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Abstract. A number of two-dimensional spiking neuron models that combine continuous dynamics with an instantaneous
reset have been introduced in the literature. The models are capable of reproducing a variety of experimentally observed spiking
patterns, and also have the advantage of being mathematically tractable. Here an analysis of the transverse stability of orbits
in the phase plane leads to sufficient conditions on the model parameters for regular spiking to occur. The application of this
method is illustrated by three examples, taken from existing models in the neuroscience literature. In the first two examples
the model has no equilibrium states, and regular spiking follows directly. In the third example there are equilibrium points,
and some additional quantitative arguments are given to prove that regular spiking occurs.
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1. Introduction. Formulating a model of individual neurons that is both biologically realistic and
mathematically tractable is an important problem in mathematical neuroscience. The first significant model
based on quantitative experiments is the classical Hodgkin-Huxley (H-H) model [7], which describes the
dynamics of ionic channels in the cell membrane. It is an accurate model, however being a four-dimensional
model it is difficult to analyze in detail. Various reductions of the H-H model have been achieved, of which
the Fitzhugh-Nagumo (F-N) model [4] is an example. The F-N model is a two-dimensional continuous model,
which is more easily analyzed than higher-dimensional systems. However, the autonomous F-N model cannot
produce observed complex behaviours such as bursting and aperiodic spiking, since in two dimensions solu-
tions tend either to an equilibrium state or to a simple periodic orbit. In a short paper [8] published in 2003,
Izhikevich introduced a two-dimensional hybrid model that combines continuous dynamics with an instan-
taneous reset, which is examined in greater detail in [9]. His model is the first example of a class of models
outlined by Touboul and Brette in [16] that are at once capable of reproducing a variety of spiking patterns,
and are amenable to analysis. They have also been fitted to experimental data. For example, the adaptive ex-
ponential model introduced in [1] has been successfully fitted to intracellular recordings of pyramidal cells [2].

Therefore, following [15] and [16], we consider models of the form:

v′ = F (v)− w + I (1.1)

w′ = a(bv − w)

Here v corresponds to the potential of a neuron, and w is called the adaptation variable. We assume that
F is at least C2, strictly convex, and F ′(v) goes to a negative limit as v → −∞ and to infinity as v → +∞.
The quantity I ∈ R is a constant input current, and a and b are positive real parameters. Also, there is the
following reset condition: given additional parameters d > 0, vS and vR, if tS ∈ R is such that v(t−S ) = vS
then v(t+S ) = vR and w(t+S ) = w(t−S ) + d, where v(t±S ) = limt→t±S

v(t) and similarly for w. In other words,

solutions (v(t), w(t)) satisfy the ordinary differential equations (ODEs) in (1.1), except when v(t) → vS , at
which time the potential is instantaneously reset to the value vR, and the adaptation variable w is incre-
mented by the fixed amount d. In the phase plane, the vertical line {(v, w) : v = vR} is the reset line, and
the vertical line {(v, w) : v = vS} is the spiking line. The event v(t)→ vS is called spiking, and the time tS
at which this occurs is the spike time. In general vS > vR and vS is fairly large, so that a spike corresponds
to a large increase in the potential followed by a sudden drop. In what follows, models of this form are
collectively referred to as “the model”.

We are primarily interested in the spiking dynamics of the model, that is, the pattern of spikes produced
by solutions of the model. Since the input I is assumed constant, the model is autonomous. Moreover, after
each spike the potential is reset to the same value, and the adaptation variable is simply incremented by a
constant. As observed in [16], the behaviour of a solution following a spike depends entirely on the value of
the adaptation variable at spike time; we recall the following definition.
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Fig. 1.1. A solution of the model (1.1). Trajectory begins at (vR, w0) and evolves towards the right, reaching the spiking
line and resetting to (vR,Φ(w0)). The trajectory continues from this point, making a half-turn before going towards the spiking
line, and then resetting to (vR,Φ2(w0)).

Definition 1.1. [16, Definition 2.3] Denote by D the set of adaptation values w0 such that the solution
of (1.1) with initial condition (vR, w0) reaches vS in finite time. Let w0 ∈ D , and denote by (v(t), w(t)) the
solution of (1.1) with initial condition (vR, w0). Let tS be the first time that v(t−S ) = vS. The adaptation
map Φ is then the unique function such that

Φ(w0) = w(t−S ) + d

Intuitively, Φ maps the adaptation value following one spike to the adaptation value following the next spike,
if another spike occurs (see Figure 1.1). Moreover, the orbit of the adaptation variable under the map Φ
gives the spiking behaviour of a solution. For example, if after some number of iterations the adaptation
value lands outside the domain of Φ, then the solution ceases to spike. If the adaptation value approaches a
fixed point, then the solution ends up in a regular spiking pattern. If the adaptation value is attracted to a
periodic orbit of period p, then the solution ends up in a periodic spiking or bursting pattern, with p spikes
per burst. Aperiodic behaviour is also possible, in which spikes are emitted at irregular intervals and do not
settle into a predictable pattern. These facts, and examples, are detailed in [16].

We are interested in conditions on the model parameters for global asymptotic stability of regular spik-
ing, i.e., global asymptotic stability of a fixed point for Φ. We address the simplest case D = R, i.e., every
initial condition on the reset line leads to the emission of infinitely many spikes. In [16] it is proved that Φ
has a fixed point in this case and is at least continuously differentiable. Therefore, if Φ is non-expansive, i.e.,
|Φ′(w)| < 1 for almost every w ∈ R, then all orbits converge to a unique fixed point. This follows from the
existence of a fixed point wfp and from the fact that |Φ(w)− wfp| ≤

∫ w
wfp
|Φ′(ζ)|dζ.

Now, the adaptation map is determined by the orbits, i.e., the paths traced out by trajectories in phase
space. If orbits converge then Φ is non-expansive, and if orbits separate then it is possible that |Φ′| > 1. A
method described in [10] gives a sufficient condition for trajectories to converge towards one another over
time. The variational equation (see (3.1)) can also be used to assess convergence of trajectories. However,
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Fig. 1.2. Evolution of displacement vectors along a trajectory. Displacement vectors portrayed as black lines. In (a), an
initial displacement is placed in the vertical direction at the reset line, and then evolves according to the variational equation
(3.1) for the model. In (b), the same applies, except that the component of the displacement which is tangent to the flow has
been discarded, and only the component of the displacement which is perpendicular to the flow is displayed. Removal of the
component which is tangent to the flow gives a set of vectors which is much better behaved (and appears almost to vanish
entirely beyond some point along the trajectory).

the orbits are invariant under reparametrization of the flow, therefore the convergence of orbits requires only
the convergence of trajectories in any direction that is transverse to the flow. In other words, the stability of
regular spiking depends only on the transverse convergence of trajectories. Our approach is to fix a transverse
direction, onto which the variational equation is projected. The result is a quantity called the transverse
local Lyapunov exponent (TLLE) which describes the rate of expansion of the transverse component of an
initially transverse displacement. We express log |Φ′| as the integral of the TLLE along trajectories, together
with boundary terms that match the transverse direction to the reset and spiking lines. Using symmetry
in the model equations, we estimate this integral and obtain sufficient conditions on the model parameters
such that log |Φ′| < 0, i.e., such that Φ is non-expansive.

The TLLE is similar to the local Lyapunov exponent described in [3] and to the local divergence rate
described in [5] and [13]; a comparison is made in Section 3. It is worth noting that the method described
in Section 3 for obtaining the TLLE can be applied to any system determined by a twice continuously dif-
ferentiable vector field and having a Poincaré map or a more general reset map of the type described here.
For each choice of the transverse field an expression for the derivative of the map is obtained. A judicious
choice of the transverse field may lead to a local exponent that has a convenient analytical or algebraic form,
as is the case here, or that gives a more accurate measure of the separation of orbits than the variational
equation, as shown in Figure 1.2.

In Section 2 we summarize enough from [16] to give the reader a sense of the phase plane for the model.
In Section 3 we derive the TLLE and express Φ′ as the integral of the TLLE over trajectories of the model.
In Section 4 this integral is estimated, and when the model has ≤ 1 critical point, sufficient conditions are
given on the parameters of the model for Φ to be non-expansive (see Theorem 4.4) i.e., for regular spiking
to be globally asymptotically stable. In Section 5 we consider three examples. In the first two examples the
result follows directly from Theorem 4.4. In the third example, the model has two critical points. For this
example we adapt the results of Section 4 and measure the separation/convergence of orbits in the phase
plane in order to show that regular spiking is globally asymptotically stable.

