the smallness of the interval
[0, T ] can be used to close the energy estimate. In section 5, we outline the proof of Theorem
2.7.

2. Notations and preliminary results

2.1. Some basic facts in Littlewood-Paley theory. In the following, we give a brief
review of the Littlewood-Paley theory. We refer the reader to [4] for a thorough treatment.
Denote by C0 the ring defined by

C0 = {ξ ∈ R
d such that

3

4
<| ξ |<

8

3
},

and choose two non-negative radially symmetric functions χ ∈ D(B(0, 4/3)) and ϕ ∈ D(C0)
such that for all ξ ∈ R

d

ϕ(2−kξ)ϕ(2−k′
ξ) = 0 when |k − k′| ≥ 2

χ(ξ)ϕ(2kξ) = 0,

and

χ(ξ) +
∑

k∈N

ϕ(2kξ) = 1.

Let C̃ = B(0, 2/3) + C0, then C̃ is a ring satisfying

2k C̃ ∩ 2k′
C̃ = ∅ when | k − k′ |> 5.

Denote by

h = F−1ϕ and h̃ = F−1χ,

and define the operator ∆k by, for all u ∈ S ′(Rd),

∆ku = ϕ(2−kD)u = 2dk

∫

Rd

h(2ky)u(x− y)dy

Sku =
∑

j≤k−1

∆ju = χ(2−kD)u = 2dk

∫

Rd

h̃(2ky)u(x− y)dy.
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2.2. Notations. The Littlewood-Paley decomposition can be used to define the Besov spaces.

Definition 2.1. Let σ be a real number, and (p, q) in [1,∞[2. Let us state

‖u‖Ḃσ
p,q(IRd) :=

(

∑

k∈Z

2kqσ‖∆ku‖
q
Lp

)
1
q
.

If σ < d
p

then the closure in S ′ of the compactly supported and smooth functions with respect

to this norm is a Banach space. Note that Ḃσ
2,2 is the homogeneous Sobolev space Ḣσ. The

above definition can be extended to the case p = q = ∞ where Ḃσ
∞,∞ is nothing but the

homogeneous Hölder space Ċσ with the semi-norm

‖u‖Ċσ = ‖u‖Ḃs
∞,∞

:= sup
k

2kσ‖∆ku‖L∞ .

In all what follows, C denotes a universal constant which may change from line to line. We
also make the convention that (ck(t))k denotes a sequence which satisfies

∑

k∈Z

ck(t)
2 ≤ 1.

Typically, we take ck(t) =
2ks‖∆ku(t,.)‖

L2

‖u(t,.)‖s
. In the sequel, we set

γ := ∂u|t=0 = (∇u0, u1).

For any real number 0 < α < 2
9 , there exists qα > 6 such that ρ(qα) = 7

18 + α
2 . We define

sα := s3(6) + α =
3

2
+ ρ(qα) +

α

2
,

Γα
T (γ) := T

1
3qα

+ α
2 ‖γ‖Hsα−1 = T

1
18

+ α
4 ‖γ‖Hsα−1

and

Nα
T (γ) := T 1− 2

qα Γα
T (γ).

If B is a Banach space then then we set ‖u‖L
q
T

(B) = ‖u‖Lq([0,T ],B). In the special case q = ∞

and B = Ḣs, we simply denote

‖u‖T,s := ‖u‖L∞([0,T ],Ḣs).

Definition 2.2. Let σ ∈ R. Denote by L̃q
T (Ḃσ

r,p(R
d)) the set of distributions defined on

]0, T [×R
d such that

‖u‖̃L
q
T

(Ḃσ
r,p) = ‖(2kσ‖∆ku‖L

q
T

(Lr))k∈Z‖lp

is finite.

Remark 2.3. The spaces L̃q
T (Ḃσ

r,p(R
d)) are adapted to the method we use. First, we localize

in frequency by applying the projector ∆k on the equation and then we take the time norm
before summing with respect to k.

In particular, in the case p = q = 2 and r = ∞, we simply denote by ‖u‖̃T,σ := ‖u‖L̃∞
T

(Ḃσ
2,2).

Note that we have
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‖u‖T,σ ≤ ‖u‖̃T,σ

and

‖u‖L
q
T

(Ḃσ
r,p) ≤ ‖u‖̃L

q
T

(Ḃσ
r,p).

Fix a cut-off function θ ∈ D(] − 1, 1[) whose value is 1 near 0. For any sufficiently smooth
function v, we denote by Gv,T the truncated metric given by Gv,T (t, x) = θ( t

T
)G(∂v)(t, x).

2.3. Main idea of the result. Here we want to explain the choice of the parameters ρ, σ
and q in any space dimension. The basic fact in the proof of Theorem 1.3 is the energy
estimate. This requires the control of

∫ T

0
‖∂G(∂u)(t, .)‖L∞dt.(2.9)

First, we recall the following law of product in Ḃs
p,q(R

d).

Proposition 2.4. Let r ≥ 2 and d
2r

< σ < d
r
, then for all a ∈ Ḃσ

r,2(R
d), we have a2 ∈

Ḃ
2σ− d

r

r,1 (IRd).

In the particular case where σ = d
r
− 1

2 and r < d, the above proposition implies that if

∂u ∈ Ḃ
d
r
− 1

2
r,2 (IRd), then ∇∆−1(∂u)2 ∈ L∞.

Usually, the space Ḃ
d
r
− 1

2
r,2 is determined using Strichartz inequalities. In the constant coef-

ficients case, they are given by the following proposition (see [6]).

Proposition 2.5. Let C1 be an ring in R
d and u(t, x) be a function such that, for a positive

real number λ, the function Fxu(t) is supported in the ring λC1.
Then, for any two positive real numbers q and r satisfying (1.7) we have the following estimate

‖∂1+ju‖L
q
T

(Lr) ≤ λµ+j
(

‖∂u|t=0‖L2 + C‖�u‖L1
T

(L2)

)

,(2.10)

with µ = d(1
2 − 1

r
) − 1

q
and � = ∂2

t − ∆.

Let us first explain the idea how one can have a control of ‖∂G(∂u)‖L1
T

(L∞) in the simple

case where u is the solution of the free wave equation. We want to estimate

∫ T

0
‖∂∆−1(∂u · ∂u)(t, .)‖L∞dt.

We have to estimate an expression of the type

∫ T

0
‖∆−1(∂2u · ∂u)(t, .)‖L∞dt.

Recall the Bony’s decomposition (see [5]).

a · b = Ta(b) + Tb(a) +R(a, b),

where
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Ta(b) =
∑

j

Sj−1(a)∆jb

and the remainder term is

R(a, b) =
∑

j∈Z

−1≤l≤1

∆ja∆j−lb.

Using Hölder inequality and Bernstein’s Lemma, we have

‖∆−1
∑

k

Sk−1(∂
2u)∆k∂u‖L1

T
(L∞) ≤ CT 1− 2

q

∑

k

2k(d
r
−2)‖Sk−1(∂

2u)‖L
q
T

(L∞)‖∆k∂u‖L
q
T

(Lr).

