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1 Introduction

Nonlinear Wave equation:















(∂2
t − ∆x)u = −|u|p−1u, u : (−T ∗, T ∗) × R

d 7−→ R

u(x, 0) = u0(x), ∂tu(x, 0) = u1 (u0, u1) ∈ Ḣs × Ḣs−1(Rd
x)

(1)

Such equations arise in quantum mechanics.

Nonlinear Schrödinger equation:














i∂tv + ∆v = −|v|p−1v, v : (−T∗, T ∗) × Rd 7−→ C

v(0, x) = v0(x) v0 ∈ Ḣs(Rd
x)

(2)
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The Schrödinger equation describes the propagation of an

electromagnetic signal through a standard isotropic optical fibre.

We will refer to the initial value problems (1) and (2) with the

notation NLWp(R
d) and NLSp(R

d), respectively.

Interested in the following questions:

• local (in time) well-posedness of the Cauchy problems (1) and

(2).

• are the local solutions global ?

• persistence of regularity i.e. does singularity develop?

• Long-time behavior or scattering i.e. does the (global)

non-linear solution approach a linear solution when time

t −→ ±∞?
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Facts about equations (1) and (2).

• These equations are Hamiltonian

E(u(t, ·)) := ‖∂tu(t, ·)‖2
L2+‖∇u(t, ·)‖2

L2+

∫

Rd

1

p+ 1
|u|p+1(t, x)dx.

H(v(t, ·)) := ‖∇v(t, ·)‖2
L2 +

∫

Rd

1

p+ 1
|v|p+1(t, x)dx.

• Equations (1) and (2) have a scaling property i.e.

If u (respectively v) solves (1) (respectively (2)) then, for

λ > 0, uλ : (−T∗λ2, T ∗λ2) × R
d defined by

uλ(t, x) := λ2/(1−p)u(λ−2t, λ−1x) (3)

also solves (1) (respectively (2)).

• Let sc := d
2 − 2

p−1 . The Banach spaces Ḣsc(Rd
x) and Lpc(Rd

x)

are relevant in the theory of the initial value problems (1) and

(2), since they are invariant under the mapping (3)
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Definition 1 The Cauchy problems (1) and (2) are said

subcritical if sc < s, critical if sc = s, and supercitical if sc > s.

2 Local well-posedness

Definition 1 is inspired by the following complete trichotomy for

the local well-posedness.

Theorem 1 The Cauchy problems (1) and (2) are:

• locally well-posed if sc < s with Tlwp = T (‖u0‖Hs)

(Cazenave-Weissler ’90)

• locally well-posed if sc = s with Tlwp = T (u0),

(Ginibre-Velo ’85, Cazenave ’03)

• and is “ill-posed” if not.

(Christ-Colliander-Tao ’04, Lebeau ’01)
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3 Global well-posedness

To simplify the results, let us restrict our selves to the case when

the initial data are in Ḣ1 i.e. energy critical case.

3.1 The case of NLWP

Theorem 2 The Cauchy problem (1) with initial data

(u0, u1) ∈ H1 × L2 is:

• globally well-posed if sc < s = 1 (or equivalently p < pc := d+2
d−2).

(Ginibre-Velo ’85) .

• globally well-posed if sc = s = 1 (or equivalently p = pc).

(Grillakis ’90, Shatah-Struwe ’94) .

Moreover, if p > pc and the initial data is

in Hs×Hs−1 with s < sc, then the Cauchy problem (1) is “ill-posed”.

(Christ-Colliander-Tao ’04, Lebeau ’01-’05) .
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Remark 1 Shatah- Struwe result’s was extended to the variable

coefficients case by (Ibrahim-Majdoub ’03) with a “conservative

Laplacian”:

∆Au := −div(A(·)∇u),
where A−1 is a Riemannian metric on Rd which is flat outside a

fixed compact set.

7



3.2 The case of NLSP

Theorem 3 The Cauchy problem (2) with initial data v0 ∈ H1 is:

• globally well-posed if sc < s = 1 (or equivalently p < pc := d+2
d−2).

(Ginibre-Velo ’85, Cazenave ’04) .

• globally well-posed if sc = s = 1 (or equivalently p = pc).

(Bourgain ’99, Colliander-Keel-Staffilani-Takaoka-Tao ’05) .

Moreover, if p > pc and the initial data is in Hs with sc > s, then

the Cauchy problem NLSp is “ill-posed”.

(Christ-Colliander-Tao ’04, Burq-Gérard-Tzevtkov ’02) .