Note that the conditions given in Theorem 4.4 describe a relatively small region of parameter space. In
[16] there are several results that describe the behaviour of Φ, including conditions for regular spiking, in
terms of the values of Φ at certain points. The advantage of the present method is that it has a natural
geometric interpretation in the phase plane, and conditions for regular spiking are given directly in terms of
the model parameters.

2. Phase Plane. In this section we describe the phase plane for the model; a more detailed discussion
can be found in [16]. As mentioned in the introduction, we assume that the domain D of the adaptation
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map is all of R.

Both the cases vS =∞ and vS <∞ are considered. As shown in Proposition 2.1 in [16], if vS =∞ it is
important to note that F must satisfy

lim
v→∞

F (v)/v2+ε ≥ α > 0 (2.1)

for some ε > 0 and some α in order to ensure that w(t) <∞ as t→ t−S .

We now give some background on the phase plane for the model. Let R = {(vR, w) : w ∈ R} denote
the reset line. Let X(v, w) = (f(v, w), g(v, w))> denote the vector field for the model, where > denotes
the transpose, and for x0 ∈ R2 and t such that the flow is defined, let φ(t, x0) denote the flow of X, i.e.,
φ(0, x0) = x0 and φ′(t, x0) ≡ d

dtφ(t, x0) = X(φ(t, x0)). We are only interested in those solutions that start
on the reset line, that is, x0 ∈ R. By the assumption D = R, for each x0 ∈ R there is wS ∈ R and tS > 0
such that limt→t−S

φ(t, x0) = (vS , wS).

On the (v, w) plane v′ = 0 whenever w = F (v) + I, and w′ = 0 whenever w = bv; these equations give
the v-nullcline and w-nullcline respectively. Let w∗ and w∗∗ be the intersection of R with the v-nullcline and
w-nullcline respectively, i.e., w∗ = F (vR) + I and w∗∗ = bvR. Then,

1. w∗ > w∗∗,
2. for w0 < w∗ and x0 = (vR, w0), φ(t, x0) moves to the right towards the spiking line, and
3. for w0 > w∗, φ(t, x0) makes a half-turn counter-clockwise around (vR, w

∗) before intersecting R
below w∗.

The proof of these facts is contained in [16]; a brief argument is given below. Note that a critical point is a
point where the vector field vanishes.

Critical points satisfy F (v) − bv + I = 0. By the convexity of F (v) and therefore of F (v) − bv + I,
there are at most two critical points. If there are no critical points, by convexity of F (v) the v-nullcline
lies above the w-nullcline and w∗ > w∗∗ (see Figure 2.1). Solutions with w0 < w∗ are confined below the
v-nullcline and move to the right, and solutions with w0 > w∗ move initially to the left and down, intersect
the v-nullcline moving straight down, and then move to the right, confined below the v-nullcline. When there
is one critical point the nullclines intersect tangentially and the same is true. When there are two critical
points denote them by p− = (v−, w−) and p+ = (v+, w+) with v− < v+. Note that the v-nullcline lies above
the w-nullcline except when v− ≤ v ≤ v+ (see Figure 5.4 for an example). It follows from the convexity of
F that F ′(v−) < b and F ′(v+) > b. The Jacobian matrix[

F ′(v) −1
ab −a

]
has negative determinant at p+, therefore p+ is a saddle point. In Section 2.2 of [16] it is shown that the
stable manifold Γ of the saddle point extends from p+ down and towards the left at least to v− below both
nullclines; to see this, evolve the equations backwards in time. Since every initial condition on R leads to spik-
ing, R and Γ are disjoint, therefore vR < v−, which implies that w∗ > w∗∗ and that solutions with w0 > w∗

make a half-turn. Since Γ is a continuous curve it is therefore confined to the half-plane {(v, w) : v > vR}
and it must intersect the w-nullcline at some point (v, w) for which v ≤ v−, and this effectively prevents
solutions with w0 < w∗ from going above the w-nullcline, so that they have no choice but to move to the
right towards the spiking line.

We can summarize the behaviour of solutions using the partition defined in Section 2.4 of [16]. If the
model has ≤ 1 critical point let the North, Center and South regions be the sets that lie above, between,
and below the nullclines respectively, as in Figure 2.1. If the model has two critical points, let the North
region be the set {(w, v) : w ≥ F (v) + I, w ≥ bv}, the Center region be the set {(w, v) : F (v) + I < w < bv}
and the South region be the set {(w, v) : w ≤ bv, w ≤ F (v) + I}, and let the West and East regions be the
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Fig. 2.1. Phase plane for an example of model (1.1) with (a) no critical points and with (b) two critical points.

left- and right-hand components respectively of the set {(w, v) : bv < w < F (v) + I}.

Then, if the model has ≤ 1 critical point, solutions that start on the reset line respect the order
North→ Center → South, i.e., no solution crosses from the South region into the North or Center regions,
or from the Center region into the North region. If the model has two critical points, solutions that start on
the reset line respect the order North→West→ South. In the rest of this paper, we assume that solutions
that start on the reset line intersect vS in the South region; this holds trivially when vS =∞, and for most
models used in practice this assumption holds.

3. Transverse Local Lyapunov Exponent. In this section we express |Φ′| as the integral of a tran-
verse local Lyapunov exponent (TLLE) along trajectories. The end result, Theorem 3.7, is a sufficient
condition for Φ to be non-expansive. For now, we assume that vS <∞, and generalize to vS =∞ in Section
3.6.

Note that from Section 3.3 onwards, where the more explicit computations begin, the unit vector field
X̂ replaces X. See the beginning of Section 3.3 for details. In particular, from Section 3.3 until the end
of the paper, φ denotes the flow of X̂, rather than X. Observe that each trajectory for X is a trajectory for X̂.

If vS is finite, then if tS satisfies limt→t−S
φ(t, w0) = (vS ,Φ(w0) − d) as in Definition 1.1, φ(tS , w0) is

well-defined and φ(tS , w0) = (vS ,Φ(w0) − d). The symbol | · | is used to denote both the absolute value in
R and the Euclidean norm

√
v2 + w2 of a vector (v, w) ∈ R2.

3.1. Expression for Φ′ using the variational equation. First of all, Φ′ is expressed in terms
of the general solution T to the variational equation, equation (3.1). Let S = {(t, x0) ∈ R × R2 :
φ(t, x0) is well-defined} and define the matrix-valued function T : S → M2(R) by T (0, x0) = I2 where
I2 is the 2× 2 identity matrix, and such that

d

dt
T (t, x0) = DX(φ(t, x0))T (t, x0) (3.1)

Since X is continuously differentiable, T (t, x0) is the derivative of φ(t, x0) with respect to x0, that is,

φ(t, x0 + εu)− φ(t, x0) = εT (t, x0)u+ o(ε) (3.2)

for u ∈ R2 (for a proof, see for example Theorem 7.1 in [11]). Here h(ε) = o(ε)⇔ h(ε)/ε→ 0 as ε→ 0, where
h denotes an arbitrary scalar- or vector-valued function. We would like to relate Φ′ and T ; Lemma 3.1 is
the first step in this task. For u, v ∈ R2, u>v is used to denote the dot product of u and v. Let e1 = (1, 0)>

and e2 = (0, 1)> denote the standard basis vectors.

As mentioned in Section 1, it is assumed that all solutions with initial condition on the reset line {v = vR}
reach the spiking line {v = vS} in finite time. As in Definition 1.1, for w0 ∈ R and x0 = (vR, w0), let tS(w0)
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denote the first time t such that φ(t, x0) lies on the spiking line {v = vS}. This gives a function

tS : R→ R+

The following property of tS is proved.

Lemma 3.1. The function tS(w0) is differentiable.

Proof. Fix w0 ∈ R and let x0 = (vR, w0). The implicit function theorem is used below to prove that tS
is differentiable at w0.

Define H(τ, ε) = e>1 (φ(tS(w0) + τ, x0 + εe2)− vS , and observe that H(τ, ε) = 0 if and only if φ(tS(w0) +
τ, x0+εe2) lies on the spiking line {v = vS}. It follows that H(0, 0) = 0 and ∂τH(0, 0) = e>1 X(φ(tS(w0), x0)).
The assumption that solutions spike in the South region (which lies below the v-nullcline) guarantees that
e>1 X(φ(tS(w0), x0)) 6= 0. The implicit function theorem gives an open interval U containing 0 and a unique
continuous function τ defined on U that is differentiable and satisfies H(τ(ε), ε) = 0.

