
PythoMS: A Python Framework To Simplify and Assist in the
Processing and Interpretation of Mass Spectrometric Data
Lars P. E. Yunker,*,† Sofia Donnecke, Michelle Ting, Darien Yeung, and J. Scott McIndoe*

Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3V6, Canada

ABSTRACT: Mass spectrometric data are copious and generate a
processing burden that is best dealt with programmatically. PythoMS is a
collection of tools based on the Python programming language that
assist researchers in creating figures and video output that is informative,
clear, and visually compelling. The PythoMS framework introduces a
library of classes and a variety of scripts that quickly perform time-
consuming tasks: making proprietary output readable; binning intensity
vs time data to simulate longer scan times (and hence reduce noise);
calculating theoretical isotope patterns and overlaying them in histogram
form on experimental data (an approach that works even for overlapping
signals); rendering videos that enable zooming into the baseline of
intensity vs time plots (useful to make sense of data collected over a
large dynamic range) or that depict the evolution of different species in a time-lapse format; calculating aggregates; and
providing a quick first-pass at identifying fragments in MS/MS spectra. PythoMS is a living project that will continue to evolve
as additional scripts are developed and deployed.

■ INTRODUCTION
Mass spectrometers generate a substantial amount of complex
data with every scan, which quickly amounts to an immense
amount of data to process and interpret for any appreciable
experiment length. Processing and interpreting these data are
time-consuming and repetitive, particularly when trying to
extract data series which were unforeseen by the programmers of
the mass spectrometer’s software package. As an example, the
Waters QToF micro used in our laboratory stores many
instrument variables (including the time, collision energy, total
ion current, etc.) in addition to a paired list ofm/z and intensity
values across the entire scan range for every scan acquired in an
experimental run. Frequently, we extract reconstructed single
ion monitoring (RSIM) data from full scans; the m/z and
intensity values are accessible to the user using the Waters
MassLynx software, but extracting the data into spreadsheet
format is time-consuming (requiring the user to integrate each
peak, switch windows, copy the data, switch to the spreadsheet
program, paste the time and integration, and then repeat for
every other peak of interest). It is also difficult for the user to
access the instrument variables through the provided software.
The PythoMS framework was created using the Python
programming language to address these drawbacks and
limitations of the provided instrumental software. It is open
source, registered on the Python Package Index (PyPI), and
available on GitHub under the MIT license (https://github.
com/larsyunker/PythoMS).
While there are more computationally efficient programming

languages, the scripting language Python is attractive to
researchers due to its ease of use and abundance of supporting
libraries (allowing researchers to focus on the scripts themselves
rather than building libraries). The great strength of Python is its

ability to handle lists in an efficient manner, and since scientific
research involves lists and arrays of data, it is well suited for
scientific applications. The simple set of objects and methods
built into Python, combined with the ease of generating other
objects and methods tailored to the user’s needs, makes the
language a powerful tool for extraction, manipulation, and
storage of data. Additionally, the user-specified methods allow
for complete control over the manipulation of those data,
leading to reliable and reproducible batch application of the
same method to multiple data sets.
The PythoMS framework has two main segments: a library of

classes and a collection of scripts. The primary functionality of
the framework is built into Python classes, providing
fundamental tools required for the processing and interpretation
of mass spectrometric data and may be instantiated and
implemented in user-created scripts as needed. Additionally,
scripts have been written and generalized to enable straightfor-
ward execution of common mass spectrometric tasks like
integration, spectrum summing, and isotope pattern overlays.
There are existing examples of Python-based packages for both
general chemistry and the analysis of mass spectrometric data
(these are primarily focused on proteomics analysis), but they
did not meet our specific needs.1−5 We sought to create a
generalized framework which might be applied to any mass
spectrometric application with ease. There are also web services
available for mass spectrometrists: one such is ChemCalc,6

which is a free platform allowing chemists to calculate isotope
patterns, monoisotopic masses, find molecular formulas, and

Received: January 14, 2019
Published: April 1, 2019

Application Note

pubs.acs.org/jcimCite This: J. Chem. Inf. Model. 2019, 59, 1295−1300

© 2019 American Chemical Society 1295 DOI: 10.1021/acs.jcim.9b00055
J. Chem. Inf. Model. 2019, 59, 1295−1300

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

V
IC

T
O

R
IA

 a
t 1

6:
04

:2
5:

18
6 

on
 M

ay
 2

2,
 2

01
9

fr
om

 h
ttp

s:
//p

ub
s.

ac
s.

or
g/

do
i/1

0.
10

21
/a

cs
.jc

im
.9

b0
00

55
.

https://github.com/larsyunker/PythoMS
https://github.com/larsyunker/PythoMS
pubs.acs.org/jcim
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.9b00055
http://dx.doi.org/10.1021/acs.jcim.9b00055


more. This suite of programs is already heavily used in our
laboratory and PythoMS is a complement to these.