Remark 2 A refinement and a generalization to the variable

coefficients case is now proved by (Burq-Gérard-Ibrahim ’06) for both

NLWp and NLSp in any space dimension.
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3.3 Energy criticality in two space dimensions

In dimension two, pc = +∞ and therefore, the initial value

problems NLWp and NLSp are energy subcritical for all p > 1. To

identify an “energy critical” nonlinear Wave/Schrödinger initial

value problem on R2, it is thus natural to consider problems with

exponential nonlinearities. Consider,














(∂2
t − ∆x)u+ u = −f(u), u : (−T∗, T ∗) × R2 7−→ R

u(x, 0) = u0(x), ∂tu(x, 0) = u1 (u0, u1) ∈ H1 × L2(R2)

(4)







i∂tv + ∆v = f(v), u : (−T∗, T ∗) × R2 7−→ C

v(x, 0) = v0(x) ∈ H1(R2)
(5)

where

f(z) = z
(

e4π|z|2 − 1
)

. (6)
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Conserved quantities:

Solutions to the nonlinear wave equation (4) formally satisfy the

energy conservation

E(u(t, ·)) := ‖∂tu(t, ·)‖2
L2 + ‖∇u(t, ·)‖2

L2 +
1

4π
‖e4π|u(t,·)|2 − 1‖L1(R2)

= E(u(0, ·)).

and we have conservation of mass and Hamiltonian for Schrödinger

equation

M(u(t, ·)) := ‖u(t, ·)‖2
L2

= M(u(0, ·)),

H(u(t, ·)) := ‖∇u(t, ·)‖2
L2 +

1

4π
‖e4π|u(t,·)|2 − 1 − 4π|u(t, ·)|2‖L1(R2)

= H(u(0, ·)).
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Definition 2 The Cauchy problem associated to (4) and with

initial data (u0, u1) ∈ H1 × L2(R2) is said to be

• subcritical if E(u0, u1) < 1,

• critical if E(u0, u1) = 1 and,

• supercritical if E(u0, u1) > 1.

Definition 3 The Cauchy problem associated to (5) and with

initial data v0 ∈ H1(R2) is said to be

• subcritical if H(v0) < 1,

• critical if H(v0) = 1 and,

• supercritical if H(v0) > 1.
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4 Results in two space dimensions

Theorem 4

(Ibrahim-Majdoub-Masmoudi ’05) .

Assume that E0 ≤ 1, then problem NLWexp has an unique global

solution u in the class

C(R, H1(R2)) ∩ C1(R, L2(R2)).

Moreover, u ∈ L4
loc(R, C1/4(R2)) and satisfies the energy identity.

Remark 3 It is important here to note that contrary to problems

NLWp and NLSp, we have an “‘unconditional uniqueness” results

for this type of equations.
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Theorem 5

(Colliander-Ibrahim-Majdoub-Masmoudi ’06) .

Assume that H(u0) ≤ 1; then problem NLSexp has an unique

global solution v in the class

C(R, H1(R2)).

Moreover, u ∈ L4
loc(R, C1/2(R2)) and satisfies the conservation of

mass and hamiltonian.

Theorem 6

(Colliander-Ibrahim-Majdoub-Masmoudi ’06) .

Assume that E0 > 1 and H(v0) > 1; then problems (4) and (5) are

“ill-posed”
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5 Ideas of proofs ( the case of NLSexp)

• The local-well-posedness idea is:

NLSexp ∼ LSexp

How does the proof of the local well-posedness go ?

Let v0 be the solution of the free Schrödinger equation

i∂tv0 + ∆v0 = 0

v0(0, x) = u0.

Fix T > 0 and define a map

i∂tṽ + ∆ṽ = (v + v0)
(

e4π|v+v0|
2 − 1

)

, ṽ(0, x) = 0, (7)

on a closed neighborhood X(T ) around 0 included in the energy

space C([0, T ], H1).
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u, ∇u in L4
tx

u, ∇u in CT (L2)

f(u), ∇f(u) in L4
tx

f(u), ∇f(u) in L1

T
(L2)

u0, ∇u0 in L2

Duhamel’s formula

Inhomogeneous Strichartz estimates

Homegeneous Strichartz estimates

eit∆u0

Figure 1: Local well-posedness scheme.
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The local well-posedness is obtained by combining the following

three fundamental ingredients:

Lemma 1 (Moser-Trudinger Inequality) Let α ∈ [0, 4π). A constant

cα exists such that

‖ exp(α|u|2) − 1‖L1(R2) ≤ cα‖u‖2
L2(R2) (8)

for all u in H1(R2) such that ‖∇u‖L2(R2) ≤ 1. Moreover, if α ≥ 4π,

then (8) is false.

Lemma 2 (Strichartz estimates) Let v0 be a function in H1(R2)

and F ∈ L1(R, H1(R2)). Denote by v the solution of the

inhomogeneous linear Schrödinger equation

i∂tv + ∆v = F

with initial data v(0, x) = v0(x).