If tS(w0 + ε) is continuous for ε ∈ U , then since φ(tS(w0 + ε), x0 + εe2) lies on the spiking line, by the
uniqueness of τ it follows that tS(w0 + ε) = tS(w0) + τ(ε) for ε ∈ U , from which differentiability of tS at w0

follows. Therefore, suppose that tS(w0 + ε) fails to be continuous for some ε ∈ U . Then there is a δ > 0 and
a sequence (εk) → ε such that |tS(w0 + εk) − tS(w0 + ε)| ≥ δ for each k ∈ N. There is a subsequence (εkn)
such that either

• tS(w0 + εkn) ≥ tS(w0 + ε) + δ for each n, or
• tS(w0 + εkn) ≤ tS(w0 + ε)− δ for each n.

In the first case, applying the result of the last paragraph with tS(w0 + ε) replacing tS(w0), there is an open
interval U containing 0 and a continuous function τ defined on U that satisfies τ(0) = 0 and

tS(w0 + εkn) ≤ tS(w0 + ε) + τ(εkn − ε) (3.3)

since φ(tS(w0+ε)+τ(εkn−ε), x0+εkne2) lies on the spiking line, but tS(w0+εkn) is the first time t such that
φ(t, w0 + εkne2) lies on the spiking line. However, (3.3) is a contradiction since τ(εkn − ε) → 0 as εkn → ε.
Therefore suppose tS(εkn) ≤ tS(w0 + ε)− δ for each n. Since tS is a positive function, the sequence tS(εkn)
is bounded, so it has a convergent subsequence with limit t ≤ tS(w0 + ε) − δ < tS(w0 + ε). Since for each
n ∈ N, φ(tS(εkn), x0 + εkne2) lies on the spiking line, it follows by the continuity of φ that φ(t, x0 + εe2) lies
on the spiking line, so that

tS(w0 + ε) ≤ t < tS(w0 + ε)

which is a contradiction. It follows that tS(w0 + ε) is continuous for ε ∈ U , and from the above discussion,
this implies that tS(w0) is differentiable at w0.

The following expression, given in (3.4), relates Φ′ and T . Note that the assumption that solutions spike
in the South zone guarantees that (X⊥(φ(tS , x0)))>e2 6= 0. The expression for Φ′ given in (3.4) can be
understood as “take a displacement in the e2 direction at the reset line, evolve it along the trajectory, and
then project onto the e2 component of the (X, e2) basis at the spiking line”.

Proposition 3.2. Let T be defined as above, then for x0 = (vR, w0) and w0 ∈ R,

Φ′(w0) =
(X⊥(φ(tS , x0)))>

(X⊥(φ(tS , x0)))>e2
T (tS , x0)e2 (3.4)

Proof. From the definition of tS it follows that φ(tS(w0), w0) = (vS ,Φ(w0)− d); see Definition 1.1. Fix
x0 = (vR, w0) and write (Φ(w0 + ε)− Φ(w0))e2 = φ(tS(w0 + ε), x0 + εe2)− φ(tS(w0), x0) in two parts as

(φ(tS(w0 + ε), x0 + εe2)− φ(tS(w0), x0 + εe2)) + (φ(tS(w0), x0 + εe2)− φ(tS(w0), x0))

6



Let ∆tS(w0; ε) denote tS(w0 + ε)− tS(w0), then writing the Taylor expansion for φ with respect to the first
argument, d

dtφ(t, x0) = X(φ(t, x0)) gives

φ(tS(w0 + ε), x0 + εe2)− φ(tS(w0), x0 + εe2)) = ∆tS(w0; ε)X(φ(tS(w0), x0 + εe2)) + o(∆tS(w0; ε))

and (3.2) gives

φ(tS(w0), x0 + ε)− φ(tS(w0), x0) = εT (tS , x0)e2 + o(ε)

By Lemma 3.1, tS is differentiable, so that ∆tS(w0; ε) = εt′S(w0) + o(ε) = O(ε) and

(Φ(w0 + ε)− Φ(w0))e2 = εt′S(w0)X(φ(tS(w0), x0 + εe2) + εT (tS , x0)e2 + o(ε) (3.5)

In order to remove the term involving t′S , take the dot product with (X⊥(φ(tS , x0 + εe2)))/(X⊥(φ(tS , x0 +
εe2)))>e2) on both sides. Then, divide by ε and take ε→ 0 in (3.5) to obtain (3.4), which proves Proposition
3.2.

3.2. Expression for Φ′ in terms of the TLLE. Equation (3.4) is helpful in relating Φ′ to the flow.
However, it contains the term T (t, x0), which is the solution to a two-dimensional nonautonomous linear sys-
tem, and in order to estimate Φ′ it would be nice to replace the term T (t, x0) with something simpler. This
is accomplished in the steps that follow by decomposing both the initial displacement e2 and the evolution
matrix T (t, x0) in terms of a basis that moves with the trajectory φ(t, x0). To obtain such a basis, we define
a transverse field, as follows.

Definition 3.3. A vector field Y : R2 → R2 is transverse to a vector field X : R2 → R2 if
|(X(x))>Y (x)| < |X(x)||Y (x)| whenever X(x) 6= 0.

If x is such that X(x) 6= 0, then it follows that X(x) and Y (x) are linearly independent, and so the
projectors PX(x) and PY (x) given by

PX(x) =
X(x)(Y ⊥(x))>

(Y ⊥(x))>X(x)
and PY (x) =

Y (x)(X⊥(x))>

(X⊥(x))>Y (x)
(3.6)

are well-defined and satisfy I2 = PX(x) + PY (x), where I2 is the 2× 2 identity matrix. This can be verified
by writing v ∈ R2 as v1X(x) + v2Y (x) and then applying the operators PX(x) and PY (x).

The following function, called the transverse local Lyapunov exponent (TLLE) corresponding to the
transverse field Y , appears in the result below:

L(x) ≡ (X⊥(x))>[Y (x), X(x)]

(X⊥(x))>Y (x)
(3.7)

Here [Y,X] = DXY −DYX is the Jacobi bracket [6], also known as the commutator. The TLLE measures
the rate of logarithmic expansion or contraction of a small transversal as it evolves along a trajectory. The
TLLE is similar to the local Lyapunov exponent (l.l.e.) described in [3]. However, the l.l.e. measures the rate
of expansion with respect to the asymptotic expanding direction, whereas in this case the TLLE measures
the rate of expansion with respect to a chosen transverse direction. The TLLE can be more accurately de-
scribed as a transverse version of the local divergence rate described in [5] and [13]. The present terminology
is chosen because Lyapunov exponent is a more familiar term and the TLLE is indeed a local exponent for
transverse displacements.

Proposition 3.4, given below, relates Φ′(w0) to L(x). The function C(x), defined by

C(x) ≡ (X⊥(x))>Y (x)

(X⊥(x))>e2
(3.8)

represents a boundary condition at the reset and spiking lines. It arises from the fact that Y and e2 (the
tangent vector to the reset and spiking lines) may not necessarily be parallel to one another. The integral
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in (3.9) can be understood as the net factor of expansion of a transversal, summed over a trajectory from
the reset line to the spiking line.

Proposition 3.4. Let C(x) be defined as in (3.8) and let L(x) be defined as in (3.7). Then for w0 ∈ R,

log |Φ′(w0)| =
∫ tS

0

L(φ(s, x0))ds+ log

∣∣∣∣C(φ(tS , x0))

C(x0)

∣∣∣∣ (3.9)

Proof. Differentiating X(φ(t, x0) with respect to t gives

d

dt
X(φ(t, x0)) = DX(φ(t, x0))X(φ(t, x0)) (3.10)

so that X(φ(t, x0)) solves the differential equation in (3.1). Replacing t with t + τ in (3.10) shows that
X(φ(t + τ, x0)) solves (3.1) as a function of t with initial condition X(φ(τ, x0)). Multiplying both sides of
the equation (3.1) on the right by X(φ(τ, x0)) and using the fact that T (0, x) = I2 for each x shows that
T (t, φ(τ, x0))X(φ(τ, x0)) also solves (3.1) with initial condition X(φ(τ, x0)). By uniqueness of solutions, this
implies that

X(φ(t+ τ, x0)) = T (t, φ(τ, x0))X(φ(τ, x0)) (3.11)

for t, τ and x0 such that the above expression is defined. This may be interpreted as “T leaves X invariant”.
Using the projector PX(x) defined in (3.6) gives

T (t, x0)PX(x0) =
X(φ(t, x0))(Y ⊥(x0))>

(Y ⊥(x0))>X(x0)

using (3.11) with τ = 0. Write T (tS , x0) as T (tS , x0)I2 = T (tS , x0)PX(x0) + T (tS , x0)PY (x0). Plugging
into (3.4), observe that (X⊥(φ(tS , x0)))> annihilates X(φ(tS , x0)) in T (tS , x0)PX(x0), which leads to the
expression

Φ′(w0) =
(X⊥(φ(tS , x0)))>

(X⊥(φ(tS , x0)))>e2
T (tS , x0)Y (x0)

