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Abstract. We prove a Log Log inequality with a sharp constant. We also show that
the constant in the Log estimate is “almost” sharp. These estimates are applied to prove
a Moser-Trudinger type inequality for solutions of a 2D wave equation.

1. Introduction and statement of the results

By the Sobolev embedding theorem, it is well known that the Sobolev space H1(R2) is
embedded in all Lebesgue spaces Lp(R2) for 2 ≤ p < +∞ but not in L∞(R2). Moreover,
H1 functions are in a so-called Orlicz space i.e their exponential powers are integrable
functions. Precisely, we have the following Moser-Trudinger inequality (see [1], [10], [11]).

Proposition 1.1. There exists a universal positive constant C such that, for all u ∈
H1(R2), we have

(1.1) ‖u‖H1(R2) ≤ 1 =⇒
∫

R2

(

e4πu(x)2 − 1
)

dx ≤ C.

In this paper, we show that we can control the L∞ norm by the H1 norm and a stronger
norm with a logarithmic growth or double logarithmic growth. The inequality is sharp
for the double logarithmic growth.

Recall that H1 is the usual Sobolev space endowed with the norm ‖u‖2
H1 = ‖∇u‖2

L2 +

‖u‖2
L2. For any real number α ∈]0, 1[, we denote by Ċα the sub-space of α- Hölder

continuous functions endowed with the semi-norm

‖u‖Ċα := sup
x6=y

|u(x) − u(y)|
|x − y|α .

Also, we denote ‖u‖Cα := ‖u‖Ċα+‖u‖L∞ and define Nα(u) to be the ratio Nα(u) :=
‖u‖

Ċα

‖∇u‖L2

.

For any bounded domain Ω in R
2, define H1

0 (Ω) to be the completion in the Sobolev space
H1(Ω) of smooth and compactly suppported functions.
The main result of this paper is the following.

Theorem 1.2 (Double logarithmic inequality). Let α ∈]0, 1[ and B1 be the unit ball in
R

2. Any function in H1
0 (B1)∩ Ċα(B1) is bounded. Moreover, a positive constant C0 exists

such that for any function u ∈ H1
0 (B1) ∩ Ċα(B1), one has

(1.2) ‖u‖2
L∞ ≤ 1

2πα
‖∇u‖2

L2 log
[

e3 + C0Nα(u)
√

log(2e + Nα(u))
]

and, the constant 1
2πα

in (1.2) is sharp.
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Note that log(e) = 1. Our second result concerns the following logarithmic inequality.

Theorem 1.3 (Logarithmic inequality). Let α be in ]0, 1[. For any real number λ > 1
2πα

,

a constant Cλ exists such that, for any function u ∈ H1
0 (B1) ∩ Ċα(B1), we have

(1.3) ‖u‖2
L∞ ≤ λ‖∇u‖2

L2 log(Cλ + Nα(u)).

Moreover, the above inequality does not hold for λ = 1
2πα

.

2. A Littlewood-Paley proof

To prove the fundamental theorems, we start by showing that inequality (1.3) can easily
be obtained with an unknown absolute constant C instead of 1

2πα
. To do so, we give a

brief recall of the Littlewood-Paley theory and we refer the reader to [4] for a thorough
treatment. Denote by C0 the annular ring defined by

C0 = {ξ ∈ R
2 such that

3

4
<| ξ |< 8

3
},

and choose two non-negative radial functions χ and ϕ belonging respectively to D(B(0, 4/3))
and D(C0) such that for all ξ ∈ R

2

χ(ξ) +
∑

k∈N

ϕ(2−kξ) = 1.

Denote by h = F−1ϕ and define the frequency projector ∆k by, for all u ∈ S ′(R2),

∆ku = ϕ(2−kD)u = 22k

∫

R2

h(2ky)u(x − y)dy,

and

∆̃0 = Σk≤0∆k.

Recall that

‖∇u‖L2 ∼
(

∑

k∈Z

22k‖∆ku‖2
L2

)
1

2

and

‖u‖Ċα ∼ sup
k

2kα‖∆ku‖L∞.

We have the following result in the whole space.

Proposition 2.1. Let α be in ]0, 1[. A positive constant C exists such that for any
function u ∈ Cα(R2) ∩ H1(R2), one has

(2.4) ‖u‖2
L∞(R2) ≤ C‖u‖2

L2(R2) + C‖∇u‖2
L2(R2) log(e +

‖u‖Ċα(R2)

‖∇u‖L2(R2)

).

