
Built-in template rules
and how to override them

David J. Birnbaum

Built-in template rules and how to override them

2

What’s built in?
• Where do we start?

at the document node (itself the parent of the root element)
• What happens when there is no applicable template rule?

The built-in defaults are applied. (Kay, 79)
• What happens where there is exactly one applicable template rule?

Er ... it gets applied.
• What happens when more than one template rule would seem to apply?

Built-in priority (Kay, 686)
User-specified priority (Kay, 483)

Launching a transformation
• Processing starts at the document node, which sits above the root element (the top-level

element that contains all other nodes).
• In a TEI document, the root element is normally <TEI>.
• Built-in template rules will walk the tree and process the entire document.
• Override the built-in rules by specifying your own to:

Perform non-built-in processing
Cause items not to be processed

Built-in template rules
• Element: process children (elements and text nodes), applying matching template rules

(built-in or specified)
• Attribute: do nothing (no output)
• Text: output string value
(Kay 79)

Built-in template rules and how to override them

3

Priority
Built-in priority: the rule with the most specific match is applied

<xsl:template match="div">
 <act>
 <xsl:apply-templates/>
 </act>
</xsl:template>

<xsl:template match="div/div">
 <scene>
 <xsl:apply-templates/>
 </scene>
</xsl:template>

User-specified priority

<xsl:template match="div" priority="10">
 <act>
 <xsl:apply-templates/>
 </act>
</xsl:template>

• Built-in priorities range from -0.5 to 0.5
• User-specified priorities may be any number (including negative)

Overriding a template rule
•

<xsl:template match="/">
 <xsl:apply-templates/>
</xsl:template>

• The built-in rule for any element is to process its child elements and text nodes.

Built-in template rules and how to override them

4

• The built-in rule for the document node would process its single root element. In the case of
a TEI document, that’s usually the single <TEI> node.

•

<xsl:template match="/">
 <xsl:apply-templates select="//head"/>
</xsl:template>

• In the example above, instead you grab all <head> elements everywhere. No other nodes
are processed unless they’re inside a <head>.

A demonstration of template priority
• Open the Hamlet XML: http://web.uvic.ca/~mholmes/dhoxss2013/examples/hamlet.xml
• Open the Template Priority XSLT file: http://web.uvic.ca/~mholmes/dhoxss2013/examples/

template_priority.xsl
• Switch to the XSLT debugger in oXygen.
• Now we'll experiment with template priority.

• Demonstrate how the initial run outputs each head as an h2 element.
• Add a second template which matches div/div/head, and outputs h3.
• Explain how this works: this template is more specific, so it is chosen.
• Now add priority="1" to the first template, and see how this overrides the specificity.
• Explain that the built-in priority values run from -0.5 to 0.5, so if you use anything above or

below those values, you'll override them.
• Now demonstrate what happens when you remove the select="//head". Use this to review

the built-in processing model again.

http://web.uvic.ca/~mholmes/dhoxss2013/examples/hamlet.xml
http://web.uvic.ca/~mholmes/dhoxss2013/examples/template_priority.xsl
http://web.uvic.ca/~mholmes/dhoxss2013/examples/template_priority.xsl