(X⊥(x0))>e2
(X⊥(x0))>Y (x0)

(3.12)

in which only the Y component of the initial displacement remains. Then, project T (tS , x0)Y (x0) onto the
(X,Y ) basis, letting

µ(t, x0) =
(Y ⊥(φ(t, x0)))>T (t, x0)Y (x0)

(Y ⊥(φ(t, x0)))>X(φ(t, x0))

denote the X component and

m(t, x0) =
(X⊥(φ(t, x0)))>T (t, x0)Y (x0)

(X⊥(φ(t, x0)))>Y (φ(t, x0))

denote the Y component, so that T (t, x0)Y (x0) = µ(t, x0)X(φ(t, x0)) + m(t, x0)Y (φ(t, x0)). Plugging this
expression into (3.12), once again (X⊥(φ(tS , x0)))> annihilates X(φ(tS , x0)), which gives

Φ′(w0) =
(X⊥(φ(tS , x0)))>Y (φ(tS , x0))

(X⊥(φ(tS , x0)))>e2
m(tS , x0)

(X⊥(x0))>e2
(X⊥(x0))>Y (x0)

(3.13)

This is a simpler expression than (3.4), since m(t, x0) satisfies the scalar differential equation (3.14) below.
To derive this equation, note that T (t, x0)Y (x0) solves the differential equation in (3.1), so that replacing
T (t, x0) with µ(t, x0)X(φ(t, x0)) +m(t, x0)Y (φ(t, x0)) in (3.1) gives

dµ

dt
X + µDXX +

dm

dt
Y +mDYX = (DX)(µX +mY )

8



Subtracting µDXX from both sides and taking the dot product with X⊥ on both sides yields the equation

d

dt
m(t, x0) = L(φ(t, x0))m(t, x0) (3.14)

where L(x), defined in (3.7), is the TLLE.

Observe that (3.14) is equivalent to the expression d log |m(t,x0)|
dt = L(φ(t, x0)), since any solution to (3.14)

has constant sign. Taking the logarithm of the absolute value in (3.13), and using (3.14) and the fundamental
theorem of calculus gives (3.9).

Remark 1. It follows from Proposition 3.4 that Φ is non-expansive whenever∫ tS

0

L(φ(s, x0))ds+ log

∣∣∣∣C(φ(tS , x0))

C(x0)

∣∣∣∣ < 0 (3.15)

We see that the above inequality is a condition for regular spiking that only requires estimating the
integral of the function L along the flow φ, between the reset and spiking lines.

3.3. Choice of transverse fields. In the expression (3.15) the transverse field Y is still left unchosen.
To estimate Φ′, two choices of the transverse field are used. It is first useful to normalize the vector field X
to unit vectors by defining

X̂(x) ≡ X(x)/|X(x)|

when X(x) 6= 0 and X̂(x) ≡ 0 when X(x) = 0. The trajectories of X̂ are the same as those of X away from
critical points, and a field of unit vectors has the convenient property that its solutions are parametrized
by the arc length parameter. Since X̂ is used in the computations in the rest of the paper, the notation φ
is used to denote the flow for X̂, rather than the flow for X as was previously the case. We write φ(r, x0)
rather than φ(t, x0) to emphasize that the independent variable is now the arc length parameter and not time.

For the field of unit vectors X̂, the TLLE with respect to a transverse field Y is obtained from (3.7)
simply by replacing X with X̂, which gives

L(x) ≡ (X̂⊥(x))>[Y (x), X̂(x)]

(X̂⊥(x))>Y (x)
(3.16)

for the TLLE. Similarly, the boundary condition for the field X̂ with respect to Y is given by

C(x) =
(X̂⊥(x))>Y (x)

(X̂⊥(x))>e2
(3.17)

The choice Y = e2 ≡ (0, 1)> is called the vertical field, and the choice Y = X̂⊥ is called the orthogonal field.
These fields are chosen because trajectories either go straight to the right towards the spiking line, in which
Y = e2 is convenient, or else trajectories make a half-turn before going towards the spiking line, in which
case it is necessary to have Y turn with the trajectories, and Y = X̂⊥ is then the simplest choice. Note that

DX̂ = (I2 − X̂X̂>)
DX

|X|
when X 6= 0, where I2 is the 2× 2 identity matrix. This follows from the quotient rule, using the fact that
D|X| = D((X>X)1/2) = X>DX/|X|, and using X̂ = X/|X| and X̂> = X>/|X|.

If Y = e2 then DY = 0. Recalling that [Y, X̂] = DX̂Y −DY X̂ and substituting Y = e2 in (3.16) gives

LV =
(X̂⊥)>(I2 − X̂X̂>)

(
DX
|X| e2

)
(X̂⊥)>e2

=
(X̂⊥)>

(
DX
|X| e2

)
(X̂⊥)>e2
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as the exponent for the vertical field. Using the representation X = (f, g)> gives

DX =

[
fv fw
gv gw

]
(3.18)

where the subscripts denote partial derivatives with respect to v and w. Also, X̂⊥ = (−g, f)>/(f2 + g2)1/2.
This gives

LV =
gwf − fwg
f(f2 + g2)1/2

(3.19)

for the TLLE with respect to the vertical field. To find the boundary condition, set Y = e2 in (3.17) and note
that (X̂⊥(φ(tS , x0)))>e2 6= 0 whenever x0 lies on the reset line, as mentioned in the paragraph preceding
Proposition 3.2. This gives

CV = 1 (3.20)

identically.

For the orthogonal field, substituting Y = X̂⊥ in (3.16) and using

D(X̂⊥) = (I2 − X̂⊥(X̂⊥)>)
D(X⊥)

|X|

gives

LO =
(X̂⊥)>(DX̂X̂⊥ −D(X̂⊥)X̂)

(X̂⊥)>X̂⊥

= (X̂⊥)>
(

(I2 − X̂X̂>)
DX

|X|
X̂⊥ − (I2 − X̂⊥(X̂⊥)>

D(X⊥)

|X|
X̂)

)
= (X̂⊥)>

DX

|X|
X̂⊥

after cancellation. Substituting for X̂⊥, for DX as in (3.18) and for |X| and multiplying terms gives

LO =
g2fv − fg(fw + gv) + f2gw

(f2 + g2)3/2
(3.21)

for the TLLE with respect to the orthogonal field. To find the boundary condition, set Y = X̂⊥ in (3.17)
and use the same observation as for CV in the denominator to find that

CO(x) =
1

(X̂⊥(x))>e2
(3.22)

We distinguish the cases w0 < w∗ and w0 > w∗, using the results of Section 2. Recall that (vR, w
∗) is

the unique point of intersection of the reset line with the v-nullcline.

3.4. Case w0 < w∗. If w0 < w∗ then for x0 = (vR, w0), φ(r, x0) moves to the right, in which case the
vertical field is a natural choice. Note that CV , the boundary condition for the vertical field, is identically
equal to 1, as given in (3.20). Let rS be such that φ(rS , x0) is on the spiking line. From (3.9) this gives

log |Φ′(w0)| =
∫ rS

0

LV (φ(s, x0))ds (3.23)

and the sufficient condition ∫ rS

0

LV (φ(s, x0))ds < 0 (3.24)

for Φ to be non-expansive on (−∞, w∗).
10



Fig. 3.1. Depiction of a trajectory with w0 > w∗

3.5. Case w0 > w∗. If w0 > w∗ then for x0 = (vR, w0) it follows from the discussion in Section 2 that
φ(r, x0) has a unique point of intersection pW = (vW , bvW ) = φ(rW , x0) with the w-nullcline and moves to
the right at least from pW up to the spiking line, as shown in Figure 3.1. The orthogonal field is used from
the reset line up to pW and the vertical field is used from pW up to the spiking line; since w′ = 0 on the
w-nullcline, X̂⊥(pW ) and e2 are parallel, i.e., the two fields line up at pW . This gives

log |Φ′(w0)| =
∫ rW

0

LO(φ(s, x0))ds+

∫ rS

rW

LV (φ(s, x0))ds+ log

∣∣∣∣CV (φ(rS , x0))

CO(x0)

∣∣∣∣ (3.25)

From (3.20) and (3.22), CV = 1 and |CO(x)| ≥ 1 for each x, so that log
∣∣∣CV (φ(rS ,x0))

CO(x0)

∣∣∣ ≤ 0. This gives the

sufficient condition ∫ rW

0

LO(φ(s, x0))ds+

∫ rS

rW

LV (φ(s, x0))ds < 0 (3.26)

for Φ to be non-expansive on (w∗,∞). Abusing terminology somewhat, we refer to the integrals in (3.24)
and to (3.26) as contraction integrals.

