
XSL Conditionals and Looping

Martin Holmes

XSL Conditionals and Looping

2

XSL Conditionals: ifs, chooses, whens and otherwises
• Almost all programming languages have conditional branching structures.
• XSL has two: <xsl:if> and <xsl:choose>.
• XPath also has the if-then-else structure.

Using <xsl:if>
A simple example: using <xsl:if> to pluralize "author" if there are multiple authors.

Author<xsl:if test="count($docAuthors/author) gt 1">s</xsl:if>:
<xsl:for-each select="$docAuthors/author">
 <xsl:value-of select="forename" /> <xsl:value-of select="surname" />

</xsl:for-each>

• Let's look at this in detail:

<xsl:if test="count($docAuthors/author) gt 1">s</xsl:if>

• The @test attribute contains an XPath expression which evaluates to true() or
false().

• What is inside the <xsl:if> tag is only implemented if it evaluates to true().

Using <xsl:choose>
• Sometimes you need to handle two or more conditions. This is done with <xsl:choose>:

XSL Conditionals and Looping

3

•

<div>
 <head>DHSI Dress Code</head>
 <xsl:choose>
 <xsl:when test="surname='Bauman'">
 tie, no footwear
 </xsl:when>
 <xsl:when test="surname='Holmes'">
 footwear, no tie
 </xsl:when>
 <xsl:otherwise>
 unpredictable
 </xsl:otherwise>
 </xsl:choose>
</div>

• The processor looks at each <xsl:when> in turn; when it finds one whose @test
evaluates to true(), it processed that one, and then exits the <xsl:choose>.

• If none are true, it processes <xsl:otherwise> (assuming there is one).

Using XPath if-then-else
• If your condition is very simple, and the processing you want to do as a result of it does not

involve creating tags and attributes, then you can just use an if-then-else structure in
XPath:

•

<xsl:value-of
 select="
 if (count($docAuthors/author) gt 1) then
 'Authors: '
 else
 'Author: '
 " />

XSL Conditionals and Looping

4

XSL Conditionals: Task
Here's a simple task you can try:

• Open the Places XML: http://web.uvic.ca/~mholmes/dhoxss2013/examples/places.xml
• Open the Conditionals XSLT file: http://web.uvic.ca/~mholmes/dhoxss2013/examples/

conditionals.xsl
• Switch to the XSLT debugger in oXygen.
• Follow the instructions in the XSLT file. You'll need to write some conditional XSLT code

to complete the task.

XSL Conditionals: Task
This is one possible solution:

<xsl:template match="/">
 <xsl:for-each select="//place">
 <xsl:value-of select="placeName" />
 <xsl:choose>
 <xsl:when test="count(location/geo) eq 1"> (point)</xsl:when>
 <xsl:when test="location[@type='path']"> (path)</xsl:when>
 <xsl:otherwise> (polygon)</xsl:otherwise>
 </xsl:choose>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
</xsl:template>

Looping in XSLT
Most programming languages have a looping construct, like this:

http://web.uvic.ca/~mholmes/dhoxss2013/examples/places.xml
http://web.uvic.ca/~mholmes/dhoxss2013/examples/conditionals.xsl
http://web.uvic.ca/~mholmes/dhoxss2013/examples/conditionals.xsl

XSL Conditionals and Looping

5

for (i = 0; i < 9; i++){
 alert('i = ' + i);
}

Looping in XSLT
XSLT has something similar:

<xsl:for-each select="//author">
 <xsl:value-of select="surname"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="forename"/>
</xsl:for-each>

Looping vs Templates
You might wonder how this:

<xsl:for-each select="//author">
 <xsl:value-of select="surname"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="forename"/>
</xsl:for-each>

is different from this:

XSL Conditionals and Looping

6

<xsl:template match="author">
 <xsl:value-of select="surname"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="forename"/>
</xsl:template>
[...]
<xsl:apply-templates select="//author">

In most cases, what you can do with looping can be done equally well with templates. Which
approach you prefer is often a matter of personal preference; programmers used to more
traditional programming languages may tend to use loops a lot (I do), whereas those more
focused on pure XSLT are more likely to let templates do the work for them.

A pure template approach is known as push, whereas in pull contexts it's more common to find
xsl:for-each.

One reason for looping: sorting
•

<xsl:for-each select="//author">
 <xsl:sort select="surname"/>
 <xsl:value-of select="surname"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="forename"/>
</xsl:for-each>

• You can also sort according to the sort rules of another language, using the @lang
attribute:

•
<xsl:for-each select="//author">
 <xsl:sort select="surname" lang="is"/>
 <xsl:value-of select="surname"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="forename"/>
</xsl:for-each>

XSL Conditionals and Looping

7

• To see sorting according to a specific language collation, see: http://web.uvic.ca/~mholmes/
dhoxss2013/examples/sorting_collation.xsl

XSL Looping: Task
Here's a simple task you can try:

• Open the Hamlet XML: http://web.uvic.ca/~mholmes/dhoxss2013/examples/hamlet.xml
• Open the Looping XSLT file: http://web.uvic.ca/~mholmes/dhoxss2013/examples/

looping.xsl
• Switch to the XSLT debugger in oXygen.
• Run the transformation. Then try adding an <xsl:sort> instruction to the loop.

http://web.uvic.ca/~mholmes/dhoxss2013/examples/sorting_collation.xsl
http://web.uvic.ca/~mholmes/dhoxss2013/examples/sorting_collation.xsl
http://web.uvic.ca/~mholmes/dhoxss2013/examples/hamlet.xml
http://web.uvic.ca/~mholmes/dhoxss2013/examples/looping.xsl
http://web.uvic.ca/~mholmes/dhoxss2013/examples/looping.xsl