Proof. Write

u = ∆̃0u +
∞

∑

j=1

∆ju = ∆̃0u +
N−1
∑

j=1

∆ju +
∞

∑

j=N

∆ju,
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where N is a non-negative integer which will be chosen later.
Using Bernstein’s inequality, we get

‖u‖L∞ ≤ C‖∆̃0u‖L2 + C

N−1
∑

j=1

2j‖∆ju‖L2 +

∞
∑

j=N

2−jα(2jα‖∆ju‖L∞)

≤ C‖u‖L2 + C
√

N
(

N−1
∑

j=1

22j‖∆ju‖2
L2

)1/2

+
(

∞
∑

j=N

2−jα
)

‖u‖Ċα

≤ C‖u‖L2 + C
√

N ‖∇u‖L2 +
2−αN

1 − 2−α
‖u‖Ċα.

So

‖u‖2
L∞ ≤ 2C2‖u‖2

L2 + 2C2N ‖∇u‖2
L2 + 2

2−2αN

(1 − 2−α)2
‖u‖2

Ċα.

Denoting by ]x[ the integer part of the real number x and choosing

N := Max(1, 1 +
]

2 log2

‖u‖2
Ċα

‖∇u‖2
L2

[

),

the proof of Proposition 2.1 is achieved.

Clearly, if u is supported in B1 then using the Poincaré inequality, we get

(2.5) ‖u‖2
L∞ ≤ C‖∇u‖2

L2 log(C0 + N(u)).

3. Proof of theorem 1.2

To prove (1.2) and the fact that the constant is sharp, it is sufficient to show that

(3.6) 2πα = inf
u∈H1

0
(B1)∩Ċα(B1)

‖∇u‖2
L2 log

[

e3 + C0Nα(u)
√

log(2e + Nα(u))
]

‖u‖2
L∞

.

for any C0 big enough. Let us start by proving the sharpness of the constant. Defining
uk(x) = fk(−2 log |x|), where for any non-negative integer k

fk(t) =
√

k
2π

t
k

if t ≤ k

fk(t) =
√

k
2π

if not .

An easy computation shows that

‖∇uk‖2
L2 = 2, ‖uk‖Ċα = Ck

1

2
−α exp

αk

2

and therefore, after taking the limit as k → ∞, we deduce that

2πα ≥ inf
u∈H1

0
(B1)∩Ċα(B1)

‖∇u‖2
L2 log

[

e3 + C0Nα(u)
√

log(2e + Nα(u))
]

‖u‖2
L∞

.

These functions was introduced in [1] and [9] to show the optimality of the exponent 4π
in Trudinger-Moser inequality (see [10]).
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To prove (1.2), we start by noticing that for any function u, the norms ‖∇u‖L2 and
‖u‖Ċα are non-increasing under symmetric non-increasing rearrangements, while ‖u‖L∞

remains unchanged.
Using the fact that for all C > 0

t → f(t) := t2 log
[

e3 +
C

t

√

[

log(2e +
1

t
)
]

]

is increasing, it is sufficient to check the minimizer figured in (3.6) in the class of non-
negative, non-increasing and radially symmetric functions.

Without loss of generality, we can normalize ‖u‖L∞ to be equal to 1. Moreover, we will
assume that ‖u‖Ċα ≥ 1 because in the contrary case, the proof is similar.

Let H1
0,rad(B1) be the space of all non-increasing and radially symmetric functions

in H1
0 (B1). For any parameter D ≥ 1, we denote by KD the closed convex subset of

H1
0,rad(B1) defined by

KD = {u ∈ H1
0,rad(B1) : u(r) ≥ 1 − Drα, r ∈ [0, 1]}.(3.7)

To get the result, it is sufficient to prove that

2πα ≤ inf
D≥1

inf
{u∈KD}

‖∇u‖2
L2 log

[

e3 +
C0D

‖∇u‖L2

√

log(2e +
D

‖∇u‖L2

)
]

≤ inf
D≥1

inf
{u∈KD, ‖u‖L∞=1, ‖u‖

Ċα=D}
‖∇u‖2

L2 log
[

e3 +
C0D

‖∇u‖L2

√

log(2e +
D

‖∇u‖L2

)
]

.