3.6. Extension to vS =∞. Here we show that the expressions in (3.23) and in (3.25) are valid when
vS = ∞. In [16] it is proved that if F (v)/v2+ε ≥ α > 0 for some α and some ε > 0 as v → ∞, and if
a solution (v(t), w(t)) has limt→t−S

v(t) = ∞, then limt→t−S
w(t) exists and is finite. Therefore, in the case

vS = ∞ the adaptation map is defined as Φ(w0) = limt→t−S
w(t) + d. Writing Φ(w0; vS) to emphasize the

dependence on vS ,

Φ(w0;∞) = lim
vS→∞

Φ(w0; vS)

As shown in the following proposition, the limit limvS→∞ log |Φ′(w0; vS)| also exists, and convergence is
uniform with respect to w0.

Proposition 3.5. Let J be equal to either {w > w∗} or {w < w∗}. Then log |Φ′(w0; vS)| converges
uniformly for w0 ∈ J , as vS →∞.

Proof. We show that the expressions given in (3.23) and (3.25) converge uniformly for w0 ∈ {w < w∗}
and for w0 ∈ {w > w∗}. Note that since CV = 1 identically, the last term appearing in (3.25) has the

11



constant value log |1/CO(x0)|. Therefore it is enough to address convergence of∫ rS

0

LV (φ(s, x0))ds (3.27)

for x0 in the South region as rS → ∞, since the only rS-dependent terms in (3.23) and (3.23) are of
this form. Using v as the integration variable we have ds = (1 + (g/f)2)1/2dv. Using (f(v, w), g(v, w)) =
(F (v)−w+I, a(bv−w)) as in (1.1), by (3.19) LV = (g−af)/f(f2 +g2)1/2) = (g/f −a)/(|f |(1+(g/f)2)1/2)
and ∫ rS

0

LV (φ(s, x0))ds =

∫ vS

0

g/f − a
|f |

dv (3.28)

where g and f are integrated along the trajectory, i.e., g = g(φ(r(v), x0)), f = f(φ(r(v), x0)) and r = r(v)
is a function of v. For v > v+, F (v) + I > bv since the v-nullcline lies above the w-nullcline, and so
af = a(F (v) − w + I) > a(bv − w) = g. Since f and g are positive below the w-nullcline, g/f > 0, so that
0 < g/f < a. Using the constraint on F (v) given in (2.1) and using w < bv, f/v2+ε ≥ (F (v)−bv+I)/v2+ε ≥
α > 0 for v large enough. Thus, for vS large enough,∣∣∣∣∫ ∞

vS

g/f − a
|f |

dv

∣∣∣∣ =

∫ ∞
vS

a− g/f
|f |

dv <

∫ ∞
vS

a

αv2+ε
dv =

a

α(1 + ε)v1+εS

and the last quantity vanishes as vS → ∞, independently of x0. This implies the uniform convergence, for
x0 in the South region, of (3.27) as rS →∞.

The preceding observations combine to produce the following result.

Proposition 3.6. The adaptation map Φ(w0) (see Definition 1.1) is differentiable in the case vS =∞
and log |Φ′(w0)| is given by

lim
rS→∞

∫ rS

0

LV (φ(s, x0))ds

when w0 < w∗ and by∫ rW

0

LO(φ(s, x0))ds+ lim
rS→∞

∫ rS

rW

LV (φ(s, x0))ds+ log

∣∣∣∣ 1

CO(x0)

∣∣∣∣
when w0 > w∗, where x0 = (vR, w0).

Proof. Let (vn) be any sequence of values of vS such that vn → ∞, and define the sequences (Φn) and
(Φ′n) by Φn = Φ(w0; vn) and Φ′n(w0) = Φ′(w0; vn). It follows from Theorem 7.17 in [14] that on a common
interval of definition J , if the sequence (Φn) converges pointwise and the sequence (Φ′n) converges uniformly
on J , then limn→∞ Φn = Φ is differentiable and Φ′ = limn→∞Φ′n on J . Pointwise convergence of (Φn)
is proved in [16] and uniform convergence of (log Φ′n) is proved in Proposition 3.5, for J equal to either
{w > w∗} or {w < w∗}. Let w0 ∈ R, w0 6= w∗ be arbitrary and let K be a closed and bounded interval that
contains w0 and is contained in either {w > w∗} or {w < w∗}. From the continuity of log | · |, the sequence
(Φ′n) converges uniformly on K. The statement of the proposition then follows at w0, using the continuity of
log, the fact that rS →∞ as vS →∞, and using the fact that CV (φ(rS , x0)) = 1 identically. Since w0 6= w∗

is arbitrary, the result follows.
The results of Section 3 are summarized in the following theorem.

Theorem 3.7. Let D denote the domain of Φ (see Definition 1.1). Then, if D = R, Φ is non-expansive
on R when (3.24) is satisfied for all w0 < w∗ and (3.26) is satisfied for all w0 > w∗. If vS =∞ the integrals
in (3.24) and (3.26) with upper endpoint rS become improper integrals.
The above theorem gives a sufficient but not a necessary condition for Φ to be non-expansive. As discussed
in the introduction, if Φ is non-expansive and its domain is the whole real line then regular spiking is globally
asymptotically stable.
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4. Estimation of the integral. In this section we show that (3.24) is satisfied when the model has
≤ 1 critical point, and give sufficient conditions for (3.26), without assumptions on the critical points. In
the case of ≤ 1 critical point, Theorem 4.4 gives sufficient conditions on the model parameters for Φ to be
non-expansive.

Note that LV (x) is undefined on the v-nullcline. For a trajectory φ(r, x0) defined for r in an interval U
and disjoint from the v-nullcline, as in (3.28) we let v be the integration variable, so that the integral of LV
over the trajectory is ∫

U

LV (φ(s, x0))ds =

∫
v(U)

g/f − a
|f |

dv

where v(U) denotes the range of v-values of φ(r, x0) for r ∈ U , g = g(φ(r(v), x0)) and f = f(φ(r(v), x0))
where r = r(v) is a function of v. The argument to the integrand, when it is not given explicitly for efficiency
of notation, is to be understood in this way. When the model has ≤ 1 critical point, off the v-nullcline
LV (x) < 0 almost everywhere. This is because in this case the w-nullcline lies below the v-nullcline except
maybe at a single point, i.e., bv < F (v)+I almost everywhere, so that g = a(bv−w) < a(F (v)−w+I) = af ,
or g/f − a < 0 almost everywhere (note f 6= 0 off the v-nullcline). Therefore the following is true.

Proposition 4.1. If the model has ≤ 1 critical point, then the condition in (3.24) is satisfied, and the
second term in (3.26) is negative.

Thus, if the model has ≤ 1 critical point, then for Φ to be non-expansive it is sufficent to have∫ rW

0

LO(φ(s, x0))ds < 0 (4.1)

for φ(r, x0) as described in Section 3.5. When the nullclines cross, i.e., when there are two critical points,
LV is positive on the strip {(v, w) : v− < v < v+}, which indicates separation of the orbits on that strip;
this fact is addressed in the example in Section 5.3.

In the rest of this section we focus on the integral in (4.1). This is the integral of LO over trajectories
whose initial point lies on the reset line above w∗ and whose terminal point lies on the w-nullcline. Except
in the statement of Theorem 4.4, in the rest of this section nothing is assumed about the critical points.

To estimate the integral, trajectories are split into two pieces and the integrand is split into three pieces.
Given φ(r, x0), let (vV , F (vV )) = φ(rV , x0) be its unique point of intersection with the v-nullcline. Then for
0 ≤ r ≤ rV , φ(r, x0) is contained in the subset

A = {(v, w) : v ≤ vR, w ≥ F (v) + I}

of the North region. Let vT be the unique value of v such that F ′(v) = 0, and let wT = F (vT ). Let
vmax = max{vR, vT }, and define the subset B = {(v, w) : bv ≤ w ≤ l(v)} of the Center/West region, where

l(v) = {(v, w) : w = F (v) + I, v ≤ vmax} ∪ {(v, w) : w = F (vmax) + I, v ≥ vmax}

is the line that coincides with the v-nullcline to the left of vmax and extends horizontally to the right of
vmax; see Figure 4.1. Then, for rV ≤ r ≤ rW , φ(r, x0) is contained in B. We split LO into three parts:

LO = G+H + J (4.2)

where

G =
g2F ′

(f2 + g2)3/2
, H =

(1− ab)fg
(f2 + g2)3/2

, J =
−f2a

(f2 + g2)3/2
(4.3)

after substituting values in (3.21) for the partial derivatives of f and g according to (1.1). Now, J is every-
where negative, but G is positive when F ′ > 0, i.e., when v > vT , and if ab < 1, which is assumed later,
then H is non-negative when f and g have the same sign. Therefore we estimate the integrals of H and G.
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Fig. 4.1. Phase plane for an example of model (1.1), with sets A and B bounded by the solid curves.