On the other hand, applying Bernstein’s Lemma and estimate (2.10) to the first factor in the
above sum, we have

‖Sk−1(∂
2u)‖L

q
T

(L∞) ≤ C
∑

k′≤k−2

2k′(d
r
+1)‖∆k′∂u‖L

q
T

(Lr)

≤ C
∑

k′≤k−2

2k′(d
r
+1)2

k′(d
2
− d

r
− 1

q
)‖∆k′γ‖L2 .

Setting ρ0(q) = 1
2 − 1

q
and applying Young’s inequality we obtain

‖Sk−1(∂
2u)‖L

q
T

(L∞) ≤ C2
3k
2 ‖γ‖d

2
−1+ρ0(q).

Therefore ‖∆−1T∂2u∂u‖L1
T

(L∞) ≤ CT 2ρ0(q)‖γ‖2
d
2
−1+ρ0(q)

.

The symmetric term can be treated exactly along the same lines. For the remainder term we
have, for all r ≥ 2

‖∆p∆
−1

∑

−1≤j≤1
k≥p−N0

∆k(∂
2u)∆k−j∂u‖L1

T
(L∞) ≤

CT 2ρ0(q)
∑

k−p≥−N0

22p(d
r
−1)‖∆k∂

2u‖L
q
T

(Lr)‖∆k−j∂u‖L
q
T

(Lr).

Thanks to Strichartz inequalities (2.10) we can rewrite the above inequality as,

‖∆p∆
−1

∑

−1≤j≤1
k≥p−N0

∆k(∂
2u)∆k−j∂u‖L1

T
(L∞) ≤ CT 2ρ0

∑

k−p≥−N0

22(p−k)(d
r
−1)22k(d

2
+ρ0(q)−1)‖∆kγ‖

2
L2 .

Applying Young’s inequality (since moreover r < d), we obtain

‖∆−1R(∂2u, ∂u)‖L1
T

(L∞) ≤ CT 2ρ0(q)‖γ‖2
d
2
−1+ρ0(q)

.

Therefore,

‖∂G(∂u)(t, .)‖L1
T

(L∞) ≤ CT 2ρ0(q)‖γ‖2
d
2
−1+ρ0(q)

.



8 J. E. AZZOUZ, AND S. IBRAHIM

Remark 2.6. Observe that in the above setting, a loss of derivative ρ0 = 0 corresponds to
the choice q = 2. If d = 3, the pair (q, r) = (2,∞) is not admissible and therefore it seems
hard to reduce the regularity index to that given by scaling arguments using only Strichartz
estimates. In our work, we prove an Lq(Lr) version of local Strichartz estimates. The loss
of derivative ρ(q) that we obtain is ρ(q) = ρ0(q) + 1/3q, where 1/3q is the loss due to the
summation of the microlocal Strichartz estimates.

2.4. Strichartz inequalities. Let G = (GΛ)Λ≥Λo>0 be a family of smooth, matrix-valued
functions defined on IΛ × R

d where IΛ is a time interval containing 0. Denote by

‖G‖0 := sup
Λ≥Λ0

‖∂GΛ‖L1
IΛ

(L∞) + |IΛ|‖∇
2GΛ‖L1

IΛ
(L∞)(2.11)

and

‖G‖l := sup
Λ≥Λ0

|IΛ|Λ
l‖∇l+2GΛ‖L1

IΛ
(L∞) for l ≥ 1,(2.12)

and assume that ‖GΛ‖L∞ is small enough. Let PΛ be the operator

PΛv := ∂2
t v − ∆v −

∑

k,l

Gk,l
Λ ∂k∂lv.(2.13)

The Strichartz estimates that we will use are the following

Theorem 2.7. Let ε0 be a positive real number and C be a fixed ring in R
d. Fix (q, r) ∈ [2,∞[2

such that 2
q

= (d− 1)(1
2 − 1

r
) q 6= 2 if d = 3, and consider a family G as above and such that

for any l, ‖G‖l is finite and ‖G‖0 is small enough i.e ‖G‖0 ≤ δ. Then, for any positive real
number ε ≤ ε0, a constant C exists such that if vΛ is the solution of

(EΛ)

{

PΛvΛ = f
∂vΛ|τ=0 = γ,

on an interval IΛ satisfying
|IΛ| ≤ Λ2−ε,

and where f ∈ L1(IΛ, L
2) and γ ∈ L2 are two functions for which the Fourier transform is

included in C then vΛ satisfies the following estimate

‖∂vΛ‖Lq(IΛ, Lr) ≤ C(‖γ‖L2 + ‖f‖L1(IΛ, L2)).(2.14)

This estimate is established by Bahouri-Chemin in [1]. The proof is based on a dispersive
estimate satisfied by an approximate solution to (1.1). We shall outline the proof of Theorem
2.7 in Section 5.

3. Paradifferential calculus

In all what follows, we take d = 3. Along this work, we shall deal with quantities of the
form ∆−1(a.b). In the sequel, we summarize some of their properties.

Lemma 3.1. Assume σ > 3
2 , then a constant C exists such that

‖∆−1(a · b)‖
Ḣ

σ+ 1
2
≤ C

(

‖a‖Ḣσ−1‖b‖
Ċ− 1

2
+ ‖b‖Ḣσ−1‖a‖

Ċ− 1
2

)

.(3.15)

Moreover, if σ > 3
2 − 3

r
with r ≥ 1 then,

‖∆−1(a · b)‖
Ḣσ+ 1

2
≤ C

(

‖a‖Ḣσ−1‖b‖
Ḃ

3
r − 1

2
r,2

+ ‖b‖Ḣσ−1‖a‖
Ḃ

3
r − 1

2
r,2

)

.(3.16)
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A constant C exists such that

‖∆−1(a · b)‖
Ḃ

3
2
2,1

≤ C‖a‖
Ḣ

3
2−1‖b‖

Ḣ
3
2−1 .(3.17)

Moreover, if 1 ≤ r < 3, then a constant C exists such that

‖∇∆−1(a · b)‖
Ḃ

3
r
r,1

≤ C‖a‖
Ḃ

3
r − 1

2
r,2

‖b‖
Ḃ

3
r − 1

2
r,2

.(3.18)

Proof. The proof of this lemma is an easy application of the paradifferential calculus. We
refer the reader to [4] for the proof of (3.15) and (3.17). For the sake of completeness we shall
prove (3.18) and (3.16).
We apply Bony’s decomposition

a · b = Ta(b) + Tb(a) +R(a, b).

We begin by proving the following

‖a · b‖
Ḃ

3
r −1

r,1

≤ C‖a‖
Ḃ

3
r − 1

2
r,2

‖b‖
Ḃ

3
r − 1

2
r,2

,

which clearly proves (3.18). Using Bernstein’s lemma and the fact that R(a, b) has a Fourier
transform supported in a ball, an integer N0 ∈ N exists such that for all k ∈ Z,

‖∆kR(a.b)‖Lr ≤
∑

j≥k−N0
−1≤l≤1

‖∆ja‖L∞‖∆j−lb‖Lr

≤
∑

j≥k−N0
−1≤l≤1

2j 3
r ‖∆ja‖Lr‖∆j−lb‖Lr .

Hence,

2k( 3
r
−1)‖∆kR(a.b)‖Lr ≤

∑

j≥k−N0

2(k−j)( 3
r
−1)2j( 3

r
− 1

2
)‖∆ja‖Lr2j( 3

r
− 1

2
)‖∆jb‖Lr .