■ FRAMEWORK
Mass Spectrometric Data Access Classes. In order to

manipulate data in Python, one must first extract the data from
the source data file, which can be nontrivial due to each
manufacturer having their own proprietary data format (the
binary data format of which is not supported natively by
Python). In an effort to address this, the mzML file format was
defined by the Human Proteome Organization Proteomics
Standards Initiative (HUPO-PSI) working group to be an open-
source file format for mass spectrometry data, so that the files
generated by any instrument could be read in a standardized
fashion.7−9 The mzML files themselves are based on the
extensible markup language (XML) file format, where data are
grouped together with tags so that a particular piece of data may
be found easily by that tag. Additionally, ProteoWizard provides
an accessible tool to convert themass spectrometric data formats
of several manufacturers into mzML, allowing full access to the
data generated by a wide variety of spectrometers.10,11

The mzML class serves as an abstraction layer between user
and an mzML file, providing access to all functions, spectra, and
attributes defined in the file. After instantiation (loading of the
mzML file into the instance), the user may retrieve a single scan
or chromatogram from the file or apply a method to every scan
or chromatogram in the file (such as extract the time points or
integrate a region of the spectrum). This functionality is enabled
by a module created to access HUPO-PSI controlled variable
(CV) definitions. Methods have been written to extract CV
parameters or attributes from an XML branch, which gives the
user simplified access to all variable names, values, and
definitions associated with that branch. In the case of
ProteoWizard, only accession IDs and CV names are included
in the file, making it challenging for the user to inspect or
interpret the key. PythoMS addresses this by automatically
retrieving the defined CV attributes from the HUPO-PSI
definition file itself whenever an attribute is undefined in the
mzML. Direct access to the CV parameter names or IDs of an
mzML branch enables the user to create methods which will
specifically extract or manipulate exactly which variables they
choose or to perform comparisons and conditionally evaluate
spectra or chromatograms. Convenience wrappers have also
been written which apply user-defined methods to spectra or
chromatograms; combined with the flexibility and specificity of
the CV accession keys, the mzML class provides a solid
foundation for nearly any mass spectrometric data processing
task. The PythoMS mzML class supports several flavours of
mzML, including zlib compression, 32- and 64-bit encoding
precision, and gzip compression. Additionally, mzML files with
multiple ion modes, functions, and chromatograms are fully
supported but require the user to exercise care in selecting the
desired function or chromatogram. Development is ongoing to
support other flavours such as numpress compressions, and the
direct access to CV accession keys enables developers to extend
support to any functionality defined by HUPO-PSI.
When development for PythoMS began in early 2013, python

packages which interacted with mzML files were sparse and had
limited documentation, proving difficult to implement or
extend.3 As the years have progressed, several packages with
mzML interpreters have emerged: Pyteomics, pymzML,
URSGAL, and pyQms.1−3,12,13 With the exception of pymzml,
these packages are focused on proteomics applications, with

limited extensibility to other mass spectrometric applications.
PythoMS takes a similar approach to pymzML, providing direct
access to spectral attributes using accession keys which exposes
the entire contents of anmzML file to the user. PythoMS’mzML
class has additional ease-of-use tools beyond those of pymzML
such as automated raw-to-mzML conversion as well as indexing,
integration, and spectral combination methods. We foresee the
built-in decorator functions of the mzML class being most useful
to the end user, as they apply a user-defined method to each
spectrum or chromatogram in an mzML file. For instance, any
aspect of the scan/chromatogram can be retrieved and
interpreted, which allows for Pythonic conditional statements
or item modification.