4.1. Estimation of H. We give sufficient conditions for the integral of H along trajectories in the set
A ∪B, i.e., ∫ rW

0

(1− ab)fg
(f2 + g2)3/2

ds (4.4)

to be negative. The integral is taken along the first half of trajectories described in Section 3.5. Since s is
the integration variable, trajectories are written φ(s, x0).

Proposition 4.2. Suppose that ab < 1, F ′(vR) < −a and F ′(vR) + F ′(wT /b) < −2a, where wT =
F (vT ), and vT is the unique value of v for which F ′(v) = 0. Then the integral in (4.4) is negative.

Proof. Let z = f/g, then z is well-defined on A ∪ B since g 6= 0 off the w-nullcline. First we show that
dz/ds 6= 0, and then use z as the integration variable. Now

dz(φ(s, x0))

ds
= (∇z)> dφ(s, x0)

ds

Since s is the arc length parameter, dφ(s, x0)/ds = (f2 + g2)−1/2(f, g)>. Thus,

dz

ds
= (f2 + g2)−1/2

[
f∂vz + g∂wz

]
= (f2 + g2)−1/2

[
f
fvg − fgv

g2
+ g

fwg − fgw
g2

]
= (f2 + g2)−1/2

[
− gv(f/g)2 + (fv − gw)(f/g) + fw

]
= (f2 + g2)−1/2

[
− abz2 + (F ′ + a)z − 1] (4.5)

On A, f ≤ 0 and g < 0 and so z ≥ 0. Since F ′(vR) < −a by assumption, F ′′ > 0 by convexity and
v < vR on A it follows that F ′ < −a on A. From this and from (4.5) it follows that dz/ds < 0 on A. In
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other words, trajectories starting on the reset line above w∗ curve to the left between the reset line and the
v-nullcline. Observe that z < 0 on B since f > 0 and g < 0 on B. If dz/ds = 0 at a point on B then

d

ds
((f2 + g2)1/2

dz

ds
) = (−2abz + (F ′ + a))

dz

ds
+ F ′′z = F ′′z < 0

since F ′′ > 0 and z < 0 on B. Also, dz/ds = 0 implies

d

ds
((f2 + g2)1/2

dz

ds
) = (f2 + g2)1/2

d2z

ds2

Therefore dz/ds = 0 ⇒ d2z/ds2 < 0 on B. In other words, if φ(s′, x0) ∈ B and dz(φ(s′, x0))/ds < 0 then
dz(φ(s, x0))/ds < 0 for all s such that φ(s′′, x0) ∈ B for s′ ≤ s′′ ≤ s. Now, dz/ds < 0 on the v-nullcline.
Therefore, any trajectory that enters B by crossing the v-nullcline has dz/ds < 0 so long as it remains in B.
This includes trajectories φ(s, x0) with x0 = (vR, w0) and w0 > w∗, for rV ≤ s ≤ rW . Thus, (4.4) can be
re-written with z as the integration variable. Using (4.5) and the definition of z, (4.4) becomes

−
∫ z1

z2

1

|g|
(1− ab)z

(1 + z2)3/2
ds

dz
dz =

∫ z1

z2

(1− ab)z
(1 + z2)

(abz2 − (F ′ + a)z + 1)−1dz ≡
∫ z1

z2

Z(z)dz

In order for the above integral to be negative, it is sufficient that
1. Z(z) < 0 for z2 ≤ z < 0 and Z(z) > 0 for 0 < z ≤ z1,
2. [−z1, z1] lies in the domain of integration, and
3. |Z(−z)| > |Z(z)| for 0 < z ≤ z1.

Since z = f/g → −∞ as φ approaches the w-nullcline, Point 2 holds. Also, ab < 1 by assumption and
dz/ds < 0 on A∪B, thus Point 1 holds. It can be checked by comparison that F ′(v(z)) +F ′(v(−z)) < −2a,
for 0 < z ≤ z1, is sufficient for Point 3 to hold. Since z > 0 on A and z < 0 on B, and since F ′′ > 0, this
last expression is true whenever F ′(vR) + F ′(wT /b) < −2a. This is because vR and wT /b are the largest v
values on A and B respectively.

4.2. Estimation of G. We estimate the integral of G along trajectories on A ∪ B. Let F ′(vR) < 0,
then G is negative on A, therefore we focus on the integral of G along trajectories on B, which is given by∫ rW

rV

g2F ′

(f2 + g2)3/2
ds (4.6)

Since s is the integration variable, trajectories are written φ(s, x0). The integral is taken along trajectories
with x0 = (vR, w0) where w0 > w∗, φ(rW , x0) = (vW , bvW ), as in Section 3.5, and φ(rV , x0) = (vV , F (vV ))
for some vV , i.e., φ(rV , x0) lies on the v-nullcline.

Proposition 4.3. Suppose that F ′(vR) < 0. Let vT denote the unique v such that F ′(v) = 0, and let
wT = F (vT ). Then the integral in (4.6) is negative when F (vR) ≥ F (wT /b).

Proof. To estimate the integral in (4.6) we use the value of F (v) on path segments as the integration
variable. Note that the function F (v) is two-to-one and with the exception of F (vT ), each point in its range
has one preimage to the left of vT , and one preimage to the right of vT . Let x0 be fixed and ignore the point
φ(rV , x0), then φ(s, x0) lies below the v-nullcline and so it has v′ > 0 and admits the parametrization φ(v).
Letting φ− = ranφ(v) ∩ {(v, w) : v < vT } and φ+ = ranφ(v) ∩ {(v, w) : v > vT }, then φ− and φ+ admit the
parametrizations φ−(y) and φ+(y), where y = F (v). Note that ds/dy = (ds/dv)(dv/dy) and that

ds

dv
=

(f2 + g2)1/2

f
= (1 + (g/f)2)1/2 (4.7)

blows up only on the v-nullcline and

dv

dy
=

1

F ′
(4.8)

blows up only when v = vT , and both functions are non-zero. We can then write the integral in (4.6), with
improper integrals implied at F (vV ) and F (vT )), as

−
∫ F (vV )

F (vT )

g2−F
′
−

(f2− + g2−)3/2
ds−
dy

dy +

∫ F (vW )

F (vT )

g2+F
′
+

(f2+ + g2+)3/2
ds+
dy

dy
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where f± = f(φ±(y)) and similarly for the other functions. Let x = (g/f)2. Using (4.7) and (4.8), this
simplifies to

−
∫ F (vV )

F (vT )

x−
|f−|(1 + x−)

dy +

∫ F (vW )

F (vT )

x+
|f+|(1 + x+)

dy = −
∫ F (v4)

F (vT )

V−(y)dy +

∫ F (vW )

F (vT )

V+(y)dy

where the last equalities define V−(y) and V+(y). In order to show this integral is negative it is sufficient to
show that

1. F (vV )− F (vT ) ≥ F (vW )− F (vT ) and that
2. V−(y) > V+(y) for F (vT ) < y ≤ F (vW )

Since F (vV ) > F (vR) and F (wT /b) > F (vW ) for all path segments, for Point 1 to hold it is sufficient
that F (vR) ≥ F (wT /b). To verify Point 2, it is sufficient to have f−(y) < f+(y) and x−(y) > x+(y),
since d(x/(1 + x))/dx > 0. Note that if φ(v) = (v, w(v)), then dw(v)/dv = g/f < 0 on B. Therefore,
w−(y) > w+(y), so that

f−(y) = y − w−(y) + I < y − w+(y) + I = f+(y)

Then, since b > 0 and dw/dv < 0,

dg(φ(v))/dv = a(b− dw(v)/dv) > 0

and since g is negative, this gives

|g−(y)| > |g+(y)|

so that x−(y) > x+(y), and the proposition is proved.

Remark 2. Note that if F is symmetric about vT , then the condition in Proposition 4.3 reduces to
vR + wT /b ≤ 2vT . In particular, this is the case when F (v) = v2.

We summarize the main result of this section.

Theorem 4.4. Suppose the model (1.1) has ≤ 1 critical point. Let vT be the unique v for which
F ′(v) = 0, and let wT = F (vT ). Suppose that ab < 1, F ′(vR) < −a, F ′(vR) + F ′(wT /b) < −2a and
F (vR) ≥ F (wT /b). Then all orbits under Φ converge to a unique fixed point.