Using Young’s inequality for sequences and the fact that r < 3, we obtain
∑

k∈Z

2k( 3
r
−1)‖∆k(R(a.b))‖Lr ≤ C‖a‖

Ḃ
3
r − 1

2
r,2

‖b‖
Ḃ

3
r − 1

2
r,2

.

To conclude the proof of (3.18), it suffices to estimate the term ‖∆kTa(b)‖Lr and do the same
for the symmetric term Tb(a).
Note that the Fourier transform of the function Sj−1(a)∆jb is included in a ring of the type

2j C̃. So
∑

j∈Z

∆k(Sj−1(a)∆jb) =
∑

|k−j|≤5

∆k(Sj−1a∆jb).

Moreover, applying Bernstein’s Lemma and Young’s inequality, there exists a sequence (dj)
satisfying

∑

d2
j = 1 and such that

∑

l≤j−2

‖∆la‖L∞ ≤ 2
j

2 dj‖a‖
Ḃ

3
r − 1

2
r,2

.
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Therefore,

2k( 3
r
−1)‖∆kTa(b)‖Lr ≤ ‖a‖

Ḃ
3
r − 1

2
r,2

∑

|k−j|≤5

2(k−j)( 3
r
−1)

(

dj2
j( 3

r
− 1

2
)‖∆jb‖Lr

)

.

Taking the sum in l1(Z), we deduce (3.18).
To prove (3.16), we choose β > 1 such that 1

β
= 1

2 + 1
r
. Applying Bernstein’s lemma and

Hölder inequality we obtain

2k(σ− 3
2
)‖∆kR(a, b)‖L2 ≤

∑

j≥k−N0
−1≤l≤1

2k(σ− 3
2
)23k

r ‖∆ja∆j−lb‖Lβ

≤
∑

j≥k−N0

2(k−j)(σ− 3
2
+ 3

r
)2j( 3

r
− 1

2
)‖∆ja‖Lr2j(σ−1)‖∆j−lb‖L2 .

The fact that σ > 3
2 − 3

r
completes the proof. �

To establish an Hs energy estimate for the solutions of (1.1) and for non integer values of
s, we also use the paradifferential calculus. The problem is then to study the commutator
between a multiplication and the pseudo-differential operator ∆k.

3.1. Paralinearization of the equation.

Lemma 3.2. Let s > 3
2 −

3
r
. A constant C exists such that, if u, v and F are three functions

satisfying:

∂u and ∂v are in L∞
T (Ḣs−1) ∩ Lq

T (Ḃ
3
r
− 1

2
r,2 ), Gv,T ∈ L1

T (L∞), F ∈ L1
T (Ḣs−1) and

∂2
t u− ∆u−Gv,T · ∇2u = F,

then, uk := ∆ku is the solution of

∂2
t uk − ∆uk − Sk−1(Gv,T ) · ∇2uk = Fk +Rk(∇u, ∂v),

where Fk = ∆kF and the remainder term Rk(∇u, ∂v) satisfies the following estimate

‖Rk(∇u, ∂v)(t, ·)‖L2 ≤ Cck(t)2
−k(s−1)‖∇Gv,T (t, ·)‖L∞‖∇u(t, .)‖s−1

+ Cck(t)2
−k(s−1)‖∂v(t, ·)‖s−1‖∂v(t, .)‖

Ḃ
3
r − 1

2
r,2

‖∂u(t, .)‖
Ḃ

3
r − 1

2
r,2

.

Proof. Theorem 2.1 in [3]. We split the product Gv,T∇
2u into the two following terms.

Gv,T∇
2u =

∑

j

Sj−1(Gv,T ) · ∇2uj +
∑

j

Sj+2(∇
2u)∆jGv,T

= R1 +R2.

As previously done, the first term

R1 :=
∑

j∈Z

Sj−1(Gv,T )∇2uj
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is easy to estimate since the Fourier transform of Sj−1(Gv,T )∇2uj is supported in the ring

2j C̃. Hence, we have

∆kR1 = Sk−1(Gv,T ) · ∇2uk +
∑

j

(

Sj−1(Gv,T ) − Sk−1(Gv,T )
)

· ∆k(∇
2uj)

+
∑

|k−j|≤5

[

∆k, Sj−1(Gv,T )
]

∇2uj .

Using the following estimate on the commutator (for more details see [4] or Lemma 8.2 in
[9]),

‖[∆k, a]b‖L2 ≤ C2−k‖∇a‖L∞‖b‖L2 ,

we get
∑

|k−j|≤5

‖
[

∆k, Sj−1(Gv,T )
]

∇2uj‖L2 ≤ C
∑

|k−j|≤5

2−k‖∇Sj−1(Gv,T )‖L∞‖∇2uj‖L2

≤ C‖∇Gv,T ‖L∞‖∇u‖s−12
−k(s−1)

∑

|k−j|≤5

2(k−j)(s−1)cj(t)

≤ Cck(t)‖∇Gv,T ‖L∞‖∇u‖s−12
−k(s−1).

Hence,
∑

|k−j|≤5

‖
[

∆k, Sj−1(Gv,T )
]

∇2uj‖L2 ≤ Cck(t)2
−k(s−1)‖∇Gv,T ‖L∞‖∇u‖s−1.

Similarly, applying Cauchy-Schwartz’s inequality and using Bernstein’s lemma we have

‖
(

Sj−1(Gv,T ) − Sk−1(Gv,T )
)

· ∇2uj‖L2 ≤
∑

l∈[j−2,k−2]

2−l‖∇Gv,T ‖L∞2j‖∇uj‖L2 .

Therefore,

‖
∑

|k−j|≤5

(

Sj−1(Gv,T ) − Sk−1(Gv,T )
)

· ∇2uj‖L2 ≤ ‖∇Gv,T ‖L∞‖∇u‖s−1

∑

|k−j|≤5
l∈[j−2,k−2]

2j−l2−j(s−1)cj .

Note that since the number of l, l ∈ [j − 2, k − 2] such that | k − j |≤ 5 is finite, then

‖
∑

|k−j|≤5

(

Sj−1(Gv,T ) − Sk−1(Gv,T )
)

· ∇2uj‖L2 ≤ C‖∇Gv,T ‖L∞‖∇u‖s−1

∑

|k−j|≤5

2−j(s−1)cj .

Using Young’s inequality, we get

‖
∑

j,|k−j|≤5

(

Sj−1(Gv,T ) − Sk−1(Gv,T )
)

· ∇2uj‖L2 ≤ C‖∇Gv,T ‖L∞‖∇u‖s−12
−k(s−1)ck(t).

Now we estimate the term R2. The Fourier transform of Sj+2(∇
2u)∆jGv,T is included in a

ball of the form B(0, C2j) then

∆kR2 =
∑

j≥k−N1

∆k(Sj+2(∇
2u)∆jGv,T ).
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Moreover, the following estimate

‖Sj+1(∇
2u)‖L∞ ≤ 2j 3

2 ‖∇u‖
Ċ− 1

2
,

together with the fact that the space Ḃ
3
r
− 1

2
r,2 is continuously embedded in Ċ− 1

2 give

‖Sj+1(∇
2u)‖L∞ ≤ 2j 3

2 ‖∇u‖
Ḃ

3
r − 1

2
r,2

.