Mass Spectrometric Data Classes. A substantial issue
with values stored by mass spectrometers is that they will track
m/z values to precisions well beyond the spectrometer itself. For
instance, the Waters QToF micro used in our lab records m/z
values at floating point precision (about the seventh decimal
place), while the mass analyzer is only routinely accurate to the
first. From the perspective of a script attempting to sum mass
spectra together, it becomes challenging to address effectively
identical but formally unequal m/z values in different scans. As
an example, one scan may have intensity at m/z 123.4567890
and another intensity at m/z 123.4567891; these are formally
unequal, but in actuality indistinguishable by the spectrometer.
This provides a challenge when one wants to combine multiple
scans from a mass spectrometer, where m/z values differ
minutely from one scan to the next. To address these
discrepancies, the Spectrum class was created to efficiently
consolidate intensities of the same effective mass.
At its core, the Spectrum class is a container for two paired

lists (one form/z, one for intensity, with the first value of them/
z list corresponding to the first value of the intensity list, and so
on) but has built-in methods for efficiently searching the m/z
value list and adding new values while maintaining sorting. On
instantiation, the user will specify a given number of decimal
places that the instance is to track, and when new values are
added, the m/z value rounded to the specified decimal place is
compared to the existingm/z list, ignoring extraneous precision.
This allows users to combine spectra that have slight mismatches
for them/z values or to combine spectra of different numbers of
(intensity,m/z) pairs (frequently, mass spectrum data files omit
zero-intensity m/z values for data storage efficiency). Once
complete, a single function of the class can be called to return a
summed spectrum in the form of a pair ofm/z and intensity lists.
While this class was created with mass spectra in mind, it could
be generally applied to the combination of any paired lists with
similar but unequal x values or spectra of unequal length. The
behavior of the Spectrum class may be tweaked to the user’s
needs to optimize run-time for different spectral types. The
authors have found that the most significant performance-
affecting attribute is whether the spectrum is “filled” (whether on
instantiation a m/z value is generated for every value in the
specified range incremented at the specified decimal place). If
the spectrum is likely to have an intensity value for the majority
of m/z possibilities, it was found to be more efficient to
prepopulate, but when values are likely to be clustered it was
more efficient to generate m/z values as necessary.
The creation of this class allows PythoMS to have a spectrum

binning script, which can very efficiently sum all spectra in a
mzML file. It also allowed for the creation of the IPMolecule
class, as the algorithms used to calculate an isotope pattern
require rapid generation and manipulation of list (a specific

Journal of Chemical Information and Modeling Application Note

DOI: 10.1021/acs.jcim.9b00055
J. Chem. Inf. Model. 2019, 59, 1295−1300

1296

http://dx.doi.org/10.1021/acs.jcim.9b00055


method was built into the Spectrum class to add an element’s
isotope distribution efficiently to an existing Spectrum object).
Isotope patterns are a fundamental component of interpreting

mass spectra, and we desired an efficient method of accurately
calculating isotope patterns, with the resulting pattern being a
Python paired list. While the patterns of small molecules are not
particularly arduous for modern microprocessors, patterns for
large molecules or those containing more polyisotopic elements
quickly can become very time-consuming to generate. We
created the IPMolecule class to efficiently generate an isotope
pattern which is as accurate as possible (in that the
monoisotopic mass and complete pattern should match
experimental spectra as closely as possible). This class relies
heavily on the efficiencies of the Spectrum class and has several
generation algorithms available. The IPMolecule class has
several algorithm options, including multiplicative, combinato-
rial, a multiplicative/combinatorial hybrid, and IsoSpec
integration.14 The user may choose which of these algorithms
to use and has control over efficiency-boosting functionality
such as threshold dropping or limiting the number of peaks. In
the author’s experience, the chosen algorithm and efficiency
options depends on the molecule being simulated and the
required accuracy of the pattern (e.g., different algorithms might
be chosen for carbohydrates versus organometallic species).
Threshold intensity dropping provides substantial efficiency
increases with minimal accuracy effects for low mass (less than
1000 Da) carbohydrates but can affect low-intensity contribu-
tions for higher-mass organometallic species with many isotopes
(e.g., Pd). We have provided complete control over the settings
to the user, allowing them to choose the most suitable algorithm
for their application. A measure of the accuracy of the generated
isotope pattern is estimated and reported to the user upon
completion of the algorithm (comparison of the molecular
weight of the isotope pattern versus the known molecular
weight).15

