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1 Introduction

Nonlinear Wave equation:

’

(07 — Ap)u = —|u|P~ 1w, w: (=T%,T*) x R — R
(1)

\u(m,()) = ug(x), Opu(z,0) =uy (ug,u1) € H* x Hs_l(Rg)

Such equations arise in quantum mechanics.

Nonlinear Schrodinger equation:

(10w + Av = —v|P~ v, v (=T, T*) x R +— C
(2)

v(0, ) = vo(x) vo € H*(R%)




The Schrodinger equation describes the propagation of an
electromagnetic signal through a standard isotropic optical fibre.

We will refer to the initial value problems (1) and (2) with the
notation NLW,(R%) and NLS,(R?), respectively.

Interested in the following questions:

e local (in time) well-posedness of the Cauchy problems (1) and
(2).
are the local solutions global ?

persistence of regularity i.e. does singularity develop?

Long-time behavior or scattering i.e. does the (global)
non-linear solution approach a linear solution when time

t — 007




Facts about equations (1) and (2).

e These equations are Hamiltonian

Bu(t. ) = oru(t, )G+ |Vt )+ |

) m "U/|p+1(t, .CC)CZZU

H . = . 22 p+1 .
(0(t.) = [Vo(t ) + | ol (2o

e Equations (1) and (2) have a scaling property i.e.
If u (respectively v) solves (1) (respectively (2)) then, for
A > 0,u’: (=T A2, T*\?) x R defined by

uM(t, x) = A Iy (A2, A L) (3)
also solves (1) (respectively (2)).

o Let s.:= % — z%‘ The Banach spaces HSC(R;{) and LP<(RY)

are relevant in the theory of the initial value problems (1) and
(2), since they are invariant under the mapping (3)




Definition 1 The Cauchy problems (1) and (2) are said

subcritical if s. < s, critical if s, = s, and supercitical if s. > s.

2 Local well-posedness

Definition 1 is inspired by the following complete trichotomy for
the local well-posedness.

Theorem 1 The Cauchy problems (1) and (2) are:

o locally well-posed if s < s with Ty, = T(||uo|| ms)
(Cazenave-Weissler ’90)

o locally well-posed if s. = s with Ty, = T (uo),
(Ginibre-Velo '85, Cazenave '03)

o and 1s “ill-posed” if not.
(Christ-Colliander-Tao 04, Lebeau ’01)




3 Global well-posedness

To simplify the results, let us restrict our selves to the case when
the initial data are in H! i.e. energy critical case.

3.1 The case of NLWp

Theorem 2 The Cauchy problem (1) with initial data
(uo,u1) € H' x L? is:

o globally well-posed if s, < s =1 (or equivalently p < p. := %).

(Ginibre-Velo ’85)
o globally well-posed if s, = s =1 (or equivalently p = p.).
(Grillakis 90, Shatah-Struwe ’94)

Moreover, if p > p. and the initial data is
in H® x H5~1 with s < s., then the Cauchy problem (1) is “ill-posed”.
(Christ-Colliander-Tao 04, Lebeau ’01-’05)




Remark 1 Shatah- Struwe result’s was extended to the variable

coefficients case by (Ibrahim-Majdoub '03) with a “conservative
Laplacian”:

Aqu = —div(A(-)Vu),

where A~ is a Riemannian metric on R? which is flat outside a
fized compact set.




3.2 The case of NLSp

Theorem 3 The Cauchy problem (2) with initial data vog € H' is:

o globally well-posed if s. < s =1 (or equivalently p < p. := d%%)

(Ginibre-Velo '85, Cazenave '04)

o globally well-posed if s, = s =1 (or equivalently p = p.).
(Bourgain 99, Colliander-Keel-Staffilani- Takaoka-Tao ’05)

Moreover, if p > p. and the initial data is in H® with s. > s, then
the Cauchy problem N LSp is “ill-posed”.
(Christ-Colliander-Tao 04, Burqg-Gérard-Tzevtkov ’02)

Remark 2 A refinement and a generalization to the variable
coefficients case is now proved by (Burg-Gérard-Ibrahim °06) for both

NLWp and NLSp in any space dimension.