The above estimate and Lemma 3.1 show that

‖∆j(Gv,T )(t)‖L2 ≤ Ccj(t)2
−j(s+ 1

2
)‖∂v(t)‖

Ḃ
3
r − 1

2
r,2

‖∂v(t)‖s−1.

Using Young’s inequality for sequences, the proof of Lemma 3.2 is complete. �

In the proof of Theorem 2.7, we need to localize equation (1.1) in such a way that the
frequencies of the metric are much smaller than those of the solution. In fact, the pseudo-
differential operator defined above does not have any symbolic calculus and therefore they do
not allow the construction of a parametrix for the operator (2.13) in the spirit of Hadamard’s
method. In the following corollary, we prove a precise paralinearization.

Corollary 3.3. Let s > 3
2−

3
r
. A constant C exists such that, if u, v and F are three functions

satisfying:

∂u and ∂v are in L∞
T (Ḣs−1) ∩ Lq

T (Ḃ
3
r
− 1

2
r,2 ), Gv,T ∈ L1

T (L∞), F ∈ L1
T (Ḣs−1) and such that

∂2
t u− ∆u−Gv,T · ∇2u = F,

then for any δ ∈ [0, 1] , we have

∂2
t uk − ∆uk − Sδ

k(Gv,T ) · ∇2uk = Fk +Rδ
k(∇u, ∂v),

where

Sδ
kb = Skδ−(1−δ) ln2 T−N0

b

and

‖Rδ
k(∇u, ∂v)(t, ·)‖L1

T
(L2) ≤ Cck2

−k(s−1)(1 + (2kT )1−δ)
[

‖∇Gv,T ‖L1
T

(L∞)‖∇u‖T,s−1

+ T
1− 2

q ‖∂v‖T,s−1‖∂v‖L
q
T

(Ḃσr
r,2)‖∂u‖L

q
T

(Ḃσr
r,2)

]

.

Proof. Using Lemma 3.2 we can write

Rδ
k(∇u, ∂v) = Rk(∇u, ∂v) + (Sδ

k − Sk−1)(Gv,T ) · ∇2uk.

Hence it suffices to handle (Sδ
k − Sk−1)Gv,T · ∇2uk.

Note that

‖(Sδ
k − Sk−1)Gv,T · ∇2uk‖L1

T
(L2) ≤ ‖(Sδ

k − Sk−1)Gv,T ‖L1
T

(L∞)‖∇
2uk‖L∞

T
(L2).

On the other hand, thanks to Bernstein’s lemma we have
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‖(Sδ
k − Sk−1)Gv,T ‖L1

T
(L∞) ≤ C

∑

p≥kδ−(1−δ) ln2 T−N0

2−p‖∆p(∇Gv,T )‖L1
T

(L∞)

≤ C‖∇Gv,T )‖L1
T

(L∞)

∑

p≥kδ−(1−δ) ln2 T−N0

2−p

≤ C2−kδ+(1−δ)ln2T ‖∇Gv,T ‖L1
T

(L∞).

Noticing that 2−kδ+(1−δ)ln2T = 2−k(2kT )1−δ, we obtain the desired estimate on the reminder
term. �

4. Proof of The main result

Recall that

sα := s3(6) + α =
3

2
+ ρ(qα) +

α

2
,

Γα
T (γ) := T

1
18

+ α
4 ‖γ‖Hsα−1 and Nα

T (γ) := T
1− 2

q Γα
T (γ).(4.19)

To solve (1.1) with initial data (u0, u1) ∈ Hsα × Hsα−1 with a small α > 0, we define the

following iterative scheme. First, let u(0) be the solution of the free wave equation







∂2
t u

(0) − ∆u(0) = 0

(u(0), ∂tu
(0))|t=0 = (S0u0, S0u1),

and inductively for n = 0, 1, 2, ... define u(n+1) by







∂2
t u

(n+1) − ∆u(n+1) −Gu(n),T · ∇2u(n+1) = 0

(u(n+1), ∂tu
(n+1))|t=0 = (Sn+1u0, Sn+1u1).

For simplicity, we shall define Gn,T := Gu(n),T . Then, all we need is to show that if T is small

enough, the sequence (u(n)) is bounded and is a Cauchy sequence in the space C([0, T ]; Ḣs−1).
To do so, we introduce the following assertions which we prove by induction.

(Pn)











‖∂u(n)‖L
q
T

(Ḃσr
r,2) ≤ C0Γ

α
T (γ)

‖∂u(n)‖T,s−1 ≤ e3‖γ‖s−1 for any s ∈ [32 − 3
r

+ α, 3
2 + ρ(qα) + α].

To prove Theorem 1.3 we show that if ‖γ‖d
2
−1 + Nα

T (γ).Γα
T (γ) is small enough, then (P1)

is satisfied and (Pn) implies (Pn+1). First, we point out that under the inductive hypothesis,
we have the following a priori control of the metric.

Lemma 4.1. Assume that (Pn) holds, then we have

‖Gn,T ‖L∞ ≤ C‖γ‖2
3
2
−1

(4.20)

and
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‖∂Gn,T ‖L1
T

(L∞) ≤ C‖γ‖2
3
2
−1

+ C0

(

T
7
18

+α‖γ‖sα−1

)2
.(4.21)

Proof. This result is an immediate consequence of Lemma 3.1. In fact, (3.17) and (3.18)
together with (Pn) imply (4.20) and (4.21) in the case where ∂ is a space derivative. However,
the proof of (4.21) with ∂ = ∂t is quite different. In fact, noticing that

∂tGn,T =
1

T
(∂tθ)(

·

T
)G(∂u(n)) + θ(

·

T
)∂tG(∂u(n)),

and using the equation satisfied by u(n), the term ∂tG(∂tu
(n)) could be developed as a sum

of terms of the type ∆−1(∆u(n−1) · ∂u(n−1)) and ∆−1(Gn−1∇
2u(n−1) · ∂u(n−1)). Obviously,

∆−1(∆u(n−1) · ∂u(n−1)) can be estimated as in (3.18). On the other hand, using the following
law of product

‖a · b‖
Ḃ

3
r − 1

2
r,2

≤ C‖a‖
Ḃ

3
2
2,1

‖b‖
Ḃ

3
r − 1

2
r,2

,(4.22)

we deduce that Gn−1∂u
(n) ∈ Ḃ

3
r
− 1

2
r,2 , and again applying (3.18), we get (4.21). The proof of

Lemma 4.1 is then complete. �

4.1. Energy estimate. The energy estimate satisfied by u(n+1) is the following.

Proposition 4.2. Assume that (Pn) is satisfied then, for all real number s ∈]32 − 3
r
, 3

2 +
ρ(qα) + α], a constant C exists such that for all t ∈ [0, T ], we have

‖∂u(n+1)‖T,s−1 ≤ e2‖γ‖s−1

(

1 +CC0N
α
T (γ)‖∂u(n+1)‖

L
qα
T

(Ḃ
3
r − 1

2
r,2 )

)

.(4.23)

Proof. Recall that according to Lemma 3.2, the sequence u
(n+1)
k := ∆ku

(n+1) satisfies the
equation

∂2
t u

(n+1)
k − ∆u

(n+1)
k − Sk−1(Gu(n),T ) · ∇2u

(n+1)
k =(4.24)

Rk(∇u
(n+1), ∂u(n)),

with the following estimate

‖Rk(∇u
(n+1), ∂u(n))(t, ·)‖L2 ≤ Cck(t)2

−k(s−1)‖∇Gu(n),T ‖L∞‖∇u(n+1)(t, .)‖s−1

+Cck(t)2
−k(s−1)‖∂u(n)(t, ·)‖s−1‖∂u

(n)(t, .)‖
Ḃ

3
r − 1

2
r,2

‖∂u(n+1)(t, .)‖
Ḃ

3
r − 1

2
r,2

.