The IPMolecule class is based on a generic Molecule class
which interprets a molecular formula and calculates basic
molecular properties such as molecular weight. There are a wide
variety of molecular weight calculators available, but the nature
of IPMolecule required an object-oriented structure to build
upon, so we created a class to do this. For the convenience of the
user, the Molecule class allows for specification of defined
formula abbreviations (e.g., “L” for “PPh3”), nested brackets,
molecular charge, and single isotopes in the provided molecular
formula. The IPMolecule generates three isotope patterns for
eachmolecule, a “raw” pattern which preserves all mass defects, a
“bar” isotope pattern which consolidates defects of similar mass
into a combined intensity, and a “Gaussian” isotope pattern
which simulates the observed pattern on a mass spectrometer of
a given resolution. These patterns may be individually retrieved
from the IPMolecule object (e.g., for isotope pattern overlay
figures) or may be plotted directly with built-in methods of the
object itself. There are two isotopic exact mass dictionaries
available whichmay be used for calculating isotope patterns: one
with values from the CRC Handbook of Chemistry and
Physics16 and the other with values from National Institute of
Standards and Technology (NIST) Web site and formatted by
Pyteomics.1,17

■ SCRIPTS
The classes detailed above provide an agile framework to
develop code for mass spectrometric applications, and we have
utilized that framework in the development of several scripts

which may be found in the PythoMS repository. These scripts
are intended to be the point of interaction between the
framework and the user, and we have structured them to be as
user-friendly and intuitive as possible even for novice python
users. The framework was constructed in such a fashion that new
scripts can be written quickly to accomplish a new task; as an
example, a script was generated in less than 5 min which
calculated the masses of a series of products expected from a
Suzuki polycondensation reaction using the IPMolecule class
(this script was later generalized to be an aggregate calculator
script). With some knowledge of Python and the help of the
documentation of this framework, any MS user can construct
scripts to ease otherwise time-consuming or repetitive tasks. We
have also created tutorial videos on the use of several scripts and
hope that the combination of easy-to-use scripts and tutorial
videos will enable users who are unfamiliar with coding to create
useful visualizations of their data.18−21

PyRSIR. Single ion monitoring is the process of tracking the
abundance of a single ion over a time course and is the data in
which our lab is interested for the online study of reactions.22−25

To do this, we obtain full-spectrum scans on our instrument,
then reconstruct a single ion monitoring trace by integrating the
intensity of a particular ion over the entire time course of the
experiment. The Python reconstructed single ion recording
(PyRSIR) script automates this data interpretation and was the
intended application of the PythoMS framework. The goal of
this script is to automate how we process mass spectrometric
data, tracking the integration of all the intensity associated with a
given ion across all time points in a mass spectrometric
experiment. This required not only interfacing with the scans but
also having access to low-level scan attributes to extract only the
intended data, which is achieved using the mzML class.
The script requires that the user provide a dictionary of names

and start and end m/z for each peak they wish to integrate. This
dictionary may either be defined as such or generated in an Excel
workbook which they may then provide to the script (the
integration parameters are automatically extracted from the
workbook in this case). The user may instead specify amolecular
formula for an ion rather than bounds, and the script will
automatically determine the bounds to integrate by simulating
the isotope pattern with IPMolecule and generating a
confidence interval for the bounds based on the pattern and
an automatically calculated resolution of the instrument. This of
course requires that the instrument in use is accurately
calibrated, with no substantial calibration drift. Additionally,
theymust also provide the name of a mass spectrometric data file
(either in mzML orWaters’ .RAW format; support can be added
as needed for any format interpretable by ProteoWizard). The
script takes the supplied parameters and uses the mzML class to
integrate between the provided bounds for every scan in the MS
file. The returned data is then normalized to the total ion current
(a commonly applied transformation to MS data), and both the
raw and normalized data is output to the Excel workbook.
The intensity of MS data can varies from scan to scan, which

makes the data noisy, visually unappealing, and difficult to
interpret in cases where there are multiple traces present. To
address this, PyRSIR has a built-in binning algorithm, where the
user can specify the number of adjacent scans to bin together.
For example, if the user specifies three scans to bin, the intensity
of every three scans is combined for each tracked ion and is
stored as a single data point. This has the effect of visually
reducing the noise of the spectrum, without eliminating any data
in a smoothing process (Figure 1), essentially simulating a