Consider the following problem of minimizing

I[u] := ‖∇u‖2
L2(B1),(3.8)

among all the functions belonging to the set KD. This is a variational problem with
obstacle. It is well known (see for example, Kinderlehrer-Stampacchia [8] and L. C.
Evans [5]) that it has a unique minimizer u∗ which is variationally characterized by

∫

B1

∇u∗ · ∇v dx ≥ ‖∇u∗‖2
L2(B1),(3.9)

for any v ∈ KD. Moreover u∗ is in the Sobolev space W 2,∞(B1). Hence the following
radially symmetric set

O := {x ∈ B1 : u∗(x) > 1 − D|x|α}
is open and u∗ is harmonic in O. On the other hand, note that any radially symmetric
harmonic functions in R

2 can only coincide in a unique tangent point with the function
r → 1−Drα. Note also that because of the boundary condition at r = 1, u∗ cannot start
to be harmonic near r = 0. Therefore there exists, a unique a ∈]0, 1[ such that

u∗(r) = 1 − Drα if r ∈ [0, a](3.10)

u∗(r) = (1 − Daα)
log r

log a
if r ∈ [a, 1],



DOUBLE LOGARITHMIC INEQUALITY... 5

satisfying also the tangent condition

aα =
1 − Daα

D| log(aα)| .(3.11)

Note that if D → 1 then a → 1 and therefore (3.11) still makes sense in the limit case.
Also, because of the regularity of u∗ at r = 0 it is necessary that a 6= 1. In particular,
note that ‖u∗‖L∞ = 1, ‖u∗‖Ċα = D, and

‖∇u∗‖2
L2 = παD2a2α − 2π(

1 − Daα

log(a)
)2 log(a).(3.12)

Substituting D from (3.11) into (3.12), we get the following

‖∇u∗‖2
L2 = 2πα

1/2 − log(aα)

(1 − log(aα))2
.

Denoting by x := aα ∈]0, 1[, then we have

‖∇u∗‖2
L2 = 2πα

1/2 − log(x)

(1 − log(x))2
(3.13)

and

‖u∗‖Ċα =
1

x(1 − log(x))
.(3.14)

Setting

g(x) :=
1

x
√

2πα(1/2 − log(x))
,

and

FC(x) :=
1
2
− log(x)

(1 − log(x))2
log

[

e3 + Cg(x)
√

log(2e + g(x))
]

,

it is sufficient to show that a constant C0 exists such that for all 0 < x ≤ 1, the function
FC0

satisfies

(3.15) FC0
(x) ≥ 1.

First, observe that for every 0 < x ≤ 1
1
2
− log(x)

(1 − log(x))2
≥ 1

(2 − log(x))
.

Hence for any C > 0, (3.15) holds if 2 − log x ≤ 3, namely if x ≥ 1/e.
In the sequel, we suppose that x ≤ 1/e, hence

F (x) ≥ 1

(2 − log(x))

[

− log(x) + log(
C0√
2πα

) − 1

2
log(1/2 − log(x)) +

1

2
log(log(2e + g(x)))

]

≥ 1 +
1

(2 − log(x))

[

log(
C0

e2
√

2πα
) +

1

2
log

( log(2e + g(x))

(1/2 − log(x))

)]

.(3.16)
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The function h(x) = log(2e+g(x))
(1/2−log(x))

is bounded away from zero on (0, 1/e). Hence, we can

find C0 big enough such that the second term on the right hand side of (3.16) is non
negative. This achieves the proof of Theorem 1.2.

4. Proof of theorem 1.3

The proof of Theorem 1.3 is similar to that of Theorem 1.2. Indeed, consider u∗ the
minimizer of the Dirichlet norm (3.8) among all functions in KD defined in (3.7). Note
that according to (3.13) and (3.14), we have

‖∇u∗‖2
L2 log(Cλ + Nα(u∗)) := H(x),

where

H(x) = 2πα
1/2 − log(x)

(1 − log(x))2
log

(

Cλ +
1

x
√

2πα(1/2− log(x))

)

.

Taking Cλ = e in H(x), we see that H(x) goes to 2πα as x goes to 0. Hence, for any
λ > 1

2πα
, there exists xλ > 0 such that λH(x) ≥ 1, for any 0 < x < xλ and Cλ ≥ e. Now,

if x ∈ [xλ, 1], choosing the constant Cλ > e big enough such that

1/2

(1 − log(xλ))2
log(Cλ) ≥ 1,

we see that λH(x) ≥ 1. Hence, by this choice of Cλ, we see that λH(x) ≥ 1 for all
0 < x ≤ 1. This achieves the proof of (1.3).

Now, let us prove that (1.3) does not hold for λ = 1
2πα

. More precisely, we will prove

that a sequence of functions (un)n exists such that un ∈ H1
0 (B1) ∩ Ċα(B1) and for n big

enough the following holds

(4.17) ‖un‖2
L∞ >

1

2πα
‖∇un‖2

L2 log(n1/4 + n1/4Nα(un)).