Multiplying (4.24) by ∂tu
(n+1)
k and integrating on R

3, we obtain

1

2

d

dt

[

‖∂u
(n+1)
k ‖2

L2(t)+ < Sk−1(Gn,T ) · ∇u
(n+1)
k ,∇u

(n+1)
k >L2

]

(t) =

1

2
< Sk−1(∂t′Gn,T ) · ∇u

(n+1)
k ,∇u

(n+1)
k >L2 (t)+ < Rk, ∂tu

(n+1)
k >L2 (t)−

∑

1≤j,l≤d

< Sk−1(∂jG
jl
n,T ) · ∂lu

(n+1)
k , ∂tu

(n+1)
k >L2 (t).

The above estimate on Rk(∇u
(n+1), ∂u(n)) yields,
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1

2

d

dt

[

‖∂u
(n+1)
k ‖2

L2+ < Sk−1(Gn,T ) · ∇u
(n+1)
k ,∇u

(n+1)
k >L2 (t)

]

≤

C‖∂Gn,T (t, .)‖L∞‖∂u
(n+1)
k (t, .)‖2

L2+

C2−k(s−1)ck(t)‖∂u
(n+1)
k (t, .)‖L2‖∇(Gn,T )(t, .)‖L∞‖∇u(n+1)(t, .)‖s−1+

C2−k(s−1)ck(t)‖∂u
(n)(t, .)‖s−1‖∂u

(n)(t, .)‖
Ḃ

3
r − 1

2
r,2

‖∂u(n+1)(t, .)‖
Ḃ

3
r − 1

2
r,2

‖∂u
(n+1)
k (t, .)‖L2 .

Multiplying by 22k(s−1), summing and using (Pn) we obtain

1

2

d

dt

[

‖∂u(n+1)‖2
s−1 + hn(t)

]

(t) ≤ C‖∂(Gn,T )(t, .)‖L∞‖∂u(n+1)(t, ·)‖2
s−1+

C‖γ‖s−1‖∂u
(n)(t, .)‖

Ċ− 1
2
‖∂u(n+1)(t, .)‖

Ċ− 1
2
‖∂u(n+1)(t, ·)‖s−1,

where we set

hn(t) =
∑

k∈Z

22k(s−1) < Sk−1(Gn,T ) · ∇u
(n+1)
k ,∇u

(n+1)
k >L2 (t).

Now, choosing ‖γ‖d
2
−1 small enough such that for a constant 0 < c < 1, the following holds

‖∂u(n+1)(t, ·)‖2
s−1 + hn(t) ≤ c−1‖∂u(n+1)(t, ·)‖2

s−1.

Therefore, using Gronwall’s lemma and the embedding Ḃσr

r,2(R
3) →֒ Ċ− 1

2 (R3) we deduce that

‖∂u(n+1)(t, ·)‖s−1 ≤ exp
(

C

∫ t

0
‖(∂Gn,T )(t′, .)‖L∞

)

‖γ‖s−1

·
[

1 + CC0N
α
T (γ)‖∂u(n+1)(t, .)‖

L
qα
T

(Ḃ
3
r − 1

2
r,2 )

]

.(4.25)

The choice C‖γ‖2
3
2
−1

+ CC0N
α
T (γ)‖γ‖sα−1 ≤ 2 completes the proof. �

The following result enables us to obtain an a priori control of the remainder term for the
precise paralinearization.

Lemma 4.3. A constant C exists such that under the hypothesis (Pn) we have for any δ in
the interval [0, 1]

{

∂2
t u

n+1
k − ∆un+1

k − Sδ
k(Gn,T )∇2un+1

k = Rδ
k(n)

∂un+1
k |t=0 = γn+1

k

with Sδ
kb = Skδ−(1−δ) ln2 T−N0

b and

‖Rδ
k(n)‖L1

T
(L2) ≤ Cck2

−k(1− 1
qα

)
(2kT )−

1
18

−α
4 Γα

T (γ)(1 + (2kT )1−δ)(1 + CC0NT (γ)‖∂un+1‖L
qα
T

(Ḃσr
r,2)).
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Proof. Applying Corollary (3.3) with ∂u = ∂u(n+1), ∂v = ∂v(n) and s = sα, we have

‖Rδ
k(n)‖L1

T
(L2) ≤ Cck2

−k(sα−1)(1 + (2kT )1−δ)(‖∇Gn‖L1
T

(L∞)‖∇u
(n+1)‖T,sα−1

+ T
1− 2

qα ‖∂u(n)‖T,sα−1‖∂u
(n)‖L

qα
T

(Ḃσr
r,2)‖∂u

(n+1)‖L
qα
T

(Ḃσr
r,2)).

Using (Pn), (4.20), (4.21) together with the energy estimate (4.23) we obtain

‖Rδ
k(n)‖L1

T
(L2) ≤ Cck2

−k(1− 1
qα

)(2kT )−
1

3qα
−α

2 Γα
T (γ)(1+(2kT )1−δ)

(

1+CC0N
α
T (γ)‖∂u(n+1)‖

L
qα
T

(Ḃ
3
r − 1

2
r,2 )

)

.

Thanks to (4.19), the proof is complete. �

Now, we are going to estimate ‖∂u(n+1)‖
L

qα
T

(Ḃ
3
r −1

2
r,2 )

. We split this study into the two cases

of low and high frequencies. The following result deals with the low frequencies.

Corollary 4.4. Assume that (2kT )
( 2
3qα

−α
2
) ≤ C then, there exists a constant C such that

under the hypothesis (Pn), we have

‖∂Sku
(n+1)‖L̃

qα
T

(Ḃσr
r,2) ≤ CT

2
3qα

−α
2 Γα

T (γ)
(

1 + CC0N
α
T (γ)‖∂u(n+1)‖

L
qα
T

(Ḃ
3
r − 1

2
r,2 )

)

.

Proof. Using Bernstein’s inequality, we have

22kσr‖∂u
(n+1)
k (t, ·)‖2

Lr ≤ C2
2k( 2

3qα
−α

2
)‖∂u(n+1)(t, ·)‖2

T,sα−1.

Moreover, thanks to the energy estimate (4.23), we have

22kσr‖∂u
(n+1)
k ‖2

L
qα
T

(Lr) ≤ CT
4

qα
−α

(2kT )
2( 2

3qα
−α

2
)
Γα

T (γ)2
(

1 + CC0N
α
T (γ)‖∂u(n+1)‖

L
qα
T

(Ḃ
d
r − 1

2
r,2 )

)2
.

Choosing α small enough, summing and noticing that 2
3qα

− α
2 = 1

9 − α the proof of the

corollary is complete. �

4.2. Strichartz estimates and the end of the proof of Theorem 1.3. From the mi-
crolocal result (2.14) given in Theorem 2.7, we deduce the following local statement.

