
XSLT Keys

Martin Holmes

XSLT Keys

2

XSLT Keys
• As your XSLT transformations get more complicated, they'll also start to take a little longer

to run.
• This can become a problem when (for instance) you're generating content on-the-fly for a

website.
• Time is often wasted because the same template performs the same expensive operation

many times.
• <xsl:key> can help make your templates more efficient.

The nature of the problem
Imagine that we want to transform our Hamlet file (again). This time, we want to add a copy
of the speaker's <roleDesc> immediately following the character's name at the beginning of
every speech. This template would do it:

<xsl:template match="speaker">
 <xsl:apply-templates select="@* | node()"/>
 <xsl:text> (</xsl:text>
 <xsl:variable name="thisSpeaker"
 select="substring-after(parent::sp/@who, '#')"/>
 <xsl:value-of select="//castItem
 [role/@xml:id = $thisSpeaker]/roleDesc"/>
 <xsl:text>)</xsl:text>
</xsl:template>

Teaching opportunity: why are we using "substring-after"? What are some alternatives to this?

XSLT Keys

3

The nature of the problem

<xsl:template match="speaker">
<xsl:apply-templates select="@* | node()"/>
<xsl:text> (</xsl:text>
 <xsl:variable name="thisSpeaker"
 select="substring-after(parent::sp/@who, '#')"/>
 <xsl:value-of select="//castItem
 [role/@xml:id = $thisSpeaker]/roleDesc"/>
<xsl:text>)</xsl:text>
</xsl:template>

• Open parenthesis.
• Get the @xml:id of the role from the @who attribute of the parent <sp> element and stash

it in a variable.
• Retrieve the matching <castItem> element in the cast list, and output its <roleDesc>

content.
• Close parenthesis.

Inefficiencies in the previous template
Look again at this line:

<xsl:value-of select="//castItem[role/@xml:id = $thisSpeaker]/roleDesc"/>

Every time this is executed, the XSLT processor has to look through all the <castItem>
elements to find the matching one. This happens for every <speaker> element matched by
the template.

<xsl:key> to the rescue
• To avoid repeating the same lookup operation every time a template is invoked, we can use

<xsl:key>.
• <xsl:key> builds an index to a specific node.

XSLT Keys

4

• It builds the index once, and keeps it available for quick lookups during the rest of the
transformation.

• The index works like an associative array.

Building an <xsl:key> index
An <xsl:key> index is built using a single command. The command appears at the top
level of your stylesheet, usually near the beginning of the file. It looks like this:

<xsl:key name="roles" match="castItem[@type='role']" use="role/@xml:id"/>

• This builds a key index named "roles".
• The @match attribute specifies the nodes which will be indexed. In this case, it's indexing

all <castItem> elements whose @type attribute is "role".
• The last attribute, @use, specifies what we use to look up a particular item in the index.
• Here, we use the @xml:id attribute on the <role> child of the target <castItem>

node.

Using an <xsl:key> index
Here's our index:

<xsl:key name="roles" match="castItem[@type='role']" use="role/@xml:id"/>

Here's how we can use it to accomplish the same job as before:

XSLT Keys

5

<xsl:template match="speaker">
 <xsl:apply-templates select="@* | node()"/>
 <xsl:text> (</xsl:text>
 <xsl:variable name="thisSpeaker"
 select="substring-after(parent::sp/@who, '#')"/>
 <xsl:value-of select="key('roles', $thisSpeaker)/roleDesc"/>
 <xsl:text>)</xsl:text>
</xsl:template>

<xsl:key> Task (and review of identity transforms)
• Open the Hamlet XML: http://web.uvic.ca/~mholmes/dhoxss2013/examples/hamlet.xml
• Create a new identity transform file in Oxygen. Don't forget to:

set the correct xmlns
set the correct xpath-default-namespace

• Carry out the steps in the previous slides:
Create a template which matches <speaker>.
In your template, add a copy of the speaker's roleDesc immediately following the

character's name at the beginning of every speech.
Now rewrite the process using the <xsl:key>.

http://web.uvic.ca/~mholmes/dhoxss2013/examples/hamlet.xml

