XSLT Keys

Martin Holmes

XSLT Keys

XSLT Keys
* Asyour XSLT transformations get more complicated, they'll also start to take a little longer
to run.
» Thiscan become a problem when (for instance) you're generating content on-the-fly for a
website.
* Timeis often wasted because the same template performs the same expensive operation
many times.

* <xsl : key> can help make your templates more efficient.

The nature of the problem

Imagine that we want to transform our Hamlet file (again). This time, we want to add a copy
of the speaker's <r ol eDesc> immediately following the character's name at the beginning of
every speech. Thistemplate would do it:

<xsl :tenpl ate mat ch="speaker" >
<xsl :apply-tenplates select="@ | node()"/>
<xsl:text> (</xsl:text>
<xsl:vari abl e name="t hi sSpeaker"
sel ect ="substring-after(parent::sp/ @ho, "#)"/>
<xsl : val ue- of select="//castltem
[role/@m :id = $thi sSpeaker]/rol eDesc"/>
<xsl : text >) </ xsl : text >
</ xsl : tenpl at e>

Teaching opportunity: why are we using "substring-after"? What are some alternatives to this?

XSLT Keys

The nature of the problem

<xsl : tenpl at e mat ch="speaker" >
<xsl :apply-tenplates select="@ | node()"/>
<xsl:text> (</xsl:text>
<xsl:vari abl e name="t hi sSpeaker"
sel ect ="substring-after(parent::sp/ @ho, "#)"/>
<xsl : val ue- of select="//castltem
[role/@m:id = $thi sSpeaker]/rol eDesc"/>
<xsl : text >) </ xsl : t ext >
</ xsl : tenpl at e>

* Open parenthesis.

» Getthe@m : i d of therolefrom the @who attribute of the parent <sp> element and stash
itinavariable.

* Retrievethe matching <cast | t e element in the cast list, and output its <r ol eDesc>
content.

* Close parenthesis.

Inefficiencies in the previous template

Look again at thisline:
<xsl :val ue-of select="//castltenfrol e/ @m:id = $thisSpeaker]/rol eDesc"/>

Every timethisis executed, the XSLT processor has to look through all the<cast It e
elements to find the matching one. This happens for every <speaker > element matched by
the template.

<xsl : key> to the rescue

» Toavoid repeating the same lookup operation every time atemplate isinvoked, we can use
<xsl : key>.
* <xsl : key> buildsan index to a specific node.

XSLT Keys

e It buildstheindex once, and keeps it available for quick lookups during the rest of the
transformation.
* Theindex workslike an associative array.

Building an <xsl : key> index

An<xsl : key> index is built using a single command. The command appears at the top
level of your stylesheet, usually near the beginning of thefile. It looks like this:

<xsl : key name="rol es" match="castlten] @ype="role']" use="role/ @&m :id"/>

* Thisbuildsakey index named " r ol es".

* The @rat ch attribute specifies the nodes which will be indexed. In this case, it's indexing
al <cast I t enr elementswhose @ ype attributeis" r ol e" .

* Thelast attribute, @Qise, specifies what we use to ook up a particular item in the index.

* Here, weusethe @l : i d attribute on the <r ol e> child of thetarget <cast | t en
node.

Using an <xsl : key> index
Here's our index:
<xsl : key name="rol es" match="castlten] @ype="role']" use="role/ @&m:id"/>

Here's how we can use it to accomplish the same job as before:

XSLT Keys

<xsl :tenpl ate mat ch="speaker" >
<xsl :apply-tenplates select="@ | node()"/>
<xsl:text> (</xsl:text>
<xsl :vari abl e nanme="t hi sSpeaker"
sel ect ="substring-after(parent::sp/ @Gho, "#)"/>
<xsl : val ue- of sel ect="key('roles', $thisSpeaker)/rol eDesc"/>
<xsl:text>)</xsl:text>
</ xsl : t enpl at e>

<xsl : key> Task (and review of identity transforms)

* Openthe Hamlet XML http://web.uvic.ca/~mholmes/dhoxss2013/exampl es/haml et.xml
* Create anew identity transform file in Oxygen. Don't forget to:

setthecorrect xm ns

setthecorrect xpat h- def aul t - nanespace
* Carry out the stepsin the previous slides:

Create atemplate which matches <speaker >.

Inyour template, add a copy of the speaker's roleDesc immediately following the

character's name at the beginning of every speech.
Now rewrite the process using the <xsl : key>.

http://web.uvic.ca/~mholmes/dhoxss2013/examples/hamlet.xml