Lemma 4.5. Let ε be a positive real number and G be a metric such that for a sufficiently
small constant c0, we have

‖∂G‖L1
T

(L∞) ≤ c0.

Fix q > 2 and r such that 1
q

= 1
2 −

1
r
. A constant Cε exists such that if we set Ḡk := S

2
3
k G and

assume that the Fourier transform of γk, fk(t, ·) and uk(t, ·) are supported in the ring 2kC,
then the solution uk of

(Ek)

{

∂2
t uk − ∆uk − Ḡk∇

2uk = fk on ]0, T [×R
3

∂uk |t=0 = γk

satisfies

‖∂uk‖L
q
T

(Lr) ≤ Cε2
k[3( 1

2
− 1

r
)− 1

q
]
(2kT )

1
3q

+ε
(‖∂uk‖L∞

T
(L2) + (2kT )−

1
3 ‖fk‖L1

T
(L2)).(4.26)
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Proof. Fix k big enough (this corresponds to the high frequencies case). Suppose that we can
construct a finite partition of the interval [0, T ];

[0, T ] = ∪
l=N(k)
l=0 Ik,l

where Ik,l = [tk,l, tk,l+1] and assume that, for every l = 0, 1, ....,N(k) (except probably for
l = N(k)), the following property holds

|Ik,l|

T (2kT )−
1
3
−ε

+
‖fk‖L1(Ik,l,L

2)

(2kT )−
1
3‖fk‖L1

T
(L2)

+
|Ik,l|

T
(2kT )

2
3‖∇Ḡk‖L1(Ik,l,L

∞) = δ.(4.27)

Recall that δ is small enough and it is given by Theorem 2.7. Then we have the following
consequences:

• A constant Cδ exists such that the number N(k) of the sub-intervals Ik,l is estimated
by

N(k) ≤ Cδ(2
kT )

1
3
+ε.(4.28)

In fact, denote by σ(j)(k) the set of all the l’s such that the jth term in (4.27) is the biggest,

and decompose N(k) = N1(k)+N2(k)+N3(k), where Nj(k) counts all the l’s in σ(j)(k). For

every l ∈ σ(j)(k), the jth term in (4.27) has to be greater than or equal to δ
3 . Therefore we

have

|Ik,l|

T (2kT )−
1
3
−ε

≥
δ

3
for all l ∈ σ(1)(k),(4.29)

‖fk‖L1(Ik,l,L
2)

(2kT )−
1
3‖fk‖L1

T
(L2)

≥
δ

3
for all l ∈ σ(2)(k),(4.30)

and

|Ik,l|

T
(2kT )

2
3 ‖∇Ḡk‖L1(Ik,l,L

∞) ≥
δ

3
for all l ∈ σ(3)(k).(4.31)

Now after l summation in (4.29) and (4.30), we obtain

N1(k) ≤
3(2kT )

1
3
+ε

Tδ
Σl∈σ(1)(k)|Ik,l|

≤
3(2kT )

1
3
+ε

δ
,(4.32)

and

N2(k) ≤
3(2kT )

1
3

‖fk‖L1
T

(L2)δ
Σl∈σ(2)(k)‖fk‖L1(Ik,l,L

2)

≤
3(2kT )

1
3

δ
(4.33)
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respectively. On the other hand, from (4.31), we deduce that

( 3

2δ
(2kT )

1
3
|Ik,l|

T
+ (2kT )

1
3 ‖∇Ḡk‖L1(Ik,l,L

∞)

)2
≥ 1.(4.34)

Taking the square root of the above inequality and summing over the set σ(3)(k) we obtain

N3(k) ≤
3

2δ
(2kT )

1
3 + (2kT )

1
3 ‖∇Ḡk‖L1

T
(L∞).(4.35)

From (4.32), (4.33), (4.35) together with the hypothesis on the metric G, we deduce the
desired estimate (4.28) on N(k).

• On each sub-interval Ik,l, the solution uk satisfies the following microlocal estimate

‖∂uk‖Lq(Ik,l,L
r) ≤ 2

k[3( 1
2
− 1

r
)− 1

q
]
(‖∂uk(tk,l)‖L2 + ‖fk‖L1(Ik,l,L

2)).(4.36)

In fact, rescaling uk(t, x) = vk(2
kt, 2kx), it is clear that vk satisfies

∂2
t vk − ∆vk −Hk∇

2vk = gk

where Hk(t, x) = Ḡk(2
−kt, 2−kx) and gk(t, x) = 22kfk(2

kt, 2kx). Let us verify that the hy-
pothesis of Theorem 2.7 are satisfied by vk on the microlocal interval Jk,l := 2kIk,l.

First note that choosing Λ = (2kT )
1
3 , we have

|Jk,l| ≤ (2kT )
2
3
−ε ≤ Λ2−3ε.

Second, it is clear that

‖∂Hk‖L1(Jk,l, L∞) = 2−k

∫ 2ktk,l+1

2ktk,l

‖∂Ḡk(2−kt, .)‖L∞

= ‖∂Ḡk‖L1(Ik,l, L∞)

≤ ‖∂G‖L1([0,T ],L∞).(4.37)

In the last inequality we used the fact that Ḡk := S
2
3
k G and the boundedness of S

2
3
k in L∞.

The smallness of ‖∂G‖L1([0,T ],L∞) implies then the smallness of the left hand side of (4.37).
Similarly we have

‖∇2Hk‖L1(Jk,l, L∞) = 2−2k

∫ 2ktk,l+1

2ktk,l

‖∇2Ḡk(2
−kt, .)‖L∞

= 2−k‖∇2Ḡk‖L1(Ik,l,L
∞).

Applying Bernstein’s lemma we obtain

‖∇2Ḡk‖L∞ ≤ C
(2kT )

2
3

T
‖∇Ḡk‖L∞ .

Integrating with respect to time we deduce that

‖∇2Ḡk‖L1(Ik,l, L∞) ≤ C
(2kT )

2
3

T
‖∇Ḡk, ‖L1(Ik,l, L∞).
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Therefore,

|Jk,l|‖∇
2Hk‖L1(Jk,l,L

∞) = |Ik,l|‖∇
2Ḡk‖L1(Ik,l,L

∞)

≤ C|Ik,l|
(2kT )

2
3

T
‖∇Ḡk‖L1(Ik,l, L∞)

≤ Cδ.(4.38)

For the last estimate, we have used (4.27). This shows the smallness of ‖(Hk)‖0. Applying
Theorem 2.7 and using the fact that

‖∂vk‖Lq(Jk,l, Lr) = 2k( 3
r
+ 1

q
−1)‖∂uk‖Lq(Ik,l, Lr)

and
‖gk‖L1(Jk,l, L2) = 2k( 3

2
−1)‖fk‖L1(Ik,l, L2),

we obtain

‖∂uk‖Lq(Ik,l, Lr) ≤ 2
k[3( 1

2
− 1

r
)− 1

q
](‖∂uk(tk,l)‖L2 + ‖fk‖L1(Ik,l, L2)

)

,

as desired.
• Estimate (4.26) is deduced from (4.36) by summation. Precisely,

‖∂uk‖
q

L
q
T

(Lr)
=

∑N(k)
l=1 ‖∂uk‖

q

Lq(Ik,l, Lr)

≤ N(k)2
qk[3( 1

2
− 1

r
)− 1

q
](‖∂uk‖L∞

T
(L2) + (2kT )−

1
3‖fk‖L1

T
(L2)

)q
.

