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CONCENTRATING WAVES IN FOCUSING AND

NON-FOCUSING TWO GEOMETRIES

SLIM IBRAHIM

Abstract. With the methods used in [1] and [4], we prove that, in
absence of focus, nonlinear geometrical optics of the critical wave equa-
tion with variable coefficients, is reduced to linear geometrical optics
combined with wave operators for the critical wave equation with coef-
ficients fixed on concentrating points. On the odd-dimensional spheres,
we prove that passing through a focus is generated by a modified scat-
tering operator.

1. Introduction

In this paper, we consider a sequence u := (un)n, solution of the equation

(∂2
t − ∆M)u+ | u |pc−1 u = 0, IRt ×Md

x,(1.1)

where, M is either the d-dimensional sphere Sd and in that case ∆M is
assumed to be the Laplace-Beltrami operator on Sd, or M is the whole
space IRd with a local perturbation of the Laplace operator, namely ∆M =
divx(A(x)∇x.), and A is a matrix valued function A satisfying:
There exist two constants 0 < c0 ≤ 1 and R0 > 0 such that

(H)







(i ) c0 | ξ |2≤ A(x)ξ.ξ ≤ c−1
0 | ξ |2, ∀x, ξ ∈ IRd

(ii ) A(x) ≡ Id, ∀x ∈ IRd, with | x |≥ R0.

Under the condition (H)(i), the matrix A(x) is positive definite for a hy-
perbolic equation, and so its inverse A−1(x) defines a riemannian metric on
IRd. Notice that in the constant case, namely when A(x) ≡ Id, the oper-
ator ∂2

t − ∆M is the usual d’alembertian operator on IRt × IRd
x, defined by

� := ∂2
t − ∆x.

We assume that d ≥ 3. The exponent, pc = d+2
d−2 , corresponds to the critical

Lebesgue space in which the homogenous Sobolev space Ḣ1(M) is embed-

ded. We recall that Ḣ1(M) = {g ∈ Lpc+1(M) such that ‖∇g‖L2(M) <∞}.

The initial Cauchy data, (un, ∂tun)|t=0 = (ϕn, ψn), are supposed to be
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bounded in the energy space E(M) := (Ḣ1 × L2)(M), with the norm

‖(g0, g1)‖E := ‖(∇g0, g1)‖L2(M)2 .

Our aim is to describe the sequence u by means of a sequence of “sim-
pler functions” in the energy space E . A crucial role is played here by the
sequence v, solution of the linear wave equation

(∂2
t − ∆M)v = 0,(1.2)

with the same Cauchy data at time t = 0, that is

(vn, ∂tvn)|t=0 = (un, ∂tun)|t=0.(1.3)

Let us first state a few facts about solutions of (1.1). In the case M = IRd

and ∆M = divx(A(x)∇x.), global existence of solutions of equation (1.1),
in the energy space, was recently proved by the author and M. Majdoub
in [9], [10]. They used a method introduced by Shatah-Struwe, when the
coefficients are constant, (see [15] and [16]) . We emphasize the fact that
these results use the so-called Strichartz estimates, in a crucial way.

Proposition 1.1 ([Strichartz estimates.]). Let T be a positive real number

and g a function satisfying (g, ∂tg) ∈ C(IR, E). Assume that

h := [∂2
t g − divx(A(x)∇xg)] ∈ L1([0, T ], L2(IRd)),

then we have

‖g‖Lq([0,T ],Lr(IRd)) ≤ cq,T

{

‖∇t,xg|t=0‖L2(IRd)2 +

∫ T

0

‖h(t)‖L2(IRd)dt
}

,(1.4)

with 1
q

+ d
r

= d
2 − 1, q ≥ d+1

d−1 and q > 2 if d = 3.

Notice that in the constant case, the constant cq,T does not depend on T
and therefore the previous estimates are global; that is
every solution g of �g = 0 satisfies

‖g‖Lq(IR,Lr(IRd)) ≤ c̃qE
1
2

0 (g, 0),(1.5)

where, for all function g(t, x), E0(g, t) := ‖(g, ∂tg)(t, .)‖2
E denotes the energy

of g at time t. Inequalities (1.4) were obtained by Ginibre-Velo [8] in the
constant case, and by Kapitanski [12] when coefficients are smooth. Recent
results established by Smith [17] and by Smith-Sogge [18], generalizing these
estimates for less regular coefficients and for exterior of strictly convex com-
pact sets.
In the case of the sphere, the non-concentration result proved in [10], along
with the method followed by [15] and [16] imply, in fact in an easy way,
existence and uniqueness of solutions when the data are in the energy space:
we will not write the details here.

On the other hand, in the constant case, Bahouri-Gérard proved in [1] a
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structure theorem for solutions of (1.1), up to remainder terms, small both
in energy and in Strichartz norms. More precisely, they showed that non-
linear geometrical optics are reduced to linear geometrical optics combined
with the same scattering operator as solution passes through a point of con-
centration. Here, we prove similar results but with a family of scattering
operators depending on the concentrating points.
Before stating our results, let us introduce the particular case of a nonlinear
concentrating wave.
We denote by r0 > 0 a lower bound for the injectivity radius on M. Fix an
even cut-off function θ ∈ C∞

0 (B(0, r0)) satisfying θ(x) ≡ 1 on B(0, r0

2 ). For

all x1, x2 ∈ M, let θx2
(x1) = θ(exp−1

x2
(x1)). Here, exp is the exponential

map, and B(x, r) is the euclidian ball with center x and radius r. We also
denote by

B′(x, r) := {y ∈ M such that | exp−1
x (y) |x< r},

the geodesic ball. ( | . |x denoting the norm in TxM with respect to the
riemannian metric).

Definition 1.2. Given an element [(ϕ,ψ), h, x, t] in the space E × (IR∗
+×

M× IR)IN such that lim
n

(hn, xn, tn) = (0, x∞, t∞), a linear concentrating

wave v := (vn)n associated with the data [(ϕ,ψ), h, x, t] is a solution of (1.2)
satisfying,



























(vn, ∂tvn)(tn, .) = hn
1− d

2 θ(exp−1
xn
.)(ϕ, 1

hn
ψ)(

exp−1
xn

.

hn
)

+ o(1), in E(B′(xn, r0))

(vn, ∂tvn)(tn, .) = o(1) in E(B
′c
(xn, r0)).

Remark 1.3. (1) In the following, we will call concentrating data, the
element [(ϕ,ψ), h, x, t] appearing in the Definition 1.2.

(2) Two concentrating data are said to be equivalent if, the correspond-
ing linear concentrating waves are equivalent in the energy space.
From now on, we will not distinguish between a concentrating data
and its associate linear concentrating wave; we will usually write
v = [(ϕ,ψ), h, x, t].