Proof. If there is at most one critical point then by Proposition 4.1, the condition in (3.24) is satisfied,
which implies that |Φ′| < 1 on (−∞, w∗). Together, Propositions 4.1, 4.2 and 4.3 imply (3.26), so that
|Φ′| < 1 on (w∗,∞). Since |Φ′| < 1 almost everywhere, Φ is non-expansive, and so its fixed point is unique
and globally attracting.

The conditions in Theorem 4.4 can be understood in the following way. If a > 0 is a small parameter,
i.e., if the dynamics of the adaptation variable w are slow, the conditions are more easily satisfied. It is
necessary to have vR < vT , since from the convexity of F , it follows that F ′(v) < 0 if and only if v < vT . The
last two conditions require the w nullcline to lie close to the v nullcline, and the reset line to lie sufficiently
far to the left of vT . This is because wT /b is the v-value of the intersection of the horizontal line extending
from (vT , F (vT )) with the w-nullcline; in order to keep F ′(wT /b) and F (wT /b) small, it is necessary that
this point of intersection not be too far to the right of vT .

Theorem 4.4 gives sufficient conditions on the model parameters for all initial conditions on the reset
line to converge to a regular spiking behaviour, when the model has at most one critical point.

5. Examples. In this section we present three examples, one each of the quartic model F (v) = v4+2av
[15], the exponential model F (v) = ev − v [1] and the Izhikevich model F (v) = 0.04v2 + 5v + 140 [8], and in
each case it is proved that regular spiking occurs. In the first two examples, parameter values are chosen so
that Theorem 4.4 applies, from which regular spiking follows. In the third example the vector field has two
critical points, and we need to account for expansion on the strip {(v, w) : v− < v < v+}.
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(a) Quartic model (b) Exponential model

Fig. 5.1. Phase plane for the first two examples, neither of which have critical points

(a) Adaptation map (b) Numerical solution with initial condition (−1,−5) and 100 spiking events;
resetting portrayed by the dotted lines

Fig. 5.2. Quartic model

5.1. Quartic Model. Take the model (1.1) and let F (v) = v4 + 2av, for the same a as in the equation
for w′ in the model (1.1). This is the quartic model described by Touboul in [15]. Taking the parameter
values a = 0.2, b = 2, I = 1 and vR = −1 gives the phase plane shown in Figure 5.1(a). Parameter values
are chosen to illustrate the application of Theorem 4.4.

In this example the vector field has no critical points. Taking d = 1.5 and vS =∞ gives the adaptation
map Φ(w0) shown in Figure 5.2(a) (Φ is computed numerically). Observe that |Φ′(w0)| < 1 in the region
shown, so that Φ is contracting in this region. Taking the initial condition w0 = −5 on the reset line gives the
solution shown in Figure 5.2(b), which appears to converge to a regular spiking pattern. To check that all
initial conditions converge to regular spiking, it suffices to verify the conditions of Theorem 4.4. We readily
compute that ab = 0.4 < 1, and that F ′(vR) = 4(−1)3 + 2(0.2) = −3.6 < −0.2 = −a. Here vT is given by
4v3T + 2a = 0 or vT = (−a/2)1/3 = (−0.1)1/3 ≈ 0.46, and wT = v4T + 2avT ≈ 0.23. F ′(wT /b) ≈ 0.41 so that
F ′(vR) + F ′(wT /b) ≈ −3.19 < −0.4 = −2a, and F (vR) = (−1)4 + 2a(−1) = 3.6, F (wT /b) ≈ 0.05 so that
F (vR) ≥ F (wT /b). Therefore, Theorem 4.4 applies and it follows that all initial conditions on the reset line
lead to regular spiking.
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(a) Adaptation map (b) Numerical solution with initial condition (−3,−5) and 100 spiking events;
resetting portrayed by the dotted lines

Fig. 5.3. Exponential model

5.2. Exponential model. Now, consider the model (1.1) with F (v) = ev − v. This is the exponential
model introduced by Brette and Gerstner in [1]. Taking parameter values b = 5/3, I = 0 and vR = −3 gives
the phase plane shown in Figure 5.1(b); parameter values are chosen to illustrate the application of Theorem
4.4. It can be checked that the vector field has no critical points.

Let a = 0.05. Taking d = 1.5 and vS = ∞ gives the adaptation map shown in Figure 5.3(a). Observe
that |Φ′(w0)| < 1 on the subset of its domain shown in the figure. Taking the initial condition w0 = −5
on the reset line gives the solution shown in Figure 5.3(b) which appears to converge to a regular spiking
pattern. To check that all initial conditions lead to regular spiking, it suffices to verify the conditions of
Theorem 4.4. We compute ab = 1/12 < 1 and F ′(vR) = e−3 − 1 ≈ −0.95 < −0.05 = −a. Then, vT satisfies
F ′(vT ) = 0 or evT − 1 = 0, so that vT = 0, and wT = F (vT ) = 1. F ′(wT /b) = e3/5 − 1 ≈ 0.82, so that
F ′(vR) +F ′(wT /b) ≈ −0.13 < −0.1 = −2a and F (vR) = e−3− (−3) ≈ 3.05, F (wT /b) = e3/5− 3/5 ≈ 1.22 so
that F (vR) ≥ F (wT /b) and the conditions of Theorem 4.4 are satisfied. It follows that all initial conditions
on the reset line lead to regular spiking.

Note that for this model, the slope of F (v) rises sharply to the right of vT , and goes monotonically
towards −1 to the left of vT , therefore the condition F ′(vR) +F ′(wT /b) < −2a is difficult to satisfy. This is
why in this example the v-nullcline and w-nullcline are taken so close to one another.

5.3. Izhikevich Model. Take now the model (1.1) with F (v) = 0.04v2 + 5v + 140. This is known as
the Izhikevich model [8]. Take the parameter values I = 0, a = 0.005, b = 0.265, vR = −65, vS = 30, and
d = 1.5, which are used in [12] in simulations of the effect of deep brain stimulation on a network of neurons.
This gives the phase plane shown in Figure 5.4, where the vector field has two critical points, denoted v−
and v+ where v− < v+. For this model the domain of the adaptation map is the whole real line, that is, all
initial conditions on the reset line lead to a spiking event (this can be checked via the method described in
[16], Section 2.2).

A table of numerical values for this example is given below. Note that wT = F (vT ) and that F (vT ) is
the unique minimum for F . The values given for v− and v+ are approximate.

vR -65
w∗ -16
w∗∗ -17.225
vT -62.5
wT -16.25
v− -60.97
v+ -57.41

The adaptation map is shown in Figure 5.5(a), and a numerical solution of the model is depicted in

18



Fig. 5.4. Phase plane for the Izhikevich model

(a) Adaptation map (b) Numerical solution with initial condition (−65,−18) and 100 spiking
events; resetting portrayed by the dotted lines

Fig. 5.5. Izhikevich model

Figure 5.5(b). Solution curves for one hundred spiking events are shown; after the third spike, subsequent
solution curves are indistinguishable, therefore it appears that the solution is converging to a regular spiking
behaviour. We want to prove that this is the case for all initial conditions, therefore our goal in this section
is to prove the following theorem.

Theorem 5.1. All initial conditions on the reset line lead to regular spiking.

As discussed in the Introduction, to show that regular spiking occurs, we need to show that all orbits
under Φ converge to a unique fixed point. The proof consists of two parts.

1. It is shown that all orbits under Φ eventually enter and remain in (w∗,∞).
2. It is shown that the contraction integral (3.26) is negative for all path segments with initial point

on the reset line above w∗, which implies that Φ is non-expansive on (w∗,∞).
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The result then follows from the discussion in the introduction. We begin the proof with Part 1.
Proposition 5.2. Given w0 ∈ R, ∃N ∈ N such that for n ≥ N , Φn(w0) ∈ (w∗,∞).
Proof. First we show that Φ((w∗,∞)) ⊂ (w∗,∞). It is enough to show for w0 > w∗ that all paths

beginning on (vR, w0) intersect the w-nullcline above w∗ − d. Recall that w∗∗ denotes the intersection of
the reset line with the w-nullcline, that is, w∗∗ = bvR. Draw the line that has slope −0.1 and intersects the
point (vR, w

∗∗). On this line, ∂v(g/f) = 0 gives a quadratic equation in v. It can be checked by computation
that this equation has two roots, one on either side of v = −65, and that ∂v(g/f) > 0 when v = −65,
which implies that the lesser root is a minimum of g/f . At this root, g/f is greater than −0.1, which
implies that trajectories cross the line from the left. In particular, since w∗ = −16 and w∗∗ = −17.225,
trajectories starting on the reset line above w∗ must intersect the w-nullcline at a w value that is greater
than w∗∗ > w∗ − d, and since w′ > 0 below the w-nullcline, these trajectories are reset to a w-value that is
greater than w∗.