Let un be the radially symmetric function defined by

un(r) = 1 − enrα if r ∈ [0, an], and un(r) = (1 − enaα
n)

log r

log an

if r ∈ [an, 1],

where an is chosen such that aα
n := xn is the unique solution in (0, 1) of the equation

x = 1−enx
en| log(x)|

. Notice indeed, that the function h(x) = en(x + x| log(x)|) is increasing on

(0, 1). Hence, we see easily that

(4.18)
e−n

n log(n)
≤ xn ≤ e−n

n
.

Obviously, this construction is inspired from the minimizer of the variational problem
with obstacle described in Section 3 where we have chosen Dn = en. Hence, according to
(3.13) and (3.14), we have

‖∇un‖2
L2 = 2πα

1/2 − log(xn)

(1 − log(xn))2
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and

‖un‖Ċα =
1

xn(1 − log(xn))
.

Now to prove (4.17), it is sufficient to prove that for n big enough we have

hn :=
1
2
− log(xn)

(1 − log(xn))2
log

[

n1/4 +
n1/4

xn

√

2πα(1/2 − log(xn))

]

< 1.

Note that using (4.18), we have

hn <
1
2

+ n + log(n) + log log n

(1 + log(n) + n)2
log

[

n1/4 +
n1/4enn log n√

2παn

]

Hence hn < 1 − 1
4

log n
n

+ o( log n
n

) which is strictly less than 1 if n is sufficiently large. The
proof of (4.17) is achieved.

5. Case of the whole space

Theorems 1.2 and 1.3 were stated in the ball of radius one. If the function u is supported
in a bigger ball BR = B(0, R) then a simple scaling argument shows that

‖u‖2
L∞(BR) ≤

1

2πα
‖∇u‖2

L2(BR) log
[

e3 + C0R
αNα(u)

√

log
(

2e + RαNα(u)
)

]

.

Remark 5.1. Using symmetric non-increasing rearrangement of functions, the results of
Theorem 1.2 and Theorem 1.3 remain true for any bounded and regular domain Ω of
R

2. Precisely, if f ∈ H1
0 (Ω) ∩ Ċα(Ω) then, its corresponding symmetric non -increasing

function, usually denoted by f ?, is in f ? ∈ H1
0 (BR) ∩ Ċα(BR), where R =

√

|Ω|
2π

. We

refer to [12], [2] for the definition, the properties and applications of rearrangements of
functions. Applying Theorem 1.2 and Theorem 1.3 results to f ? and using the fact that

‖f ?‖L∞ = ‖f‖L∞

‖∇f ?‖L2 ≤ ‖∇f‖L2 , ‖f ?‖Ċα ≤ ‖f‖Ċα

we get the result for general domain.

Note that this estimate can not be extended to the whole space since Rα diverges.
Instead, we have the following result concerning the whole space.

Corollary 5.2. Let α ∈]0, 1[. For any λ > 1
2πα

and any 0 < µ ≤ 1, a constant Cλ > 0
exists such that, for any function u ∈ H1(R2) ∩ Cα(R2)

(5.19) ‖u‖2
L∞ ≤ λ(‖∇u‖2

L2 + µ2‖u‖2
L2) log(Cλ +

8αµ−α‖u‖Cα

√

‖∇u‖2
L2 + µ2‖u‖2

L2

),

Proof. Let u be a function in H1(R2)∩Cα(R2), λ > 1
2πα

and 0 < µ ≤ 1. Fix a radially
symmetric function ϕ in C∞

0 (B4) satisfying 0 ≤ ϕ ≤ 1, ϕ ≡ 1 for r near 0, |∂rϕ| ≤ 1 and
|∆ϕ| ≤ 1. Define ϕµ by ϕµ(x) = ϕ(µ

2
|x|).

Without loss of generality, we can assume that ‖u‖L∞ = |u(0)|. Note that in particular
one has

‖ϕµu‖Ċα ≤ ‖u‖Cα
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‖∇(ϕµu)‖2
L2 ≤ ‖∇u‖2

L2 +
µ2

4
‖u‖2

L2 + 2

∫

R2

ϕµu∇ϕµ∇udx.

Integrating by parts,

2

∫

R2

ϕµu∇ϕµ∇udx = −1

2

∫

R2

∆ϕ2
µu2dx = −µ2

8

∫

R2

∆ϕ2(
µ

2
x) u2dx.

Hence,

‖∇(ϕµu)‖2
L2 ≤ ‖∇u‖2

L2 + µ2‖u‖2
L2.

Applying the result of Theorem 1.3 and using the fact that for any constant C > 0, the
function x → x2 log(Cλ + C

x
) is increasing, the proof of Corollary 5.2 is achieved.