(3) Notice that in the constant case, we have exp−1
xn

(x) = x−xn and r0 is

in fact equal to +∞. In the case of (IRd,divx(A(x)∇x.)), we can still
use the previous fact and then get the same definition of a linear con-
centrating wave as in [1], [4]. In fact, we have to estimate, according

to the L2 norm, expressions of the type hn
− d

2 θ(exp−1
xn
.)g(

exp−1
xn

.

hn
) −

hn
− d

2 g(x−xn

hn
) in the geodesic ball B′(xn, r0). For simplicity, let us

suppose that g ∈ C∞
0 (IRd).
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Putting the change of variables x = expxn
(hny), hence for n suffi-

ciently large, we can write
∫

hn|y|<r0

| g(y) − g(
expxn

(hny) − xn

hn
) |2 dy = (i) + (ii),

with,

(i) =

∫

|y|<R

| g(y) − g(
expxn

(hny) − xn

hn
) |2

and

(ii) =

∫

R<|y|< r0
hn

| g(y) − g(
expxn

(hny) − xn

hn
) |2 .

The positive real number R is chosen such that the euclidian ball
B(0, c∞R) contains the support of g. The constant 0 < c∞ ≤ 1 is
given by the local equivalence between the geodesic and the euclidian
distances ( see Proposition 2.1 in [10]), that is

c∞ | x− xn |≤| exp−1
xn
x |xn≤ c−1

∞ | x− xn | .(1.6)

Using the dominated-convergence Theorem, it is easy to show that
(i) goes to 0 as n tends to infinity. On the other hand,

(ii) ≤
∫

R<|y|< r0
hn

| g expxn
(hny) − xn

hn
|2 dy

≤ hn
− d

2

∫

Rhn<|exp−1
xn (x)|xn<

r0
2

| g(x− xn

hn
) |2 dx.

The above choice of R and (1.6) give the desired result.

Definition 1.4. Let v be a linear concentrating wave and u be the solution
of

{

(∂2
t − ∆M)un+ | un |pc−1 un = 0

(un, ∂tun)|t=0 = (vn, ∂tvn)|t=0.
(1.7)

Then, the sequence u is called the nonlinear concentrating wave associated
to v.

The profile decomposition of bounded sequences in Ḣ1, (see [7]) and the
propagation results of h-oscillations proved in [4], along with the method fol-
lowed by [1] and [4], reduces the study to the particular case of a nonlinear
concentrating wave. Similar results for the case of general data, (ϕn, ψn),
would be easy to prove.

In this paper, our goal is to describe every nonlinear concentrating wave
u in the high frequency approximation; namely, up to relatively compact
sequences (rn)n according to the Energy-Strichartz norm

‖| r |‖I := sup
I

‖(r, ∂tr)(t, .)‖E + ‖r‖Lpc (I,L2pc),
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where I is a time interval of IR. It is a matter of finding linear concentrating
wave f such that u = f + r with lim

n
‖| rn |‖I = 0.

In the first part of this paper, we deal with the case (IRd,div(A(x)∇x.)).
The idea is the following. We rescale the Cauchy problem associated to
(1.2) by introducing the “microscopic” variables s = t−tn

hn
and y = x−xn

hn

(which preserve the energy norm). Thus we have

∂2
s ṽn − divy(A(hn.+ xn)∇y ṽn) = 0 and (ṽn, ∂sṽn)|s=0 = (ϕ,ψ),

where vn(t, x) = h
d
2
−1

n ṽn(s, y). Therefore, one may be tempted to consider
the “rescaled Laplace operator” divy(A(hny + xn)∇y.) to be “equivalent”
to the operator divy(A(x∞)∇y.), and then use the scattering theory when
coefficients are fixed on the point of concentration x∞. We prove that this
heuristic makes sense for time sufficiently close to the concentration time
t∞. However, when we are away from that time, geometrical focus could
hold.

Definition 1.5. A given point x∞ ∈ M is said to be a focus if there exist
a point x ∈ M and a time t ∈ IR such that the set

Fx∞
(x, t) := {ξ ∈ S∗

xM : exp xtξ = x∞}
of directions of geodesics stemming from a point x and reaching x∞ in a
time t, has a positive surface measure.

Here, S∗M is the unit cosphere bundle and the measure | Ω | of a set
Ω is the one induced by the metric of M on T ∗

xM. For instance, any two
antipodal points x1 and x2 on the sphere Sd satisfy

| Fx1
(x2, t = π) |=| Sd | .

Our first result is the following

Theorem 1.6. Let v = [(ϕ,ψ), h, x, t)] be a linear concentrating wave. We
denote by u its nonlinear associated concentrating wave. There exist two
linear concentrating waves denoted by [(ϕ∞, ψ∞)±, h, x, t], such that:
For all interval I of IR containing 0 and not t∞, satisfying the following
non-focusing property

(HG)(I, x∞) : | Fx∞
(y, t∞ − t) |= 0 ∀t ∈ I, y ∈ IRd,

we have,

(i) lim
n
‖| un − [(ϕ∞,−, ψ∞,−), h, x, t] |‖K−

n,λ
−→ 0 as λ→ +∞

(ii) lim
n
‖| un − [(ϕ∞,+, ψ∞,+), h, x, t] |‖

K+
n,λ

−→ 0 as λ→ +∞,

where, K is a compact subset of I and K±
n,λ = {t ∈ K : ±(t∞− t) ≤ −λhn}.
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Remark 1.7. (1) The linear profiles (ϕ∞, ψ∞)±, given by the above the-
orem, are well defined according to the asymptotic states of solutions
of

∂2
t u− divy(A(x∞)∇yu)+ | u |pc−1 u = 0.

See Proposition 3.1 for the precise definition.

(2) The geometric condition (HG)(I, x∞), takes into account the fact
that in variable coefficients case, the linear solution v can concentrate
possibly several times between times t = 0 and t = t∞, because of
possible focus. The example of the sphere Sd shows that, there are
intervals I for which this condition is not satisfied. Nevertheless, in
the general case of a riemannian manifold, it is enough to suppose
that the time of concentration is rather small so that (HG)(I, x∞) is
satisfied. It is a property of the exponential map.

(3) (HG)(I, x∞) is globally satisfied, ( i.e I = IR−{t∞}), when the metric
is flat because the geodesics are the right-hand sides stemming from
x∞, which never intersect. We will give a larger class of such metrics
(see the example in section 3).

In the second part of this paper, we study the same problem on the sphere
Sd; geodesics from a point x∞ ∈ Sd, all meet the antipodal point at time
t = π, and periodically at time t = π + kπ, with k ∈ Z.

Theorem 1.8. Let v = [(ϕ,ψ), h, x, t] be a linear concentrating wave on the
sphere Sd and u its associate nonlinear concentrating wave. We assume that
t∞ = lim

n
tn ∈]0, π], then we have

(i) lim
n
‖| un − [(ϕ,ψ), h, x, t] |‖]t∞−π+Λhn,t∞−Λhn[ → 0; Λ → +∞.