3.3 Energy criticality in two space dimensions

In dimension two, p. = 400 and therefore, the initial value
problems NLWp and NLS, are energy subcritical for all p > 1. To
identify an “energy critical” nonlinear Wave/Schrodinger initial
value problem on R?, it is thus natural to consider problems with

exponential nonlinearities. Consider,
(P —Au+u=—f(u), u:(-T.T*)xR2—R
(4)

(u(z,0) = up(x), Oru(x,0) =ur  (ug,u1) € H" x L*(R?)

100 + Av = f(v), u: (=T, T*) x R — C
v(x,0) = vo(z) € H'(R?)




Conserved quantities:

Solutions to the nonlinear wave equation (4) formally satisfy the

energy conservation

1 i tulen 2
Bu(t,) = [Bult, )3 + [Tult, ) + [N 1] 11 e

and we have conservation of mass and Hamiltonian for Schrodinger

equation

M(u(t,) = |lu(t,")]|7s

1 lu(t,)|?
HVUQwN%m+Z;W*'(“”-—1—4ﬂmﬁwﬂﬂbuw>




Definition 2 The Cauchy problem associated to (4) and with
initial data (ug,ui) € H' x L?(R?) is said to be

o subcritical if E(ug,uy) <1,
o critical if E(ug,u1) =1 and,
o supercritical if E(ug,u1) > 1.

Definition 3 The Cauchy problem associated to (5) and with
initial data vo € H'(R?) is said to be

o subcritical if H(vg) < 1,
o critical if H(vg) =1 and,

o supercritical if H(vg) > 1.

11



4 Results in two space dimensions

Theorem 4
(Ibrahim-Majdoub-Masmoudi ’05)
Assume that Eg < 1, then problem NLWexp has an unique global

solution u in the class
C(R, H'(R?)) NC'(R, L*(R?)).

Moreover, u € L} (R, CY/4(R?)) and satisfies the energy identity.

loc

Remark 3 It is important here to note that contrary to problems
NLWp and NLSp, we have an “‘unconditional uniqueness” results

for this type of equations.




Theorem 5
(Colliander-Ibrahim-Majdoub- Masmoudi ’06)
Assume that H(ug) < 1; then problem N LSexp has an unique

global solution v in the class

C(R, H'(R?)).

Moreover, u € L} (R, C/2(R?)) and satisfies the conservation of

loc

mass and hamailtonian.

Theorem 6

(Colliander-Ibrahim-Majdoub-Masmoudi "06)

Assume that Eg > 1 and H(vg) > 1; then problems (4) and (5) are
“tll-posed”




5 Ideas of proofs ( the case of NLSexp)

e The local-well-posedness idea is:

NLSexp ~ LSexp

How does the proof of the local well-posedness go 7

Let vy be the solution of the free Schrodinger equation

10:v9 + Avg = 0

v0(0, ) = ug.

Fix T' > 0 and define a map

10,0+ AD = (v + vp) (e — 1) 5(0,2) =0, (7)

on a closed neighborhood X (T') around 0 included in the energy
space C([0,T], H').




f(w), Vf(u) in Lp(L?)

fu), Vf(u) in L,

A

Inhomogeneous| Strichartz estimates

Duhamel’s formula

u, Vu in Cp(L?)

Ug, Vg in L2 u, Vu in Lfm

Homegeneous Strichartz estimates

Figure 1: Local well-posedness scheme.




The local well-posedness is obtained by combining the following
three fundamental ingredients:

Lemma 1 (Moser-Trudinger Inequality) Let o € [0,4m). A constant
C,, exists such that

| exp(alul®) — 1|2 ge) < callullLz () (8)

for all w in H'(R?) such that ||Vul||p2ge2) < 1. Moreover, if o > 4,
then (8) is false.