Then, a constant C exists such that for any T > 0 and any

admissible couple of Strichartz exponents (q, r) i.e
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0 ≤ 2
q = 1 − 2

r < 1, we have

‖v‖Lq([0,T ],B1

r,2(R
2)) ≤ C

[

‖v0‖H1(R2) + ‖F‖L1([0,T ],H1(R2))

]

.

Lemma 3 (Log Estimate) (Ibrahim-Majdoub-Masmoudi ’05) . Let

β ∈]0, 1[. For any λ > 1
2πβ and any 0 < µ ≤ 1, a constant Cλ > 0

exists such that, for any function u ∈ H1(R2) ∩ Cβ(R2), we have

‖u‖2
L∞ ≤ λ‖u‖2

µ log(Cλ +
8βµ−β‖u‖

Cβ

‖u‖µ
),

where we set

‖u‖2
µ := ‖∇u‖2

L2 + µ2‖u‖2
L2 .

• In the subcritical case, using only the conserved quantities, we

can iterate the local-well-posedness result infinitly many times,

thus the solution is global.
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• In the critical case, it is no longer sufficient to use only the

conserved quantities. We prove a result about the distribution

of the local mass at different times.

Lemma 4 Let u be a solution of (5) on [0, T ) with 0 < T ≤ +∞
and suppose that E := H(u0) +M(u0) <∞. For any two positive

real numbers R and R′ and for any 0 < t < T , a constant C(E)

exists such that the following holds:
∫

B(R+R′)

|u(t, x)|2dx ≥
∫

B(R)

|u0(x)|2dx− C(E)
t

R′
. (9)
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• The instability in the super-critical case is based on the

fundamental idea:

NLSexp ∼ ODEexp

Theorem 7 There exist a sequence of positive real numbers (tk),

tk −→ 0 and tow sequences (Uk) and (Vk) solutions of NLWexp

and satisfying the following: for any k ∈ N

•

‖(Uk−Vk)(t = 0, ·)‖2
H1+‖∂t(Uk−Vk)(t = 0, ·)‖2

L2 = ◦(1), k → +∞.

• For any ν > 0,

0 < E(Uk, 0) − 1 ≤ e3ν2 and 0 < E(V k, 0) − 1 ≤ ν2,

• and

lim inf
k−→∞

‖∂t(Uk − Vk)(tk, ·)‖2
L2 ≥ π

4
(e2 + e3−8π)ν2.
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How to prove Theorem 7?

1st step: An ODE analysis

Let Φk and Ψk be the two solutions of ODEexp:

d2

dt2
y + ye4π y2

= 0.

with initial data

Φk(0) = (1 +
1

k
)

√

k

4π
,

d

dt
Φk(0) = 0,

and

Ψk(0) =

√

k

4π
,

d

dt
Ψk(0) = 0.
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Note that Φk is periodic with period Tk ∼
√
k e−(1+ 1

k
)2k/2.

We choose time tk ∈]0, Tk/4[ such that

Φk(tk) = (1 + 1/k)

√

k

4π
−
(

(1 + 1/k)

√

k

4π

)−1

.

Then for any ν > 0 and for k large enough, we have

•
tk ≤ c

ν

2
e−k/2,

•
|∂tΦk(tk) − ∂tψk(tk)|2 ≥ cek,

and

•
∫

R2

|∂t(Φk(tk) − Ψk(tk))|2 ≥ cν2
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2nd step: PDE-ODE approximation

We construct the following initial data

(

(1 +
1

k
)fk(

x

ν
), 0
)

and
(

fk(
x

ν
), 0
)

,

where fk is the sequence that violate the sharp moser-Trudinger

ineqaulity when the exponent is 4π. The paramete ν is arbitrary.

Using the special form of the sequence fk, an “enormous gift” is

provided by the finite speed of propagation:

NLWexp = ODEexp

in the backward light cone

{(x, t) : |x| ≤ t− νe−k/2}.
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Remark 4 • Note that the data are slightly supercritical

• For NLSexp, the analogous to Theorem 7 is harder to prove.

• Theorem 7 result says no better than the flow map is not

uniformly continuous.
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Conclusions

• The novel approach based on the discussion with respect to the

size of the initial data in the energy space allows us to obtain a

trichotomy almost similar to the power nonlinearity case. We

argue that NLWexp and NLSexp are the H1-critical problems

in R2.

• The long-time behavior of solutions remains unknown. Also in

the focusing case, there is no a qualitative study of blow-up.

• The very interesting question of global existence for

supercritical problems remains open. Solving such problem

may give a good insight to solve the Navier-Stokes system

(which is supercritical).
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