(ii) lim
n
‖| un − [S(ϕ,ψ), h, x, t] |‖]t∞+Λhn,t∞+π−Λhn[ → 0; Λ → +∞.

Moreover if d is odd, then beyond the first focus we have

(iii) lim
n
‖| un − [SAdS(ϕ,ψ), h,−x, t] |‖]t∞+π+Λhn,t∞+2π−Λhn[ → 0; Λ →

+∞,
where Ad is an involution isometry of the energy space defined in Lemma 4.2.

When t∞ is arbitrarily chosen, we will replace the scattering operator
S by one of the appropriate wave operator given in Proposition 3.1. For
arbitrary intervals, we prove that each focus crossing is described by the
above nonlinear scattering operator, composed with the map Ad. They are
iterated as many times as the solution passes through a focus. Precisely, by
induction we can easily deduce the next corollary.
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Corollary 1.9. Using the same notations of Theorem 1.6, then for all j ∈
Z.., we have

lim
n
‖| un − [S̃(j)S(ϕ,ψ), h, (−1)jx, t] |‖]t∞+jπ+Λhn,t∞+(j+1)π−Λhn[ → 0 as Λ → +∞.

Here, S̃ = S ◦ Ad and S̃(j) = S̃ ◦ S̃ ◦ ..... ◦ S̃, j times.

Remark 1.10. When d is an even integer, we believe that the result of The-
orem 1.8 is still true (eventually with another scattering operator). Our
method only proves the first statement of Theorem 1.8 nevertheless, beyond
the first focus we need more careful study to exhibit the new profile of π-
time translated concentrating waves.

We notice that similar results, were obtained by [3], in the context of
semi-classical Shrödinger equation with isotropic harmonic potential.
The paper is organized as follows. In section 2, we give some properties of
linear concentrating waves on the whole space IRd. In section 3, we study
nonlinear concentrating waves and then we prove Theorem 1.6. The last
section is devoted to the study of nonlinear concentrating waves on the
sphere and to the proof of Theorem 1.8.

2. Study of a Linear Concentrating Wave on IRd

First, we fix a concentrating wave v = [(ϕ,ψ), h, x, t∞] and an interval I of IR
containing 0. For the sake of simplicity, we suppose that d = 3, tn = t∞ > 0,
lim
n
xn = x∞ = 0 and A(0) = Id. The other cases can be treated in a slightly

similar way. In this section, we denote by �A = ∂2
t − div (A(.)∇). Thus we

have

�Avn = 0, (vn, ∂tvn)|t=t∞(x) =
1√
hn

(ϕ,
1

hn
ψ)(

x− xn

hn
).(2.8)

Finally, we denote by (ϕΛ, ψΛ)Λ>0, a (C∞
0 (IRd))2 approximation of (ϕ,ψ) in

the energy space E .
We split the proof of Theorem 1.6 in several lemmas.

Lemma 2.1. Let f(s, y) be a regular function defined on IR× IRd such that
for all Λ ∈ IR+, its restriction on [−Λ,Λ]× IR is supported in some compact
set KΛ. Then we have,

lim
n

‖divy[(A(hn.+ xn) −A(x∞))∇yf ]‖L1([−Λ,Λ],L2(IR3)) = 0.

Proof. Let Λ > 0 and KΛ be the support of the restriction of the function
f on [−Λ,Λ] × IR3. We denote by K1

Λ the compact of IR3, obtained as
the projection of KΛ on IR3. Therefore, for all real s ∈ [−Λ,Λ], we have
supp f(s, .) ⊂ K1

Λ. The proof of the lemma is now easy; it is enough to
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notice that we have

‖divy[(A(hn.+ xn) − A(0))∇yf ]‖L1([−Λ,Λ],L2(IR3))

≤ c
{

Λhn sup
y∈IR3

|∂A(y) | sup
s∈IR

E
1
2

0 (f, s)
}

+

c
{

Λ sup
y∈KΛ

| A(hny + xn) −A(0) | sup
s∈IR

E
1
2

0 (∂f, s)
}

.(2.9)

The following result shows that using Lemma 2.1, we can fix the coeffi-
cients of the operator �A, for times t close to the time of concentration t∞.
Precisely we have

Lemma 2.2. Let v be the solution of (2.8). Setting v◦Λ := (v◦n,Λ)n the
sequence satisfying

�v◦n,Λ = 0, (v◦n,Λ, ∂tv
◦
n,Λ)|t=t∞(x) =

1√
hn

(ϕΛ,
1

hn
ψΛ)(

x− xn

hn
).

Then we have

lim
n

‖| vn − v◦n,Λ |‖[t∞−Λhn,t∞+Λhn] −→ 0 as Λ −→ +∞.

Proof. In the “microscopic” variables s = t−t∞
hn

and y = x−xn

hn
, we can

write

vn(t, x) =
1√
hn

ṽn(
t− t∞
hn

,
x− xn

hn
) =

1√
hn

ṽn(s, y)

v◦n,Λ(t, x) =
1√
hn

ṽ◦Λ(
t− t∞
hn

,
x− xn

hn
) =

1√
hn

ṽ◦Λ(s, y),

where the “rescaled functions” ṽn and ṽ◦Λ satisfy

�A(hn.+xn)ṽn = 0, (ṽn, ∂sṽn)|s=0 = (ϕ,ψ),

�ṽ◦Λ = 0, (ṽ◦Λ, ∂sṽ
◦
Λ)|s=0 = (ϕΛ, ψΛ).

We set rn,Λ := vn − v◦n,Λ. The rescaled function r̃n,Λ is then the solution of






�A(hn.+xn)r̃
◦
n,Λ = divy[(A(hn.+ xn) −A(0))∇y ṽ

◦
Λ]

(r̃◦n,Λ, ∂sr̃
◦
n,Λ)|s=0 = (ϕ− ϕΛ, ψ − ψΛ).

The condition (H) and the energy estimate imply that

sup
s∈[−Λ,Λ]

E
1

2

0 (r̃◦n,Λ, s) ≤ c
{

‖ ∇(ϕ− ϕΛ) ‖L2(IR3) + ‖ (ψ − ψΛ) ‖L2(IR3)

}

+ c
{

‖divy[(A(hn.+ xn) −A(0))∇y ṽ
◦
Λ]‖L1([−Λ,Λ],L2(IR3))

}

.

By finite propagation speed, the solution ṽ◦Λ is supported in a fixed compact
set denoted by KΛ. Taking the limit in n and using Lemma 2.1, we obtain

lim
n

sup
s∈[−Λ,Λ]

E
1
2

0 (r̃◦n,Λ, s) ≤ c
{

‖ ∇(ϕ− ϕΛ) ‖L2(IR3) + ‖ (ψ − ψΛ) ‖L2(IR3)

}

,
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and hence lim
n

sup
s∈[−Λ,Λ]

E0(r̃
◦
n,Λ, s) −→ 0 as Λ → +∞.