Observe for w0 < w∗∗ that Φ(w0) ≥ w0 + d since w′ is positive everywhere below the w-nullcline. Thus
for any w0 ∈ R there exists an N such that ΦN (w0) > w∗∗. Since Φ(w∗∗) ≥ w∗∗ + d > w∗ it follows that
ΦN+1(w0) > w∗. Then Φ(w∗,∞) ⊂ (w∗,∞) implies that Φn(w0) > w∗ for all n ≥ N + 1.

Part 1 is proved. In the next three propositions, we address Part 2. We are interested in trajectories
φ(r, x0) with x0 = (vR, w0) and w0 > w∗. We want to show that∫ rW

0

G(φ(s, x0)) +H(φ(s, x0)) + J(φ(s, x0))ds+

∫ rS

rW

LV (φ(s, x0))ds < 0 (5.1)

This is the contraction integral in (3.26) expressed with the notation from equation (4.2). In the following
proposition we prove that the first two terms are negative.

Proposition 5.3. The terms
∫ rW
0

G(φ(s, x0))ds and
∫ rW
0

H(φ(s, x0))ds in the above integral are nega-
tive.

Proof. Here ab < 1, F ′(vR) = −0.2 < −a and F ′(vR) + F ′(wT /b) ≈ −0.11 < −2a so that the results of
Proposition 4.2 hold. Also, F (v) is symmetric, since it is quadratic, and vR+wT /b ≈ −126.32 < −125 = 2vT
and so the results of Proposition 4.3 hold (see the remark following Proposition 4.3). The result follows from
these two propositions.

Consider now the term
∫ rS
rW

LV (φ(s, x0))ds. Since the model has two critical points, Proposition 4.1 does
not apply. Indeed, LV is positive if and only if

g = a(bv − w) > a(F (v)− w + I) = af

that is, when bv > F (v) + I, which is true on the strip {(v, w) : v− < v < v+} and nowhere else. Using this
fact, and using the identity given in (3.28) we find that∫ rS

rW

LV (φ(s, x0))ds =

∫ vS

vW

g/f − a
|f |

dv ≤
∫ v+

v−

g/f − a
|f |

dv

where it is understood that g = g(φ(r(v), x0)), f = f(φ(r(v), x0))) and r = r(v) is a function of v. From
this, from Proposition 5.3 and from equation (5.1), to show the contraction integral is negative it suffices to
show that ∫ rW

0

J(φ(s, x0))ds+

∫ v+

v−

g/f − a
|f |

dv < 0

As mentioned in Section 4.1, J is everywhere negative. We estimate both integrals, and show that the
negative contribution outweighs the positive contribution. We begin with the positive contribution.

Proposition 5.4. ∫ v+

v−

g/f − a
|f |

dv < 1.5× 10−3 (5.2)

Proof. Since f > 0 in the South region, ∂w
g/f−a
|f | = ∂w

g−af
f2 = 2(g−af)

f3 > 0 and g − af > 0 on (v−, v+).

To bound the integral in (5.2) it suffices to evaluate it along a curve that lies above trajectories on the strip
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Fig. 5.6. Upper bound curve for path segments, for v ∈ [v−, v+]

{(v, w) : v− < v < v+}. We construct the curve depicted in Figure 5.6, and estimate the integral in (5.2)
along this curve.

In Section 4 it is shown that trajectories lie in A ∪ B up to the w-nullcline, therefore when v = wT /b
trajectories have w < wT . Also, g/f < a whenever the v-nullcline lies above the w-nullcline, that is, when
v /∈ [v−, v+]. Therefore, the line that has slope a and intersects (wT /b, wT ) lies above trajectories on the set
wT /b ≤ v ≤ v−. Then, take another line that intersects the first line at v = v− and has slope 2a. It can be
checked that g/f < 2a on this line for v− ≤ v ≤ v+, so that trajectories do not cross it from below. Together
these lines give an upper bound curve. Discretizing the expression in (5.2) and evaluating it numerically
along this upper bound curve gives the bound 1.5× 10−3 on the integral in (5.2).

We now estimate the negative contribution.
Proposition 5.5. ∫ rW

0

J(φ(s, x0))dr < −1.5× 10−3 (5.3)

Proof. The approach is to identify a region through which trajectories pass, and to estimate the integral
in that region. Specifically, we carve out the channel C shown in Figure 5.7 and prove that the inequality∫

{0≤r≤rW :φ(r,x0)∈C}
J(φ(s, x0))ds < −1.5× 10−3

holds for each trajectory. Since J is everywhere negative this implies (5.3).
In the figure there are two curves γα and γα′ that lie parallel to the v-nullcline, and a line lα which is

the tangent line to γα at v = vR. The channel consists of the region bounded above by γα′ , below by γα, on
the left by va = −64.925 and on the right by vb = −63.75. We proceed as follows.

1. For v ≤ vb we show that trajectories lie above γα ∪ lα.
2. For va ≤ v ≤ vb we show that trajectories lie below γα′ .
3. We estimate the integral of J for trajectories in the channel.

We begin with Step 1. Take the curve γα that lies a distance α = 0.05 below the v-nullcline, and take
lα, its tangent line at v = vR, which has slope −0.2. On lα, ∂v(g/f) gives a quadratic equation in v that
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Fig. 5.7. The channel C

has two roots, one on either side of vR. Also, ∂v(g/f) > 0 at vR, so that the lesser root is a minimum of
g/f . The value of g/f at this root is greater than −0.2, therefore trajectories cross lα from the left. Now,
γα has slope F ′, since it lies parallel to the v-nullcline, and along γα, f takes the value α, and g and F ′

both increase with v. Therefore g has its minimum at vR, and F ′ has its maximum at v = vb, and it can be
checked that

max
[vR,vb]

F ′(v) = F ′(vb) < g(vR)/α = min
[vR,vb]

g/f

Therefore, for vR ≤ v ≤ vb, γα is crossed from below, so that together, lα and γα give a lower bound on
trajectories for v ≤ vb.

Now, we show Step 2. For α′ = 0.01 take the curve γα′ that lies a distance α′ below the v-nullcline. On
this curve g/f = −0.6075 at vR, and g/f = −0.3369 at vb, and along it f is constant and |g| decreases in
the v direction at least up to vb, thus g/f ∈ [−0.6075,−0.3369] on γα′ , for v ∈ [vR, vb]. Also, F ′(vR) = −0.2,
F ′(vb) = −0.1, and F ′ increases with v, therefore the slope of γα′ takes values in [−0.2,−0.1]. It follows
that trajectories cross γα′ from above. For vR ≤ v ≤ vb the trajectory with initial point (vR, w

∗) is an
upper bound. Draw the line that has slope −1/3 and intersects (vR, w

∗). Between γα′ and the v-nullcline
trajectories have slope at most −0.3369 < −1/3 and so this line is not crossed before γα′ . Therefore, the
intersection of the two lines gives a left-hand bound on the channel. To estimate this intersection draw the
tangent line to γα′ at vR, which has slope −0.2. The two lines have initial separation α′ = 0.01 and so
they intersect after a distance 0.01/(−0.2 − (−1/3)) = 0.075. Since va = −65 + 0.075 = −64.925, then for
va ≤ v ≤ vb path segments lie between γα and γα′ .

Now, we give Step 3. We want to show that∫ vb

va

−f2a
(f2 + g2)3/2

dt

dv
dv =

∫ vb

va

−a
|f |(1 + (g/f)2)

dv < −1.5× 10−3 (5.4)

along trajectories contained in C. On C, 1/|f | ≥ 1/α = 20 and |g/f | < 1, so the integral in (5.4) is less than

(vb − va)
−a
2α

= −0.059
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which is less than −1.5× 10−3.
We have shown that the contraction integral in (3.26) is negative, from which it follows that Φ is non-

expansive on (w∗,∞). Since all orbits under Φ are eventually contained in (w∗,∞) it follows that all orbits
under Φ converge to a unique fixed point, so that all initial conditions lead to regular spiking. This concludes
the proof of Theorem 5.1.

Remark 3. For the example of the Izhikevich model, Φ(w∗) > w∗ and Φ2(w∗) > w∗ as shown in Figure
5.5. From Theorem 3.3 of [16] it follows that all orbits under Φ converge either to a unique fixed point or
to a periodic orbit of period 2. Therefore the result of Theorem 5.1 is a refinement of that result which is
biologically relevant, since regular spiking and period 2 bursting are functionally different behaviours. Also,
the above proof shows how stability can be verified by measuring the separation of orbits in the phase plane,
without computing the orbits directly; in this case a Riemann sum in Proposition 5.2 is the only computer-
assisted computation.
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