Journal of Chemical Information and Modeling Application Note

DOI: 10.1021/acs.jcim.9b00055
J. Chem. Inf. Model. 2019, 59, 1295−1300

1297

http://dx.doi.org/10.1021/acs.jcim.9b00055


longer scan time in the spectrometer. These binned data are also
output to the Excel workbook, and the user may select which of
the raw, normalized, or binned data they wish.
The script additionally sums spectra of all scans, as well as the

isotope patterns contained within the supplied bounds of each
ion and outputs these to the Excel file. The former is retained for
the user’s convenience, as we frequently show a region of the
summed spectra for illustrative purposes (the summed spectra
functionality also has a minimal impact on performance). The
latter allows the user to verify visually that the bounds they
specified are appropriate (this is not always apparent when
selecting the bounds).
This script automates the time-consuming and repetitive

actions involved in processingmass spectrometric data to extract
reconstructed single ion monitoring traces, and it has
substantially improved the efficiency of our data processing.
Historically, a researcher in our group might acquire reaction
data for a day, then spend the next one or two days processing
that data. This script fully automates the data extraction and
processing, completing the same tasks in minutes. The
substantial efficiency increase allows the user to spend more
time considering the implications of the data, provides
immediate feedback on the quality of their bound selection
(the extracted isotope patterns provide excellent visual queues
for whether there aremultiple patterns overlapping in a bounded
region), and enables rapid reprocessing (e.g., if those bounds
were incorrectly selected).
Isotope Pattern Overlay. When assigning a molecular

formula to an observed ion in a mass spectrum, there are
typically two matches made: the m/z value compared to the
exact mass and the comparison of observed and predicted
isotope patterns. If there is a good visual match between
predicted and observed patterns, the assignment as that formula
is supported. These comparisons are generally qualitative in
nature, but this is usually sufficient to decide whether a match is
good (particularly for polyisotopic species). The isotope pattern
overlay script was written to generate figures which allow the
user to perform this comparison between experimental and
predicted isotope patterns.
The script takes one or more molecular formulas as input and

predicts the isotope patterns using the IPMolecule class. It then
loads a provided experimental spectrum and overlays the

predicted patterns over top of an experimental spectrum
(usually in an Excel workbook), then saves the figure to file
(Figure 2). There are a wide variety of parameters which may be

tweaked by the user to control the behavior of the script, all of
which are detailed in the script’s documentation, and a set of
commonly used defaults have been specified by the author to
suit most applications (publication, inset, detailed analysis, etc.).
A “detailed” preset for the script performs comparison
calculations between the experimental exact mass and the
predicted exact mass, including that information on the output
figure (Figure 3). The script automatically scales the height of

the predicted isotope pattern tomatch themaximum intensity of
the spectrum within the bounds of that isotope pattern. Multiple
isotope patterns can be predicted within a given figure in this
way, allowing for analysis of adjacent or even overlapping
isotope patterns (Figure 4). As well, the script automatically
determines an appropriatem/z window to render for the output
figure, which rarely requires end-user adjustment (typically the
most time-consuming aspect of rendering an isotope pattern
overlay image as it is an iterative process).

Video Frame Renderers. Figures generated for publication
are by necessity designed in such a manner to be easily readable
as a static image. However, when discussing data in an oral

Figure 1. PyRSIR output illustrating the effect that several levels of
binning has on scan-to-scan noise. These data were chosen as an
example of particularly severe scan-to-scan noise.

Figure 2. Example output of the isotope pattern overlay script showing
the experimental (line) and predicted (bars) isotope pattern of
C61H52OP3Pd. This figure was generated using the publication preset of
the isotope pattern overlay script.

Figure 3. Example output of the “detailed” preset of the isotope pattern
overlay script showing the experimental orbitrap spectrum (line) and
predicted (bars) isotope pattern of a titanium species. The preset
includes an automatic printout of themass delta (in bothm/z and ppm)
between the experimental and predicted exact mass.