On the other hand, Lemma 2.1 and Strichartz inequalities (1.4) applied to
the function r◦n,Λ on the interval [t∞ − Λhn, t∞ + Λhn] give

lim
n

‖r̃◦n,Λ‖L5([−Λ,Λ],L10(IR3))−→ 0 as Λ → +∞,

which concludes the proof of our lemma.
The next result shows that linear concentrating waves have the following

non-concentration property under the condition of “smallness” of the time of
concentration t∞. The proof of this result uses microlocal defect measures,
introduced, independently by P. Gérard [5] and L. Tartar [19].

Lemma 2.3. Assume that the geometric condition (HG)(I, x∞) is satisfied
on the time interval I and in the point x∞. Then, for all compact K ⊂ I,
the linear concentrating wave v satisfies

lim
n

sup
t∈K\[t∞−Λhn,t∞+Λhn]

‖vn(t, .)‖L6(IR3) −→ 0 as Λ → +∞(2.10)

Proof. For the sake of simplicity, we suppose that I =]T1, t∞[∪]t∞, T2[
with Ti ∈ IR and T1 < t∞ < T2. Let K be a compact subset of I. Arguing
by contradiction, we suppose that (2.10) does not occur. Thus, there exist a
constant c > 0, a real subsequence (Λj)j tending to +∞ and a subsequence
(tnj

)j of (tn)n, convergent to τ ∈ K such that

| tnj
− t∞ |> Λjhnj

and lim
j

‖fnj
(tnj

, .)‖L6(IR3) −→ c.(2.11)

We split the proof of Lemma 2.3 in two parts. First, we consider the case
when τ 6= t∞.
The sequence gj := fnj

(tnj
, .) is weakly convergent to 0 in Ḣ1. Up to

extracting a subsequence, we can suppose that | ∇gj(x) |2:=| fnj
(tnj

, x) |2
is weakly convergent to a positive Radon measure α on IR3; hence

α = w∗ − lim | ∇gj(x) |2 .
The idea is to construct a positive microlocal Radon measure denoted by µ
on IR3 × S2 satisfying

∀y ∈ IR3, µ({y} × S2) = 0,(2.12)

and for a positive constant c

α ≤ cβ.

Here β := Π1µ and c is a positive constant. These properties particularly
imply, that for any point y ∈R3, α({y}) ≤ c.β({y}) = µ({y} × S2) = 0,
which gives, via concentration-compactness Lemma of P. L. Lions [13],
lim

j
‖gj‖L6(IR3) = 0, contradicting (2.11).

To compute α({y}), we use the microlocal defect measures associated to the
sequence of solution of the free wave equation (1.2). ( We refer to [6] for the
details in the constant case and to [?] and [11] for the variable coefficients
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case).

For all t ∈ IR, we can associate to the sequence (A
1
2∇xfnj

(t, .), ∂tfnj
(t, .)) a

non-negative Radon measure denoted by µt on IR3 × S2 and defined as:

For all classic pseudo-differential operator B of order 0, one has

(B∂tfnj
(t, .), ∂tfnj

(t, .)) + (BA∇fnj
(t, .),∇fnj

(t, .))
j→+∞−→(2.13)

∫

IR3×S2

σ0(B)dµt.

with a locally uniform convergence in t. We recall that σ0(B) represents

the principle symbol of the operator B.

Moreover, one can decompose the measure µt in the following way

µt =
1

2
(µt

+ + µt
−),

where the measure µt
± satisfies the following transport equation

{

{∂t ±H√
A(x)ξ.ξ

± d(x, ξ)}µt
± = 0

µt
±|t=t∞

= µt∞
± ,

with,

d(x, ξ) =
3

∑

j=1

∂2

∂ξj
∂xj

√

A(x)ξ.ξ −
∑

1≤j,k≤3

∂
∂xk

akj(x)ξj

2
√

A(x)ξ.ξ
.

H√
A(x)ξ.ξ

denotes the hamiltonian flow on IR3 ×S2 and the measure µt∞
± is

defined as:

For all classical pseudo-differential operator B of order 0, one has

(B(ψnj
± i

√
AD.Dϕnj

), ψnj
± i

√
AD.Dϕnj

)
j→+∞−→

∫

IR3×S2

σ0(B)dµt∞
± .

An easy computation shows that if we set

g±(ξ) = (2π)−3

∫ +∞

∞
|
∧
ψ (rξ) ± i | A 1

2 (x∞)ξ |
∧
ϕ (rξ) |2 r2dr,

then the measure µt∞
± is given by :

µt∞
± = g±(ξ)δx−x∞

⊗ dσ(ξ).(2.14)

Taking B(x,Dx) = b(x) ∈ C∞
0 (IR3) in (2.13), then it easily follows that for

all real t ∈ IR, we have

Π1µ
t := β(t) = w∗ − lim{| ∂tfn(t, .) |2 + | A 1

2∇fn(t, .) |2}.
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On the other hand, for all positive function λ ∈ C∞
0 (IR3), we have

∫

IR3

| ∇fnj
(tnj

, .) |2 λ(x)dx ≤ c

∫

IR3

[| ∂tfnj
(tnj

, .) |2 + | A 1

2∇fnj
(tnj

, .) |2]λ(x)dx.

Since lim
j
tnj

= τ , then the uniform convergence in (2.13) and the geometric

condition (HG)(I, x∞) show that α ≤ cβ(τ). It remains now to verify (2.12).
Denoting by Φt the hamiltonian flow H√

A(x)ξ.ξ
, then we have

µτ
±(x, ξ) = exp(−

τ
∫

t∞

d(Φs−τ (x, ξ))ds).µ
t∞
± (Φt∞−τ (x, ξ))

= f τ (x, ξ).Φ−(t∞−τ)µ
t∞
± ,

with f τ (x, ξ) = exp(−
τ
∫

t∞

d(Φs−τ (x, ξ))ds). Hence, for all y ∈ IR3 we have

µτ
±({y} × S2) ≤ C(t∞, τ)

∫

Φt∞−τ ({y}×S2)

dµt∞
± (x, ξ),

where the constant C(t∞, τ) = sup{f τ (x, ξ)/(x, ξ) ∈ supp Φ−(t∞−τ) µ
t∞
± }.

Using (2.14), and the fact that Π1 ◦ Φt∞−τ (y, ξ) = expy((t∞ − τ)ξ), we get
∫

Φt∞−τ ({y}×S2)
dµt∞

± (x, ξ) =

∫

Fx∞(y,t∞−τ)

g(ξ)dσ(ξ)

≤ C(t∞, τ). | Fx∞
(y, t∞ − τ) | .