We also have the following result

Corollary 5.3. Let α ∈]0, 1[. For any λ > 1
2πα

, a constant Cλ > 0 exists such that, for
any function u ∈ H1(R2) ∩ Cα(R2)

(5.20) ‖u‖L∞ ≤ ‖u‖L2 + ‖∇u‖L2

√

λ log(e + Cλ
‖u‖Cα

‖∇u‖L2

).

For the proof of Corollary 5.3, we take the Littlewood-Paley decomposition of u, u =
∆̃0u + v where v =

∑∞
j=1 ∆ju. Hence ‖v‖L2 ≤ C‖∇v‖L2 and ‖v‖Cα ≤ ‖u‖Cα. So

‖u‖L∞ ≤ ‖∆̃0u‖L∞ + ‖v‖L∞.

Then, we apply Corollary 5.2 to v with λ′ and µ′ such that λ′(1 + C2µ′2) < λ.

Of course, we have similar inequalities for the Log Log inequality (1.2) in R
2 with the

sharp constant 1
2πα

.

6. Application to the wave equation

Corollary 5.2 is useful in studying 2D-nonlinear wave equations with exponential non-
linearities, and the constant 1

2πα
is crucial for local wellposedness results (see [7] for further

discussion). In particular from Corollary 5.2 we can derive a Moser-Trudinger type in-
equality for the solution of the linear Klein-Gordon. Precisely, let (f, g) ∈ H 1(R2)×L2(R2)
such that ‖f‖2

H1 + ‖g‖2
L2 ≤ 1. Denote by v the solution of the 2D linear Klein-Gordon

equation

∂2
t v − ∆v + v = 0

v(0, ·) = f , ∂tv(0, ·) = g.

Since the energy ‖∇v(t, ·)‖2
L2(R2) + ‖v(t, ·)‖2

L2(R2) + ‖∂tv(t, ·)‖2
L2(R2) is conserved, v(t, ·)

remains in the unit ball of H1 uniformly in time. So according to (1.1) we have

sup
t∈R

∫

R2

(

e4πv(t,x)2 − 1
)

dx ≤ C

which means that exp(4πv2(t, ·)) − 1 ∈ L∞(R; L1(R2)). To solve the 2D linear Klein-
Gordon equation with an exponential nonlinearity, we would like that exp(4πv2(t, ·))−1 ∈
L1

loc(R; L2(R2)). This is the object of the following result.
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Proposition 6.1. For any T > 0, a non-negative constant CT exists such that
∫ T

0

‖ exp(4πv2(t, ·)) − 1‖L2(R2) dt ≤ CT .

Proof. For any µ > 0, denote by

Eµ(t) := ‖∇v(t, ·)‖2
L2(R2) + µ2‖v(t, ·)‖2

L2(R2).

Recall that since v ∈ C(R, H1) ∩ C1(R, L2), Eµ(t) is a continuous function of t. The
energy conservation satisfied by v shows that

‖∂tv(t, ·)‖2
L2(R2) + E1(t) = E1(0) + ‖g‖2

L2 ≤ 1.

Now, fix µ < 1 and T > 0. There exists a time τ = τ(µ, T ) such that

sup
t∈[0,T ]

Eµ(t) = Eµ(τ) < 1.

For almost every t we have
∫

R2

(

exp(4πv2(t, x)) − 1
)2

dx ≤ ‖ exp(4πv2(t, ·)) − 1‖L1 exp(4π‖v(t, ·)‖2
L∞).(6.21)

Note that, thanks to conservation of the energy and Moser-Trudinger inequality, the first
factor in the above inequality is uniformly bounded. On the other hand, choosing α = 1

4

in (5.19) we obtain, for any λ > 2
π

exp(2π‖v(t, ·)‖2
L∞) ≤

(

e +
‖v(t, ·)‖C1/4

Eµ(τ)1/2

)2πλEµ(τ)
.

Since Eµ(τ) < 1, one can choose λ > 2
π

such that β := 2πλEµ(τ) < 4. Hence, we have
∫ T

0

exp(2π‖v(t, ·)‖2
L∞)dt ≤ C

∫ T

0

(

e +
‖v(t, ·)‖C1/4

Eµ(τ)1/2

)β
dt

≤ CT 1−β
4

∫ T

0

(

e +
‖v(t, ·)‖C1/4

Eµ(τ)1/2

)4
dt.

Now, thanks to the so-called Strichartz estimates (see [6]), we have v ∈ L4(R, C1/4(R2))
and therefore Proposition 6.1 is proved.

Remark 6.2. Recall that in [3], a similar result was proved in a particular setting, namely,
f = 0 and g is radially symmetric with compact support.
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