Journal of Chemical Information and Modeling Application Note

DOI: 10.1021/acs.jcim.9b00055
J. Chem. Inf. Model. 2019, 59, 1295−1300

1298

http://dx.doi.org/10.1021/acs.jcim.9b00055


presentation, animation of data can be far more engaging for the
audience. Two animation scripts were written to render frames
for use in video format. The first of these, video frame renderer,
takes a similar input to PyRSIR and extracts data from a specified
mzML file. The script then plots a series of images showing the
mass spectrum at a given time point on one-half of the image,
and the normalized abundance traces on the other half.26,27

When the entire series is rendered and encoded in video format,
it very effectively illustrates how we can observe the
consumption and production of different ions in real time; it
is essentially a time-lapse rendition of the evolving reaction.
Another frame rendering script (y-axis zoom figure), was

created to illustrate the massive observable dynamic range of a
mass spectrometer. Using a similar user input to that of the video
frame renderer, it plots an abundance trace over time figure (like
those seen in Figure 1). It then “zooms” into the baseline,
expanding the y-axis so that traces that were previously in the
baseline can be viewed. It does this vertical expansion as many
times as the user specifies, and a rendered video was included in
the supporting information of a recent publication from our
group.22

Spectrum Binner. Combined spectra are frequently used
when examining isotope patterns or generating figures. While
theWatersMassLynx software has a tool which allows this, it can
only track m/z values to four decimal places and can take some
time to complete a combination of a long or complex acquisition
(we also frequently encounter program crashes when asking it to
do so). The spectrum binner script was created to address this
and utilizes the Spectrum and mzML classes to combine all
spectra in a providedMS file, tracking the user-specified number
of decimal places. In comparison to the algorithm implemented
by MassLynx, the Spectrum outperforms the manufacturer with
respect to computational resources and time (as an example,
binning of a 3156-scan experiment tookMassLynx 4 min and 4 s
and PythoMS only 1 min and 32 s on the same computer). The
combined spectrum is saved to a Microsoft Excel workbook in
both counts and normalized intensity for the user’s convenience
(the data are also returned if the function is called within another
Python script).

Aggregate Calculator. The calibration of an electrospray
ionization mass spectrometer (ESI-MS) involves acquiring the
spectrum of a solution known to aggregate (commonly NaI in
MeOH, generating ions of the form [Nax+1Ix]

+ in positive ion
mode and [NaxIx+1]

− in negative ion mode). The resulting
aggregate series is compared to the exact masses, and a
calibration polynomial is calculated by the software to move
the observed masses to match the exact masses. The aggregate
calculator script calculates the exact mass of a series of aggregates
using the IPMolecule class, printing the exact masses of those
aggregates in the console. The aggregate calculator may also be
used to generate an accurate calibration file for use in calibrating
mass spectrometers (this requires the user to predefine the
syntax for the calibration files). We have also found this script to
be useful in interpreting plots, as it can quickly calculate an
aggregate series which the user can then compare to their
spectrum to see if an aggregate assignment is reasonable.

MSMS Interpreter Assistant.When interpreting a tandem
mass spectrometry experiment, typically the first action
performed is to find the difference between the observed
peaks and each other. This is yet another tedious and repetitive
task, and the MSMS interpreter assistant was written to address
this problem. The script sums an mzML file into a single
spectrum, detects peaks in that spectrum, and calculates all the
mass differences between those peaks. The resulting spectrum
and output table are both printed to console and written to an
Excel workbook. The user can then look at an appropriately
formatted table of differences, making it substantially more
straightforward to identify significant differences (e.g., a loss of
127 is likely I). The script also reads from a dictionary of
common losses predefined by the user (e.g., 77 is phenyl, 262 is
triphenylphosphine, 79 is bromine, etc.) and guesses at what the
observed differencemight represent. While the guesses are by no
means certain assignments, it is the experience of the author that
the script has correctly assigned many differences, allowing the
user to focus on assigning the more challenging differences.

Figure 4. Example output of the isotope pattern overlay script predicting and overlaying three isotope patterns on a complicated palladium dimer
series. The mass calibration for the spectrometer was approximately m/z 0.2 off in this experiment based on calibration to a known internal standard.
The detailed preset of the script was used here, which includes a label, mass delta between actual and predicted exact mass, and the resolution of the
spectrum (the font size was intentionally reduced to avoid label overlap).

Journal of Chemical Information and Modeling Application Note

DOI: 10.1021/acs.jcim.9b00055
J. Chem. Inf. Model. 2019, 59, 1295−1300

1299

http://dx.doi.org/10.1021/acs.jcim.9b00055


■ CONCLUSIONS
Handling and interpreting the dense data of mass spectrometry
is greatly assisted by the development and implementation of
programming tools. PythoMS provides a framework for
extracting all potential mass spectrometric data and building
interpretation and visualization tools for that data. We hope that
the framework will not only prove useful in its current form but
will also inspire others to develop tools which make mass
spectrometric data handling and interpretation more accessible
to more users. Learning to write Python code has become an
essential part of training in our laboratory, and we anticipate
continuing to build on the PythoMS tools in the near future.