But the time t∞ − τ is in the interval t∞ − I, so the geometric condition
shows that for any point y ∈ IR3, we have µτ

±({y} × S2) = 0 and then
µτ ({y} × S2) = 0. This clearly leads to a contradiction in the case τ 6= t∞.

When τ = t∞, we set εj =| t∞ − tnj
|, h̃j =

hnj

εj
and define the sequence f̃j

as f̃j(s, y) =
√
εjfnj

(t∞ − εjs,−εjy).
Note that since | t∞ − tnj

|≥ Λjhnj
and lim

j
Λj = +∞, then lim

j
h̃nj

= 0.

The sequence (f̃j)j is the solution of










�A(−εj .)f̃j = 0

(f̃j , ∂sf̃j)|s=0 = 1√
h̃j

(ϕ, 1
h̃j
ψ)( x

h̃j
).

To conclude the proof, it remains to show that lim
j

‖f̃j(1, .)‖L6(IR3) = 0. The

idea is to proof that the microlocal energy defect measure µs associated to
the sequence

(A
1
2∇y f̃j(s, .), ∂sf̃j(s, .)),
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propagates along the curves of the hamiltonian flow with constant coeffi-
cients H|ξ|.
Let q be a symbol in the class S1

1,0 given by

q(x, ξ) =
√

A(x)ξ.ξ − i
Σ ∂

∂xk
akj(x)ξj

2
√

A(x)ξ.ξ
+

Σ ∂
∂xj

√

A(x)ξ.ξ ∂
∂ξj

√

A(x)ξ.ξ

2
√

A(x)ξ.ξ
.

Denote by Q its associate the pseudo-differential operator defined on IR3
x ×

IR3
ξ\{0}. First, notice that we can rewrite �A as follows

�A = (∂t − iQ)(∂t + iQ) +R0(x,Dx),

where R0(x,Dx) is a 0 order pseudo-differential operator. Denote by Qj the
pseudo-differential operator with symbol qj(y, ξ) := q(εjy, ξ), hence we can
write

�A(−εj .) − (∂s − iQj)(∂s + iQj) = R0(εjy,Dy),(2.15)

Defining f̃ s
j,± := (∂s ± iQj)f̃j(s, .), then (2.15) shows that f̃ s

j,± satisfies

(∂t ∓ iQ)f̃ s
j,± = R0(εjy,Dy)f̃j(s, .) = o(1) as j → +∞.

Second, by virtue of (2.15) it easily follows that, for all classic pseudo-
differential operator B of order 0, we have

d

ds
(Bf̃ s

j,±, f̃
s
j,±) = ±i((BQj −Q∗

jB)f̃ s
j,±, f̃

s
j,±) + o(1) as j → +∞.(2.16)

Finally, we can observe that

BQj −Q∗
jB = B(Qj− | D |) − (Q∗

j− | D |)B + (B | D | − | D | B),

and notice that for all multi-index α, β ∈ N
3, we have

lim
j

sup
x∈IR3,ξ∈IR3

∗

| Dα
xD

β
ξ (qj(x, ξ)− | ξ |) |→ 0 as j → +∞.

Therefore, the symbol (qj(x, ξ)− | ξ |) tends to 0 in the class of pseudo-
differential symbols S1

1,0, which proves, by taking the limit in (2.16), that

the measure µs
± satisfies (∂s ∓H|ξ|)µ

s
± = 0. Hence our lemma follows.

3. Study of a Nonlinear Concentrating Wave on IRd

Let u be the nonlinear concentrating wave associated to the linear concen-
trating wave v. Namely, u is the solution of

�Aun + u5
n = 0, (un, ∂tun)|t=0 = (vn, ∂tvn)|t=0.(3.17)

Recall that for the d’alembertian operator is studied a scattering operator
S as well as wave operators Ω± defined as follows (see [1])
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Proposition 3.1. (i) To every solution of

�A(x∞)v
∞ = 0, (v∞, ∂sv

∞)|s=0 = (ϕ,ψ),

corresponds a unique function u∞± , such that

(u∞± , ∂tu
∞
± ) ∈ C(IR, E), u∞± ∈ L5(IR,L10(IR3))

and satisfying

�A(x∞)u
∞
± + | u∞± |4 u∞± = 0, lim

s→±∞
E0(u

∞
± − v∞, s) = 0.

(ii) The wave operators

Ω∞
± : (v∞, ∂tv

∞)|t=0 7→ (u∞± , ∂tu
∞
± )|t=0

are bijective from E onto itself. The scattering operator S∞ is then defined
by

S∞ := (Ω∞
+ )−1 ◦ Ω∞

− .

When A(x∞) = Id, then we simply set S∞ = S and Ω∞
± = Ω±.

Under the conditions on t, the two linear concentrating waves v∞± are then
respectively associated to [ϕ,ψ, h, x, t∞] and [S∞(ϕ,ψ), h, t∞].
The remainder part of the proof of the Theorem 1.6 is given into the following
three parts.

3.1. Study Before the Time of Concentration. By taking fn = vn in
Lemma 2.1 we will derive the following corollary which is the first assertion
of Theorem 1.6.

Corollary 3.2. Assume that the geometric condition (HG)(I, x∞) is satis-
fied. Let K be a compact set of I. Denoting by
K−

n,Λ = {t ∈ K such that: t ≤ t∞ − Λhn}, then we have

lim
n
‖| un − vn |‖K−

n,Λ
−→ 0 as Λ → +∞.

To prove this corollary, we follow the method in [6]. The proof is based
on Strichartz’s inequalities and the following absorption Lemma.

Lemma 3.3 ([bootstrap Lemma.]). Let X : [0, T ] → IR+ be a continuous
map such that for all t ∈ [0, T ] we have

X(t) ≤ a+ bX(t)γ .

The constants a and b are positive, the real γ > 1 satisfying

a < (1 − 1

γ
)

1

(γb)
1

γ−1

and X(0) ≤ 1

(γb)
1

γ−1

.

Then for all real t ∈ [0, T ], we have

X(t) ≤ γ

γ − 1
a.
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Proof. For the sake of simplicity, we take K = [0, t∞] and set wn :=
un − vn. By applying inequalities (1.4) to the sequence wn, we obtain

‖wn‖L5([0,t∞−Λhn],L10(IR3)) ≤ c
{

‖vn‖L5([0,t∞−Λhn],L10)+‖wn‖L5([0,t∞−Λhn],L10)

}5

By interpolating Strichartz inequalities and using Lemma 2.3 we obtain

lim
n
‖vn‖L5([0,t∞−Λhn],L10) −→ 0 as Λ → +∞.