Using the estimate (4.28) on the number of the sub-intervals we obtain

‖∂uk‖L
q
T

(Lr) ≤ C2
k[3( 1

2
− 1

r
)− 1

q
]
(2kT )

1
3q

+ε(‖∂uk‖L∞
T

(L2) + (2kT )−
1
3 ‖fk‖L1

T
(L2)

)

.

Now to achieve the proof of Lemma 4.5, it remains to show that such a finite decomposition
exists. This is done by induction.
Assume that there exists an increasing sequence (tj)0≤j≤p of points of [0, T ] such that tp < T
and, for any 0 ≤ j ≤ p− 1

tj+1 − tj

T (2kT )−
1
3
−ε

+
(2kT )

1
3

‖fk‖L1
T

(L2)

∫ tj+1

tj

‖fk(t, ·)‖L2dt

+
tj+1 − tj

T
(2kT )

2
3

∫ tj+1

tj

‖∇Ḡk(t, ·)‖L∞dt = δ.

As the function

Fp(t) =
t− tp

T (2kT )−
1
3
−ε

+
(2kT )

1
3

‖fk‖L1
T

(L2)

∫ t

tp

‖fk(τ)‖L2dτ

+
t− tp
T

(2kT )
2
3

∫ t

tp

‖∇Ḡk(τ)‖L∞dτ

is increasing on the interval [tp, T ] then, either the interval [tp, T ] satisfies the condition (4.27)
(but with an inequality < δ instead), then tp+1 does not exist. Note that this does not
affect the order of the number N(k). Or, a unique tp+1 exists in the interval ]tp, T [ such that
Fp(tp+1) = δ. This is a finite procedure because of the compactness of [0, T ]. �
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As a consequence of Theorem 2.7, we have the following corollary

Corollary 4.6. If T
7
18

+α‖γ‖sα−1 is small and the constant C0 is large enough then, assertion
(Pn) implies assertion (Pn+1).

Proof. For 2kT ≥ C, we use the Strichartz estimates (4.26). We have

2k( 3
r
− 1

2
)‖∂u

(n+1)
k ‖

L
qα
T

(Lr)
≤ Cε2

k(1− 1
qα

)(2kT )
1

3qα
+ε[(‖∂u

(n+1)
k ‖

L∞
T

(L2)
+(2kT )−

1
3‖Rδ

k(n)‖L1
T

(L2)

]

.

Observe that taking δ = 2
3 in Lemma 4.3, we have the following estimate on the remainder

term

‖R
2
3
k (n)‖L1

T
(L2) ≤ C2

−k(1− 1
qα

)
(2kT )

− 1
3qα

−α
2 Γα

T (γ)(1 + (2kT )
1
3 )(1 + CC0NT (γ)‖∂un+1‖L

qα
T

(Ḃσr
r,2)).

Now, combining the energy estimate (4.23) and the inductive hypothesis (Pn) to the above
estimate we obtain

2k( 3
r
− 1

2
)‖∂u

(n+1)
k ‖

L
qα
T

(Lr)
≤ Cε(2

kT )ε−
α
2 Γα

T (γ)(1 + CC0N
α
T (γ)‖∂u(n+1)(t, .)‖

L
qα
T

(Ḃ
3
r − 1

2
r,2 )

).

On the other hand if 2kT ≤ C, then Corollary 4.4 claims that

∑

k∈Z:2kT≤C

2k( 3
r
− 1

2
)‖∂u

(n+1)
k ‖

L
qα
T

(Lr)
≤ CεΓ

α
T (γ)(1 + CC0N

α
T (γ)‖∂un+1(t, .)‖

L
qα
T

(Ḃ
3
r − 1

2 )
).

Finally, observe that T 2( 7
18

+α)‖γ‖2
sα−1 = Γα

T (γ)Nα
T (γ) and if T

7
18

+α‖γ‖sα−1 is small enough
then

‖∂u(n+1)‖
L

qα
T

(Ḃ
3
r − 1

2 )
≤ C0Γ

α
T (γ)

and

‖∂un+1‖T,s−1 ≤ e2‖γ‖s−1(1 + CΓα
T (γ)Nα

T (γ)).

This completes the proof of (Pn+1). �

5. Sketch of the proof of Theorem 2.7

Let’s recall the following fundamental result due to H. Bahouri-J-Y. Chemin (see [3] and
[1]).

Theorem 5.1. Let PΛ be the operator given by (2.13) and denote by (vΛ)Λ≥Λ0 the family of
solutions of

PΛvΛ = 0

(vΛ, ∂vΛ)|t=0 = (γ0, γ1).

For any integer N , there exist two functions I±
Λ (γ) defined on IΛ × R

3 with

|IΛ| ≤ Λ2−ε,

and satisfying



ON THE LOCAL SOLVABILITY FOR A QUASILINEAR... 21

‖∂(vΛ − I+
Λ (γ) − I−

Λ (γ))‖L∞
IΛ

(L2) ≤ CΛ−N‖γ‖L2(5.39)

and

‖I±
Λ (γ)(τ, ·)‖L∞ ≤

C

τ
‖γ‖L1 .(5.40)

Remark 5.2. The above result stays true if vΛ solves the wave equation with “conservative
Laplacian” i.e

P̃ΛvΛ := ∂2
t vΛ − ∂j(G̃

jk
Λ ∂kvΛ) = 0.(5.41)

where, we set G̃jk
Λ = Gjk

Λ + δjk. Therefore, in the sequel we assume that vΛ solves (5.41).

Proof. Note that since the Fourier transform of vΛ is included in C, then Bernstein lemma
together with (5.39) and (5.40) show the dispersive estimate

‖vΛ(τ, ·)‖L∞ ≤
C

τ
‖γ‖L1 .

Interpolating the above inequality with the energy estimate we obtain,

‖vΛ(τ)‖Lr ≤
C

τγ(r)
‖γ‖Lr̄(5.42)

where q, r ∈]2,∞[ such that 1
q

= 1
2 − 1

r
and

γ(r) = 2(
1

2
−

1

r
) and

1

r
+

1

r̄
= 1.

The proof of Theorem 2.7 can be achieved using a variation of the so called TT ∗ method
(described in [6]), for non autonomous equations. In the sequel, we follow the idea of Klain-
erman [8] and Klainerman-Rodnianski [9].
Let P denotes the projection onto functions whose Fourier transform is supported in C. Let
H := Ḣ1 ×L2, X = Lq

T (Lr), X ′ = Lq̄
T (Lr̄). For two real valued vector functions u := (u0, u1)

and v := (v0, v1) in H we define

< u, v >:=

∫

R3

u1v1 + G̃jk
Λ (t = 0)∂ju0∂kv0,

where we set G̃jk
Λ = Gjk

Λ + δjk.
For a space-time function Ψ(t, x), we denote by Ψ[0] := (Ψ(0), ∂tΨ(0)). Given u ∈ H, t and
s two real numbers, denote by

Φ(t, s, u) = (φ, ∂tφ),

where the function φ (uniquely) solves (5.41) with (φ(s, s, u), ∂tφ(s, s, u)) = u.
First we prove (2.14) for ∂tvΛ. Set φ = vΛ, and define the operator A by

Au = −P∂tΦ(t, 0, u).