■ AUTHOR INFORMATION
Corresponding Authors
*Email: larsy@uvic.ca.
*Email: mcindoe@uvic.ca.
ORCID
J. Scott McIndoe: 0000-0001-7073-5246
Present Address
†Department of Chemistry, University of British Columbia,
2036 Main Mall, Vancouver, BC V6T 1Z1, Canada. E-mail:
larsy@chem.ubc.ca.
Funding
J.S.M. thanks NSERC (Discovery and Discovery Accelerator
Supplement) for operational funding and CFI, BCKDF, and the
University of Victoria for infrastructural support.
Notes
The authors declare no competing financial interest.

■ ABBREVIATIONS
RSIM, reconstructed single ionmonitoring; HUPOPSI, Human
Proteome Organization Proteomics Standards Initiative; XML,
extensible markup language; CV, controlled vocabulary; CSV,
comma separated values; NIST, National Institute of Standards
and Technology

■ REFERENCES
(1) Goloborodko, A. A.; Levitsky, L. I.; Ivanov,M. V.; Gorshkov,M. V.
Pyteomicsa Python Framework for Exploratory Data Analysis and
Rapid Software Prototyping in Proteomics. J. Am. Soc. Mass Spectrom.
2013, 24 (2), 301−304.
(2) Kremer, L. P. M.; Leufken, J.; Oyunchimeg, P.; Schulze, S.;
Fufezan, C. Ursgal, Universal Python Module Combining Common
Bottom-Up Proteomics Tools for Large-Scale Analysis. J. Proteome Res.
2016, 15 (3), 788−794.
(3) Strohalm, M.; Kavan, D.; Novaḱ, P.; Volny,́ M.; Havlícěk, V.
mMass 3: A Cross-Platform Software Environment for Precise Analysis
of Mass Spectrometric Data. Anal. Chem. 2010, 82 (11), 4648−4651.
(4) mendeleev−A Python resource for properties of chemical
elements, ions and isotopes https://bitbucket.org/lukaszmentel/
mendeleev (accessed Mar 18, 2019).
(5) Leufken, J.; Niehues, A.; Sarin, L. P.; Wessel, F.; Hippler, M.;
Leidel, S. A.; Fufezan, C. pyQms Enables Universal and Accurate
Quantification of Mass Spectrometry Data.Mol. Cell. Proteomics 2017,
16 (10), 1736−1745.
(6) Patiny, L.; Borel, A. ChemCalc: A Building Block for Tomorrow’s
Chemical Infrastructure. J. Chem. Inf. Model. 2013, 53 (5), 1223−1228.
(7) Deutsch, E. mzML: A Single, Unifying Data Format for Mass
Spectrometer Output. Proteomics 2008, 8 (14), 2776−2777.
(8) Deutsch, E. W.; Hubbard, S. J.; Jones, A. R. Mass Spectrometer
Output File Format mzML. Methods Mol. Biol. 2010, 604, 319−331.
(9) Martens, L.; Chambers, M.; Sturm, M.; Kessner, D.; Levander, F.;
Shofstahl, J.; Tang, W. H.; Römpp, A.; Neumann, S.; Pizarro, A. D.;