Moreover, there exists a real number Λ0 such that for all Λ ≥ Λ0 and for any
integer n ≥ n0(Λ), the quantity c‖vn‖L5([0,t∞−Λhn],L10) is sufficiently small.
Denoting by

Xn(t) := ‖wn‖L5([0,t],L10) and δn(t) := ‖vn‖L5([0,t],L10),

with t ∈ [0, t∞ −Λhn], then we have Xn(t) ≤ c(δn(t) +Xn(t))5. Lemma 3.3
enables us to deduce that for any Λ ≥ Λ0 and n ≥ n0(Λ), we have

Xn(t∞ − Λhn) ≤ 5

4
cδn(t∞ − Λhn).

Then our result follows.

3.2. Study for Times Close to the Concentration Time. In what
follows, we are studying the nonlinear concentrating wave u when the time
is “very close ”to t∞. For that, we begin by the following auxiliary result
related to the constant case.
Let v◦ and u◦− be the solution, respectively of

�v◦ = 0, (v◦, ∂sv
◦)|s=0 = (ϕ,ψ),

�u◦− + (u◦−)5 = 0, lim
s→−∞

E0(u
◦
− − v◦, s) = 0.

For all real Λ > 0, let wΛ be the smooth solution of






�wΛ + (wΛ)5 = 0

(wΛ, ∂swΛ)|s=−Λ = (v◦, ∂sv
◦)|s=−Λ,

belonging to L5(IR,L10(IR3)). Then we have the following lemma.

Lemma 3.4. We have

lim
Λ
‖| u◦− − wΛ |‖IR = 0.

Proof. We use the technique of deformation of the time described by H.
Bahouri and P. Gerard in [1].
Let us denote by rΛ := wΛ − u◦−. Then we have �rΛ = (u◦−)5 − (rΛ + u◦−)5.
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By applying the inequalities (1.4) on the interval [−Λ, η], where η ≥ −Λ is
arbitrary, we obtain

‖rΛ‖L5([−Λ,η],L10) ≤ cE
1
2

0 (u◦− − v◦, s = −Λ)

+ c
{

‖rΛ‖L5([−Λ,η],L10)‖u◦−‖4
L5([−Λ,η],L10)

}

+ c
{

‖rΛ‖2
L5([−Λ,η],L10) + ‖rΛ‖5

L5([−Λ,η],L10)

}

.

Using H. Bahouri and J. Shatah’s result (see [2]) described in the introduc-
tion, we can choose a real number S such that the quantity c‖u◦−‖L5([−∞,η],L10)

is sufficiently small. On the other hand, Proposition 3.1 shows that

E
1
2

0 (u◦− − v◦, s = −Λ) = o(1) as Λ → +∞.

which clearly leads to

‖rΛ‖L5([−Λ,η],L10) ≤ c
{

o(1) + ‖rΛ‖2
L5([−Λ,η],L10) + ‖rΛ‖5

L5([−Λ,η],L10)

}

.

Using the absorption Lemma 3.3 we obtain lim
Λ
‖rΛ‖L5([−Λ,η],L10) = 0. The

energy estimate applied to rΛ shows that

sup
s∈[−Λ,η]

E0(rΛ, s) ≤ c
{

E0(rΛ, s = −Λ) + ‖(u◦−)5 − (rΛ + u◦−)5‖2
L1([−Λ,η],L2)

}

and then lim
Λ

sup
s∈[−Λ,η]

E0(rΛ, s) = 0. Setting

ηmax := sup
{

η ∈ IR, / lim
Λ
‖rΛ‖L5([−Λ,η],L10) = 0

}

,

and assuming by contradiction that ηmax < +∞.
Let us choose η1 < ηmax such that c‖u◦−‖L5([η1,ηmax],L10) be sufficiently small.
By applying the previous arguments, we can first prove that

lim
Λ
‖| rΛ |‖[−Λ,ηmax] = 0.

Then, for δ > 0 small enough, we have lim
Λ
‖| rΛ |‖[ηmax,ηmax+δ] = 0, which

clearly proves that ηmax = +∞. To achieve the proof on the interval
[−Λ,+∞[, it suffices to apply, once again, the Strichartz inequalities on
the intervals of the type [η,+∞[ and conclude the proof as previously done.
The proof is completed by time inversion.

Lemma 3.5. Let ũn be the “rescaled function” associated to un that is,
un(t, x) = 1√

hn
ũn( t−t∞

hn
, x−xn

hn
). Then we have

lim
n
‖| ũn − wΛ |‖[−Λ,Λ] → 0 as Λ → +∞.(3.18)

Proof. We introduce the auxiliary family of function ũΛ
n defined by







�A(hn.+xn)ũ
Λ
n + (ũΛ

n)5 = 0

(ũΛ
n , ∂sũ

Λ
n)|s=−Λ = (ṽn, ∂sṽn)|s=−Λ.
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To prove Lemma 3.5, it suffices to show that

lim
n
‖| wΛ − ũΛ

n |‖[−Λ,Λ] → 0 as Λ → +∞,(3.19)

and

lim
n
‖| ũn − ũΛ

n |‖[−Λ,Λ] → 0 as Λ → +∞.(3.20)

The proofs of (3.19) and (3.20) are similar to those of Lemma 2.2 and Lemma
3.4. In fact, we set rn,Λ = ũΛ

n − wΛ. Then we get






�A(hn.)rn,Λ = (rn,Λ + wΛ)5 + divy[(A(hn.+ xn) −A(0))∇ywΛ]

(rn,Λ, ∂srn,Λ)|s=−Λ = (ṽn − ṽ◦Λ, ∂s(ṽn − ṽ◦Λ)).

Lemma 2.2 applied to wΛ shows that the following error term

‖divy[(A(hn.+ xn) −A(0))∇ywΛ]‖L1([−Λ,Λ],L2(IR3))

tends to 0 with respect to n. Meanwhile, for the term ‖rn,Λ+wΛ‖5
L5([−Λ,Λ],L10(IR3)),

we use the technique of deformation of the time as described above in the
proof of Lemma 3.4.
To prove (3.20), we use the result of (3.19) which enables us to replace the
sequence ũΛ

n by wΛ and then to “absorb” the linear term in the Strichartz
inequalities. Finally, we apply the technique of deformation of time to con-
clude the proof.

3.3. End of the proof of the Theorem 1.8: Study for times after
the concentration time. Let us denote by ṽ∞n,+ and ṽ◦∞ the functions
respectively defined by

�A(hn.+xn)ṽ
∞
n,+ = 0; (ṽ∞n,+, ∂sṽ

∞
n,+)|s=0 = S∞(ϕ,ψ),

and

�ṽ◦∞ = 0; (ṽ◦∞, ∂sṽ
◦
∞)|s=−0 = S∞(ϕ,ψ).

First, we begin by observing that we can estimate the energy
E0(ũn − ṽ∞n , s = Λ) by

E0(ũn − ṽ∞n , s = Λ) ≤ E0(ũn −wΛ,Λ)+E0(w
Λ − ṽ◦∞,Λ)+E0(ṽ

◦
∞− ṽ∞n,+,Λ).