The goal is to show that A : H −→ X is bounded operator with an operator norm ‖A‖H→X =
M . It is clear that (2.14) can be derived from (5.42) with a large constant depending on Λ.
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Using this as a bootstrap assumption we have to establish a uniform bound with respect to Λ.
To do so, it is sufficient to exhibit the expression of AA∗, prove that

AA∗ : X ′ −→ X

is bounded and establish the relation between the norm operations

‖AA∗‖X′→X = M2.

By definition of A∗ we have

< A∗f, u >:= (f,Au)L2 = −

∫ T

0

∫

R3

∂tφPf.

Let Ψ solve P̃ΛΨ = Pf with (Ψ, ∂tΨ)t=T = 0. Integrating by parts (in time), we obtain

< A∗f, u >=< u,Ψ[0] +R(f) >,

with R(f) : X ′ −→ H given by

< u,R(f) >= −

∫ T

0

∫

R3

ψP̃Λ∂tφdxdt.

Therefor,

AA∗f = Aψ[0] +AR(f).

Using the definition of A and Duhamel’s formula, we can write

AΨ[0] = P

∫ T

0
∂tΦ(t, s, (0, Pf(s)))ds,

with F (s) = (0, Pf(s)). Applying the dispersive inequality (5.42), we obtain

‖P∂tΦ(t, s, (0, Pf(s)))‖Lr ≤
C

|t− s|γ(r)
‖Pf(s)‖Lr̄ .

The Hardy-Littlewood-Sobolev inequality implies that

‖AΨ[0]‖Lq(Lr) = ‖P∂tΦ(t, s, F (s)))‖Lq(Lr) ≤ C‖f‖Lq̄(Lr̄)(5.43)

as desired. Note that C is Λ independent constant.
Now we estimate the term AR(f). According to the bootstrap assumption, we have

‖AR(f)‖Lq(Lr) ≤M‖R(f)‖H.

On th other hand, using the definition of < u,R(f) >, we have

‖R(f)‖H : = sup
‖u‖H≤1

< u,R(f) >

= sup
‖u‖H≤1

−

∫ T

0

∫

R3

ψP̃Λ∂tφdxdt.

Now observe that P̃Λ∂tφ = ∂tP̃Λφ+ ∂j

(

∂tG̃
jk
Λ ∂kφ

)

, and since φ solves (5.41) then

P̃Λ∂tφ = ∂j

(

∂tG̃
jk
Λ ∂kφ

)

.
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Therefore, after (a space) integration by part

‖R(f)‖H = sup
‖u‖H≤1

∫ T

0

∫

R3

∂jψ∂tG̃
jk
Λ ∂kφ

≤ ‖∂tG̃
jk
Λ ‖L1(L∞)‖∂ψ‖L∞(L2)‖∂φ‖L∞(L2).

Thanks to the energy estimate applied to φ, the L1(L∞) bound on the metric G̃Λ and the
fact that ‖u‖H ≤ 1, we deduce that

‖AR(f)‖Lq(Lr) ≤
M

4
‖∂ψ‖L∞(L2).(5.44)

The following Lemma enables us to estimate ‖∂ψ‖L∞(L2).

Lemma 5.3. Let ψ be the solution to P̃Λψ = Pf with ψ(T ) = ∂tψ(T ) = 0. Then,

‖∂ψ‖L∞(L2) ≤ 2M‖f‖Lq̄(Lr̄).

Note that the above Lemma together with (5.43) and (5.44) imply the following bound

M2 = ‖AA∗‖X′→X ≤ C +
M2

2

and therefore, M2 ≤ 2C2 as desired.
To prove Lemma 5.3, we consider a time t ∈ [0, T ) and define φ to be the solution to P̃Λφ = 0

with initial data φ(t) = u0, ∂tφ(t) = u1, and ‖u‖H ≤ 1.. Recall that ψ solves P̃Λψ = Pf with

zero initial data at time t = T . Multiplying P̃Λφ by ∂tψ and P̃Λψ by ∂tφ and we integrate in
[t, T ] × R

3 to get the identity

∫

R3

(

∂tψ∂tφ+ G̃jk
Λ ∂jψ∂kφ

)

(t)dx = −

∫ T

0

∫

R3

(

∂tφPf + ∂tG̃
jk
Λ ∂jψ∂kφ

)

dxdt

Hence,

‖∂ψ‖L∞(L2) ≤ ‖P∂tφ‖Lq(Lr)‖f‖Lq̄(Lr̄) + C‖∂G̃jk
Λ ‖L1(L∞)‖∂ψ‖L∞(L2)‖∂φ‖L∞(L2).

From the bootstrap assumption, we know that ‖P∂tφ‖Lq([t,T ],Lr) ≤ M‖u‖H ≤ M . Moreover,
using the energy estimate ‖∂φ‖L∞(L2) ≤ 2‖u‖H ≤ 2, and therefore,

‖∂ψ‖L∞(L2) ≤M‖f‖Lq̄(Lr̄) + C‖∂G̃jk
Λ ‖L1(L∞)‖∂ψ‖L∞(L2).

Since ‖∂G̃jk
Λ ‖L1(L∞) is small enough, then

‖∂ψ‖L∞(L2) ≤ 2M‖f‖Lq̄(Lr̄)

as desired.
Now we use the above result to prove (2.14) for a space derivative ∂jφ. Let f be a function
in Lq̄(Lr̄). As before, we estimate

I :=

∫ T

0

∫

R3

P∂lφfdxdt
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by introducing the function ψ solution to P̃Λψ = Pf with data ψ(T ) = ∂tψ(T ) = 0. Hence
integrating by parts,

I =

∫ T

0

∫

R3

ψP̃Λ∂lφdxdt+

∫

R3

∂lφ(0)∂tψ(0) + ∂lψ(0)∂tφ(0)dx.

Commuting P̃Λ and ∂l as before we obtain

|

∫ T

0

∫

R3

ψP̃Λ∂lφdxdt |≤ ‖∂Gjk
Λ ‖L1(L∞)‖∂φ‖L∞(L2)‖∂ψ‖L∞(L2).

Also,
∫

R3

∂lφ(0)∂tψ(0) + ∂lψ(0)∂tφ(0)dx ≤ ‖∂φ(0)‖L2‖∂ψ‖L∞(L2).

Applying the energy estimate we obtain

‖∂φ‖L∞(L2) ≤ 2‖∂φ(0)‖L2 .

Moreover, Lemma 5.3 implies

‖∂ψ‖L∞(L2) ≤ 2M‖f‖Lq̄(Lr̄)

with the bound M obtained in the previous step. In particular M does not depend on Λ.

Therefore, thanks to the bound ‖∂G̃jk
Λ ‖L1(L∞), we deduce

I ≤ CM‖∂φ(0)‖L2‖f‖Lq̄(Lr̄)

which proves that
‖P∂lφ‖Lq(Lr) ≤ CM‖∂φ(0)‖L2

as desired. The case of inhomogeneous equation can be deduced from the above result by a
standard technique. We refer to [8] for more details. �
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