et al. mzMLa Community Standard for Mass Spectrometry Data.
Mol. Cell. Proteomics 2011, 10 (1), R110.
(10) Chambers, M. C.; Maclean, B.; Burke, R.; Amodei, D.;
Ruderman, D. L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.;
Egertson, J.; et al. A Cross-Platform Toolkit for Mass Spectrometry and
Proteomics. Nat. Biotechnol. 2012, 30 (10), 918−920.
(11) Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P.
ProteoWizard: Open Source Software for Rapid Proteomics Tools
Development. Bioinformatics 2008, 24 (21), 2534−2536.
(12) Bald, T.; Barth, J.; Niehues, A.; Specht, M.; Hippler, M.; Fufezan,
C. pymzMLPythonModule for High-Throughput Bioinformatics on
Mass Spectrometry Data. Bioinformatics 2012, 28 (7), 1052−1053.
(13) Röst, H. L.; Schmitt, U.; Aebersold, R.; Malmström, L.
pyOpenMS: A Python-Based Interface to the OpenMS Mass-
Spectrometry Algorithm Library. Proteomics 2014, 14 (1), 74−77.
(14) Łaçki, M. K.; Startek, M.; Valkenborg, D.; Gambin, A. IsoSpec:
Hyperfast Fine Structure Calculator. Anal. Chem. 2017, 89 (6), 3272−
3277.
(15) Rockwood, A. L.; Van Orden, S. L.; Smith, R. D. Rapid
Calculation of Isotope Distributions.Anal. Chem. 1995, 67 (15), 2699−
2704.
(16) Lide, D. R. CRC Handbook of Chemistry and Physics, 93rd ed.;
Haynes, W. M., Ed.; Internet Version; CRC press, 2012; Vol. 93, pp 9−
79.
(17) U.S. Department of Commerce. National Institute of Standards
and Technology https://www.nist.gov/ (accessed 2017).
(18) McIndoe Lab. Video Renderer Script, Windows Version; Youtube,
2019 https://www.youtube.com/watch?v=BhhCdrqSF24.
(19) McIndoe Lab. Video Renderer Script, Mac Version; Youtube, 2019
https://www.youtube.com/watch?v=cNYRiSVcNhU.
(20) McIndoe Lab. Pyrsir; Youtube, 2019 https://www.youtube.
com/watch?v=OuV4vUy2pGw.
(21) McIndoe Lab. Isotope Pattern Overlay; Youtube, 2019 https://
www.youtube.com/watch?v=PPyNq1Szt6s.
(22) Theron, R.; Wu, Y.; Yunker, L. P. E.; Hesketh, A. V.; Pernik, I.;
Weller, A. S.; McIndoe, J. S. Simultaneous Orthogonal Methods for the
Real-Time Analysis of Catalytic Reactions. ACS Catal. 2016, 6 (10),
6911−6917.
(23) Vikse, K. L.; Henderson, M. A.; Oliver, A. G.; McIndoe, J. S.
Direct Observation of Key Intermediates by Negative-Ion Electrospray
Ionisation Mass Spectrometry in Palladium-Catalysed Cross-Coupling.
Chem. Commun. 2010, 46, 7412−7414.
(24) Vikse, K. L.; Woods, M. P.; McIndoe, J. S. Pressurized Sample
Infusion for the Continuous Analysis of Air- And Moisture-Sensitive
Reactions Using Electrospray Ionization Mass Spectrometry. Organo-
metallics 2010, 29 (23), 6615−6618.
(25) Yunker, L. P. E.; Stoddard, R. L.; McIndoe, J. S. Practical
Approaches to the ESI-MS Analysis of Catalytic Reactions. J. Mass
Spectrom. 2014, 49 (1), 1−8.
(26) Yunker, L. P. E.; Ahmadi, Z.; Logan, J. R.; Wu, W.; Li, T.;
Martindale, A.; Oliver, A. G.; McIndoe, J. S. Real-Time Mass
Spectrometric Investigations into the Mechanism of the Suzuki−
Miyaura Reaction. Organometallics 2018, 37 (22), 4297−4308.
(27) Belli, R. G.; Wu, Y.; Ji, H.; Joshi, A.; Yunker, L. P. E.; McIndoe, J.
S.; Rosenberg, L. Competitive Ligand Exchange and Dissociation in Ru
Indenyl Complexes. Inorg. Chem. 2019, 58, 747.

Journal of Chemical Information and Modeling Application Note

DOI: 10.1021/acs.jcim.9b00055
J. Chem. Inf. Model. 2019, 59, 1295−1300

1300

mailto:larsy@uvic.ca
mailto:mcindoe@uvic.ca
http://orcid.org/0000-0001-7073-5246
mailto:larsy@chem.ubc.ca
https://bitbucket.org/lukaszmentel/mendeleev
https://bitbucket.org/lukaszmentel/mendeleev
https://www.nist.gov/
https://www.youtube.com/watch?v=BhhCdrqSF24
https://www.youtube.com/watch?v=cNYRiSVcNhU
https://www.youtube.com/watch?v=OuV4vUy2pGw
https://www.youtube.com/watch?v=OuV4vUy2pGw
https://www.youtube.com/watch?v=PPyNq1Szt6s
https://www.youtube.com/watch?v=PPyNq1Szt6s
http://dx.doi.org/10.1021/acs.jcim.9b00055