But according to (3.18), we have lim
n
‖| ũn − wΛ |‖[−Λ,Λ] → 0 as Λ → +∞.

On the other hand, the analogue of Lemma 2.2 shows that

lim
n

sup
s∈[−Λ,Λ]

E0(ṽ
∞
n,+ − v◦∞, s) → 0 as Λ → +∞.

Now, we use the following known result from the scattering theory of the
constant case (see Proposition 3.1),

lim
Λ
‖| wΛ − v◦∞ |‖[Λ,+∞[ = 0.(3.21)

This gives

lim
n
E0(ũn − ṽ∞n , s = Λ) → 0 as Λ → +∞
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To conclude the proof, it suffices to note that the geometric condition
(HG)(I, x∞) is made to avoid the lack of compactness of the sequence (v∞n,+)n
on intervals of types [t∞ + Λhn, T ] or equivalently

lim
n

sup
t∈[t∞+Λhn,T ]

‖v∞n,+(t, .)‖L6(IR3) = lim
n

sup
s∈[Λ, T−t∞

hn
]

‖ṽ∞n,+(s, .)‖L6(IR3)
Λ→+∞−→ 0.

By a similar analysis to that used to prove Corollary 3.2, the proof of The-
orem 1.6 is completed.

Example

Let A be the metric defined by A(x) = diag(ai(xi)), where x = (x1, x2, x3)
and the coefficients ai satisfy

ai : IR −→ IR∗
+, C∞ and such that ai ≡ 1 when | x |≥ R0.

Let (x0, ξ0) ∈ IR3 × IR3\{0}. For i = 1, 2, 3, we set Fi the function defined
by

Fi : IR −→ IR, xi 7−→
∫ xi

x0
i

a
− 1

2

i (s)ds.

Under the above assumptions on the coefficients ai, the functions Fi are
bijective from IR onto IR. Denote by Gi := F−1

i and set,

xi(t) := xi(t, x
0, ξ0) = Gi(2a

1
2

i (x0
i )ξ

0
i t),

ξi(t) := ξi(t, x
0, ξ0) = a

− 1
2

i (xi(t))a
1
2

i (x0)ξ0i .

Therefore, (x(t), ξ(t)) is a solution of the hamiltonian system associated to
the function

a1(x1)ξ
2
1 + a2(x2)ξ

2
2 + a3(x3)ξ

2
3 ,

corresponding to the principal symbol of the operator (− div A(x)∇.). The
initial conditions are (x(0), ξ(0)) = (x0, ξ0). According to the assumptions
on the metric A, we can easily observe that for all real t ∈ IR and y ∈ IR3,
the map

Π1 ◦ Φt : IR3\{0} −→ IR3, ξ 7−→ (Gi(2a
1
2

i (x0
i )ξ

0
i t))1≤i≤3

has a maximal rank, which proves that the following set {ξ; expy(tξ) =

Π1◦Φt(y, ξ) = x 0} is discrete and therefore (HG)(IR∗, x 0) is globally satisfied.

4. Nonlinear Concentrating Wave on the Sphere

Now we study the critical wave equation on the sphere. We start by recalling
a few facts.
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4.1. Notations and Preliminary Results. For k ∈ N, we denote by Hk

the space of k-spherical harmonics of dimension d+ 1. Recall that we have

L2(Sd) = ⊕k∈N Hk.

Therefore, any function g ∈ L2(Sd) uniquely determines a component gk ∈
Hk given by

gk(x) = N(k, d)

∫

Sd

Pk(τ.x)g(τ)dτ, k = 0, 1, ...,(4.22)

such that g =
∑

k∈N

gk in the topology of L2. Here, Pk is denoting the Legendre

Polynomial of degree k and of dimension d+ 1 and N(k, d) is the dimension
of the space Hk. For more details, see [14]. Taking (f, g) in the energy space
E such that f =

∑

k∈N

fk and g =
∑

k∈N

gk then

‖(f, g)‖2
E =

∑

k∈N

(

a2
k‖fk‖2

L2 + ‖gk‖2
L2

)

,(4.23)

where ak =
√

k(k + d− 1). Notice that (4.23) is in fact a semi-norm because
of constants. In what follows, the notation o(1)(t) means

lim
n

sup
t∈IR

‖o(1)(t, .)‖E = 0.

The following lemma gives a quasi-periodicity property of linear waves on
the sphere.

Lemma 4.1. Let p be the solution of

(∂2
t − ∆Sd)pn = 0, (pn, ∂tpn)|t=0 = (ϕn, ψn).(4.24)

We suppose that (ϕn, ψn) converges weakly to (0,0) in the energy space, then
we have

pn(t+ π, x) =











(−1)
d−1

2 pn(t,−x) + o(1)(t), if d−1
2 ∈ N

∗,

(−1)
d
2 p̃n(t,−x) + o(1)(t), if d

2 ∈ N
∗,

where, p̃n is the solution of

(∂2
t − ∆Sd)p̃n = 0, (p̃n, ∂tp̃n)|t=0 =

[

− (−∆Sd)−
1
2 (ψn −

∫

Sd

ψn), (−∆Sd)
1
2ϕn

]

.

Proof. We note that the solution pn is explicitly given by expansion into
the eigenfunctions of ∆Sd;

pn(t, x) =
∑

k∈N

cos(akt)ϕk,n(x) +
∑

k∈N∗

sin(akt)

ak

ψk,n(x) + tψ0,n,

where ϕk,n and ψk,n are respectively the k spherical-harmonics compo-
nent of ϕn and ψn. In particular, according to (4.23), we have ϕk,n =
N(k, n)

∫

Sd Pk(τ.x)ϕn(τ)dτ and ψk,n = N(k, n)
∫

Sd Pk(τ.x)ψn(τ)dτ.

(4.25)
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First, we consider the case d−1
2 ∈ N

∗.
Since spherical harmonics are restrictions to the sphere of homogenous poly-
nomials, we have

(−1)
d−1

2 pn(t,−x) =
∑

k∈N

(−1)(k+ d−1

2
) cos(akt)ϕk,n(x)

+
∑

k∈N∗

(−1)(k+ d−1

2
) sin(akt)

ak

ψk,n(x)

+ (−1)
d−1

2 tψ0,n.

Therefore we can write

pn(t+ π, x) − (−1)
d−1

2 pn(t,−x) = (i) + (ii)

where

(i) =
∑

k∈N

[

cos(akt+ akπ) − cos(akt+ (k +
d− 1

2
)π)

]

ϕk,n(x),

(ii) =
∑

k∈N∗

sin(akt+ akπ) − sin(akt+ (k + d−1
2 )π)

ak
ψk,n(x)

+ (t+ π − (−1)
d−1

2 t)ψ0,n.