Lemma 2 (Strichartz estimates) Let vg be a function in H(R?)

and F € L*(R, H'(R?)). Denote by v the solution of the
inhomogeneous linear Schrodinger equation

’I:(?ﬂ)-FA’U = F

with initial data v(0,x) = vo(x).
Then, a constant C exists such that for any T' > 0 and any
admissible couple of Strichartz exponents (q,r) i.e




0§%:1—%<1,Wehave

HUHLQ([O,T],B},’Z(RQ)) <C [HUOHHl(R?) + ||FHL1([0,T],H1(R2))] .

Lemma 3 (LOg Estimate) (Ibrahim-Majdoub-Masmoudi 05) . Let

3 €]0,1]. For any A > ﬁ and any 0 < u <1, a constant Cy >0

exists such that, for any function u € H'(R?) N CP(R?), we have

8,8y
lull2 < Alju? log(Cy + S _4len ),

i

where we set

lull, = IVullze + p#llullZ--

e In the subcritical case, using only the conserved quantities, we
can iterate the local-well-posedness result infinitly many times,
thus the solution is global.




e In the critical case, it is no longer sufficient to use only the

conserved quantities. We prove a result about the distribution
of the local mass at different times.

Lemma 4 Let u be a solution of (5) on [0,T) with 0 <T < 400
and suppose that E := H (ug) + M (ug) < co. For any two positive

real numbers R and R’ and for any 0 <t < T, a constant C(E)
exists such that the following holds:

t

/ u(t, ) 2dz > / g () [2dzr — O(E) . (9)
B(R+R) B(R) R




e The instability in the super-critical case is based on the
fundamental idea:

NLSexp ~ ODFEexp

Theorem 7 There exist a sequence of positive real numbers (ty),
tr — 0 and tow sequences (Uy) and (Vi) solutions of NLW exp
and satisfying the following: for any k € N

L
I(Uk=Vi)(t = 0, ) I3 +[10: (U= Vi) (¢ = 0, ) || 72 = o(1), k — +oc.
e For anyv > 0,

0< E(U*0)—1<e3? and 0 < E(VF,0) -1 <12,

liminf ||0; (U — Vi) (tr, )||72 > %(62 + 3782,

k— 00




How to prove Theorem 77
Ist step: An ODE analysis

Let &5 and ¥ be the two solutions of OD Eexp:

d2
g2d T yel™ v = Q.

with initial data




Note that ®;, is periodic with period T}, ~ vk e~ (1+%)°k/2,
We choose time t; €]0, T} /4] such that

Oy (tr) = (1 + 1/k)\/§— ((1 + 1//{)\/%) .

Then for any v > 0 and for k large enough, we have

v
tk < c—e_k/2

— Y

0@ (tr) — Opthi (tr)|* > ce”,

102k (te) = Tr(te))” 2 0




2nd step: PDE-ODE approximation
We construct the following initial data

1 T x
1+ = —,o) d( —,0),
(A + D f(5),0) and (fe(5)
where f;, is the sequence that violate the sharp moser-Trudinger
ineqaulity when the exponent is 4m. The paramete v is arbitrary.

Using the special form of the sequence f, an “enormous gift” is
provided by the finite speed of propagation:

NLWexp = ODFEexp

in the backward light cone

{(x,t) : || <t—wve */?}




Remark 4 e Note that the data are slightly supercritical

e for NLSexp, the analogous to Theorem 7 is harder to prove.

e Theorem 7 result says no better than the flow map is not

uniformly continuous.




Conclusions

e The novel approach based on the discussion with respect to the
size of the initial data in the energy space allows us to obtain a
trichotomy almost similar to the power nonlinearity case. We
argue that NLWexp and NLSexp are the H!-critical problems
in R?.

The long-time behavior of solutions remains unknown. Also in

the focusing case, there is no a qualitative study of blow-up.

The very interesting question of global existence for
supercritical problems remains open. Solving such problem
may give a good insight to solve the Navier-Stokes system

(which is supercritical).
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