By estimating (i) and (ii) we get

sup
t∈IR

‖pn(t+ π, .) − pn(t, .)‖2
E ≤ c

∑

k∈N∗

a2
k | ϕk,n |2L2(Sd) (ak − (k +

d− 1

2
))2

+ c
∑

k∈N∗

| ψk,n |2
L2(Sd) (ak − (k +

d− 1

2
))2 + 2ψ2

0,n

≤ c
∑

k∈N

a2
k | ϕk,n |2

L2(Sd)

1

(k + 1)2

+ c
∑

k∈N

| ψk,n |2
L2(Sd)

1

(k + 1)2

Using the energy estimate for solutions of (4.24), it is clear that the se-
quences (| ψk,n |L2(Sd))k and (ak | ϕk,n |L2(Sd))k are uniformly bounded in

n. Moreover, notice that (ϕn, ψn) ⇀ 0 in the energy space, then by virtue
of (4.22), we deduce

lim
n

| ψk,n |L2(Sd)= lim
n

| ϕk,n |L2(Sd)= 0.

Thus our lemma follows.
From the previous lemma, we will deduce the following result

Lemma 4.2. Let p be a linear concentrating wave associated to the concen-

trating data [(ϕ,ψ), h, x, t]. For all j ∈ N, we denote by p(j), the sequence
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defined by p
(j)
n (t, x) = pn(t+ jπ, x). We assume that d is odd, then we have

p(j) = [Aj
d(ϕ,ψ), h, (−1)jx, t] + o(1)(t)(4.26)

where the operator Ad is an involution isometry of the energy space defined
by

Ad(ϕ,ψ)(x) = (−1)
d−1

2 (ϕ,ψ)(−x), and Aj
d = Ad ◦ Ad ◦ ... ◦ Ad.

Proof. Since both p(j) and [Aj
d(ϕ,ψ), h, (−1)jx, t] satisfy (4.24) then it is

sufficient to compute the energy of the difference p(j)−[Aj
d(ϕ,ψ), h, (−1)jx, t]

at time tn. For simplicity, we consider the case j = 1.
For all x in the geodesic ball B′(−xn, r0), we have

[A1
d(ϕ,ψ), h, (−1)jx, t](tn, x) =

hn
1− d

2 θ(exp−1
−xn

(x))(−1)
d−1

2 (ϕ, 1
hn
ψ)(− exp−1

−xn
(x)

hn
) + o(1).

On the other hand, Lemma 4.1 shows that,

p
(1)
n (tn, x) = (−1)

d−1

2 pn(tn,−x) + o(1).

when (−x) is in the geodesic ball B′(xn, r0), we get

p(1)
n (tn, x) = hn

1− d
2 θ(exp−1

xn
(−x))(−1)

d−1

2 (ϕ,
1

hn
ψ)(

exp−1
xn

(−x)
hn

) + o(1)

Using the property exp−1
−x1

x2 = − exp−1
x1

(−x2) on the sphere and the fact
that θ is an even function we derive our result.

The following lemma is analogous to Lemma 2.3. We will need it in the
proof of Theorem 1.8.

Lemma 4.3. Let p = [(ϕ,ψ), h, x, t], be a linear concentrating wave on the
sphere. Then p satisfies the non-concentration property

lim
n

sup
Λhn≤|t−tn|≤π−Λhn

‖pn(t, .)‖Lpc+1(Sd) −→ 0;Λ → +∞.

Proof. Suppose that (ϕ,ψ) ∈ C∞
0 (IRd) such that

supp(ϕ)
⋃

supp(ψ) ⊂ B(0, R). By finite propagation speed, it follows that
⋃

Λhn≤|t−tn|≤π−Λhn

{supp(pn(t, .)) ∪ supp(∂tpn(t, .))} ⊂ B′(xn, π + (R−Λ)hn),

which shows that, for Λ > R,
⋃

Λhn≤|t−tn|≤π−Λhn

{supp(pn(t, .)) ∪ supp(∂tpn(t, .))}

is strictly included in B′(xn, π). We introduce the rescaled function p̃n

defined by

p̃n(s, y) = h
d
2
−1

n vn(hns, expxn
(hny)).(4.27)
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Hence,

sup
Λhn≤|t−tn|≤π−Λhn

‖pn(t, .)‖Lpc+1(Sd) ≤ c sup
Λ≤|s|≤ π

hn
−Λ

‖p̃n(s, .)‖Lpc+1(B(0, π
hn

)).

On the other hand, equation (4.24) for p̃n yields

∂2
s p̃n − ∆np̃n = 0 in IRs ×B(0,

π

hn
),

with ∆n as the rescaled Laplace-Beltrami operator, in particular satisfying

| ∆np̃n − ∆p̃n |≤ chn | ∇p̃n | +ch2
n | ∇2p̃n | .(4.28)

Now let v◦ be the solution of the free wave equation on IRd with Cauchy
data (ϕ,ψ) at s = 0. Extending p̃n by 0 outside the ball B(0, π

hn
), and

applying the usual energy estimate to p̃n − v◦, we get

E
1
2

0 (p̃n−v◦, s) ≤ c
[(

∫

|hny|≥π
2

(| ∇ϕ |2 + | ∇ψ |2)dy) 1
2 +

∫ s

0
| (∆n−∆)p̃n(τ, .) |L2 dτ

]

The Sobolev imbedding Ḣ1 →֒ Lpc+1 and the triangle inequality complete
the proof.

Now, we are able to prove Theorem 1.8.

4.2. Proof of Theorem 1.8. Let v = [(ϕ,ψ), h, x, t], be a linear concen-
trating wave on the sphere. For simplicity, we suppose d = 3 and for all
n ∈ N , xn = x∞ and tn = t∞ ∈ [0, π[. So we have



























(vn, ∂tvn)(t∞, .) = hn
− 1

2 θ(exp−1
x∞

.)(ϕ, 1
hn
ψ)(

exp−1
x∞

.

hn
)

+ o(1), in E(B(x∞, r0)).

(vn, ∂tvn)(t∞, .) = o(1) in E(B
c
(x∞, r0))

Since the proof goes along the same lines as the proof of Theorem 1.6, we
omit the details here. The non-concentrating property of linear concentrat-
ing waves given by Lemma 4.3, combined with estimate (4.28), obviously
imply the first statement of Theorem 1.8.
Beyond the first focus and before the solution focuses again that is

(t∞+π < t < t∞+2π), we first recall that the sequence v
(1)
n = [(ϕ,ψ), h, x, t](1)

defined by v
(1)
n = vn(t+ π, x) satisfy, according to Lemma 4.2,

v(1) = [A3S(ϕ,ψ), h,−x, t].(4.29)

On the other hand, the first statement of Theorem 1.8 shows that

lim
n
E0(un − v(1)

n )(t∞ − Λhn) → 0; Λ → +∞.(4.30)

Moreover, the linear concentrating wave v(1) satisfies the non-concentration
property given by Lemma 4.3. This concludes the proof.
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